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The electrophoretic mobility shift assay [EMSA]1 is one of the most sensitive methods for
studying DNA-protein interactions. Chemiluminescence [CL]1 has been used as an alternative
to radioisotopic detection of samples in the EMSA [1,2], as it has advantages such as safety
and stability (no isotopic decay) of the sample. In this study, we examined the feasibility of
the application of CL EMSA to studying heparin-living bacteria interactions. As an example,
binding of biotinylated heparin to Escherichia coli was examined.

The pathogenesis of most infections is initiated by microbial adhesion to host tissue. This
adhesion is, therefore, a promising target for the development of new antimicrobial therapeutics
[3]. In the adhesion, heparin or heparin-related oligosaccharides are one of the extracellular
matrix molecules of the host recognized by cell surface proteins of bacteria [4–8].

Due to the lack of appropriate techniques for the study of the interactions of heparin-living
bacteria, most heparin-bacteria binding studies have been conducted with isolated bacterial
proteins [9,10]. Although useful information can be obtained from such studies, one potential
drawback is the exclusion of membrane phenomena such as ligand-induced receptor
oligomerization that can affect the overall binding affinity [11].

Therefore, it is desirable to examine the adhesion process using bacteria in the intact state to
include the membrane phenomena. With this purpose, scintillation counting of radioisotope
radiation [12] and sodium dodecyl sulfate-polyacrylamide gel electrophoresis [8] were used
to assess the binding of heparin to living bacteria. More recently, atomic force microscopy was
successfully used to investigate heparin-living bacteria interactions and producing quantitative
data [13]. However, these methods are qualitative [8], require radioisotope labeling [12], an
instrument, which may not be readily available in common laboratories [13].

EMSA has been widely employed to detect DNA-protein interactions since its first application
[14]. In this study, CL EMSA is introduced to complement the existing methods to study
heparin-bacteria interactions. CL has advantages such as safety and sample stability (no
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isotopic decay), while still exhibiting linearity between signal and sample quantity [15]. It has
been applied to a quantitative binding study of RNA-protein [16] and heparin-protein
interactions [17]. The underlying mechanism of CL generation is that biotin attached to heparin
is recognized by horseradish peroxidase-conjugated streptavidin. This enzyme catalyzes a
chemical reaction to generate luminescence [15]. In this study, we examined the feasibility of
CL EMSA to quantitatively study of heparin-living bacteria interactions using E. coli as a
model system.

An overnight culture of a commercial E. coli strain, BL21 (DE3) carrying pLysS and pTYB1
(New England Biolab, Beverly, MA) was centrifuged and washed two times with PBS1 and
resuspended in the buffer. Aliquots of the E. coli containing buffer were used for the
measurement of OD600 (optical density at 600 nm) of the cells and in the heparin binding
assay. Luria-Bertani broth and plates contained 50 μg/ml ampicillin and 34 μg/ml
chloramphenicol. From the number of E. coli colonies on the plate after spreading the cells
with a defined volume and the OD600, we obtained the relationship between OD600 and the
E. coli concentration in PBS. Colony numbers (y) on the plates were fit to Eq. (1) by linear
regression using Mathematica (Wolfram Research, Champaign, IL).

y = ax (1)

where x is the volume (μl) multiplied by 10−6 × OD600 of the cell solution spread on a plate.
The constant a was obtained as 0.46 ± 0.02 and R2 for the fitting was 0.992. This suggests that
one OD600 of the cells corresponds to 0.76 pM.

Binding of biotinylated heparin (Sigma, St Louis, MO) to E. coli was achieved by incubating
5 nM biotinylated heparin in PBS and a variable quantity of the bacteria in a 10 μl reaction
volume for 1 h at room temperature. The total quantity of biotinylated heparin in the reaction
mixture was 50 fmol, which is within the linear signal range [17]. Then, the binding mixtures
were combined with 6x gel-loading buffer (0.25% bromophenol blue and 30% glycerol) and
electrophoresed on an 8% polyacrylamide gel in 1x trisborate/EDTA buffer at 100 V for 30
min. Heparin in the gel was transferred to Biodyne nylon membranes (Pierce, Rockford, IL)
by electroblotting at 100 V for 1 h using a Mini Trans-Blot Cell (Bio-Rad, Hercules, CA) and
detected using a LightShift Chemiluminescent EMSA kit (Pierce) following the
manufacturer’s protocol. Omission of the UV crosslinking step because of the absence of
crosslinkable double bonds in heparin, unlike nucleic acids, did not cause a problem in the
detection, indicating the electroblotting was sufficient for the attachment of heparin to a nylon
membrane. The CL IDV1 of biotinylated heparin was quantitatively measured with a cooled
CCD1 camera (Fluor Chem 8800 Imaging system, Alpha Innotech, San Leandro, CA) [18]
with autobackground subtraction.

