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this paper, we present a general region-of-interest/volume-of-interest (ROI/VOI) reconstruction approach using a truly truncated
Hilbert transform on a line-segment inside a compactly supported object aided by partial knowledge on one or both neighboring
intervals of that segment. Our approach and associated new data sufficient condition allows the most flexible ROI/VOI image
reconstruction from the minimum account of data in both the fan-beam and cone-beam geometry. We also report primary nu-
merical simulation results to demonstrate the correctness and merits of our finding. Our work has major theoretical potentials

and innovative practical applications.
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1. INTRODUCTION

Since its introduction in 1973 [1], X-ray CT has revolution-
ized radiography and become a cornerstone of all the mod-
ern hospitals and clinics. With development of sources, de-
tectors, computers, and algorithms, X-ray CT is in a rapid
transition from fan-beam to cone-beam geometry. On the
daily basis, the state-of-the-art medical CT scanners rou-
tinely produce a huge amount of 2D, 3D, 4D, and even 5D
(multiple energies) images of anatomy and functions with
sub-mm spatial resolution, a few thousandth contrast res-
olution, and subsecond temporal resolution. On the other
hand, the rapid development of small animal models, espe-
cially those with genetically engineered mice, has generated
the critical needs for preclinical imaging. With refined CCD
cameras and microfocus X-ray tubes, a number of micro-
CT systems were constructed since the 1990s, reaching im-
age resolutions between 10-100 ym. Nevertheless, important
and immediate biomedical studies still demand significantly
better CT/micro-CT performance, so do industrial, home-
land security, and other applications.

A public concern with X-ray CT is that the radiation
dose is delivered to the patient during the CT scan. Annu-

ally, over 6 000 000 CT scans were performed in the US with
600 000 of those done on pediatric patients. The CT dose is
the primary component in the radiation exposure to the US
population. While CT studies account for only 4% of radi-
ological procedures, they contribute nearly 40% of the aver-
age medical radiation dose. The contribution of CT to the
average medical radiation dose level is expected to grow as
the CT technology improves with multirow detectors and
cone-beam designs. Therefore, there is a serious and increas-
ing public concern over CT dose, particularly in the con-
text of mass screening and pediatric imaging. The radiation
dose to children from CT procedures is a particular concern
since their risk of radiation-induced cancer is higher than
that of adults, they have a longer lifetime for the cancer to
be expressed and the effective dose they receive is typically
larger than that received by adults for a comparable study
[2, 3]. Because the radiation detriment is conservatively as-
sumed to be linearly related to dose, there should be sub-
stantial health benefits on the overall US population from
low-dose CT. As of this date, the dose reduction potential has
not been systematically investigated in terms of algorithmic
optimization, which we believe is an urgent issue we must
address.
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Similar negative arguments can be made for micro-CT
studies of small animals, especially mice and rats. Currently,
almost all of the human diseases have corresponding small
animal models. Micro-CT has been widely used as a most
valuable imaging tool in this regard. The nature of such small
animal studies such as mouse studies requires higher spatial,
contrast, and temporal resolution to be delivered periodically
and even continuously. As a result, the increment in radia-
tion dose becomes a major factor preventing more effective
applications of micro-CT in this area. For example, to eval-
uate the heart and lungs, we need to depict the boarders of
the lungs, lobes, sublobar segments, airways, vessels, as well
as cardiac chambers, myocardium and dynamics. However,
even the best micro-CT protocols and systems clearly fall be-
hind our expectations, not only