Obviously, the size of E. coli is huge so that any shifted bands were not detected (Fig. 1A).
Degree of binding (B) of heparin to E. coli was assessed by Eq. (2):

B = (1 − IDVC
IDV0 ) (2)

where IDVC, and IDV0 are the IDV of unbound heparin at the concentration C of the cell or
without the cell, respectively.

Binding of heparin (H) to the protein (P) on the bacterial cell surface was modeled in the
following way.

H + P ↔ HP. (3)
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The relationship between degree of heparin-protein binding (BHP) and protein concentration
[P] corresponding Eq. (3) is:

BHP = P
K + P (4)

where K is the dissociation constant. Here, the total protein concentration was used for [P] as
the heparin concentration used in the titration was significantly less than the dissociation
constants of most known heparin-protein bindings [9]. This is another advantage of CL EMSA,
as it requires a very small quantity of biotinylated material for detection because of its high
sensitivity [16,17]. It is desirable to express Eq. (4) using the experimental variable, total E.
coli concentration [E] so that the experimental measurement (Eq. (2)) can be applied directly.
If the number of the heparin-binding proteins on the cell surface of one bacterium is n, then
Eq. (4) can be converted to Eq. (5) by substituting n × [E] for [P]:

BHP = n E
K + n E . (5)

Eq. (5) can be used to derive a degree of binding (BHE) of a hypothetical one-to-one heparin-
bacteria association (Eq. (6)) with apparent dissociation constant, K/n:

H + E ↔ HE. (6)

The BHE of Eq. (6) is then,

BHE = E
K / n + E . (7)

Of course, a single bacterium binds many heparin molecules. However, if there is no significant
difference of affinity among the heparin-binding sites, then Eqs. (6) and (7) are appropriate for
the description of binding performed in this study.

Eq. (7) was applied in the fitting of values obtained from Eq. (2) by nonlinear regression using
Mathematica. K/n and R2 values obtained from the fitting were 0.60 ± 0.06 pM and 0.927,
respectively (Fig. 1B). Such high affinity is obviously attributed to the presence of multiple
copies of the heparin-binding sites on the cell surface. The constant K/n obtained from the
fitting is not a true thermodynamic equilibrium constant because of the multiplicity and
potential heterogeneity of the heparin-binding sites on the cell surface. However, the value can
be used for the comparison of relative heparin-binding affinity between different bacterial
species if the titration is performed with the same concentration of heparin.

In summary, the applicability of CL EMSA for the quantitative assessment of heparin-living
bacteria binding was examined with E. coli and biotinylated heparin. This method can be
readily applied to heparin-bacteria binding study to assess relative heparin-binding affinity of
bacteria as it has several advantages such as safety and stability of the sample, high sensitivity
and the linearity of signal, and relative ease of performance. In addition, the binding conditions
such as buffer composition and temperature can be varied. Most importantly, the binding can
be examined with living bacteria. As in the study of DNA-protein interactions, CL EMSA is
expected to be widely used for heparin-bacteria interaction studies complementing existing
methods specially for the study of heparin binding of the commensal microorganisms as their
huge diversity (500–1000 species in human gut) [19] requires a fast method.
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Abbreviations used
EMSA  

electrophoretic mobility shift assay

CL  
chemiluminescence

PBS  
phosphate-buffered saline

IDV  
integrated density value

CCD  
charge-coupled device
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Fig 1.
CL EMSA of biotinylated heparin and E. coli interaction. (A) E. coli concentrations were
increased up to 1.5 pM. The region for the measurement of the CL IDV of unbound biotinylated
heparin is marked. The smearing between the well and unbound heparin in the gel indicates
dissociation of bound heparin during electrophoresis. (B) Degree of binding (%) obtained from
Eq. (2) was plotted against E. coli concentration in pM (closed circle). The data were fit to Eq.
(7) (solid line).
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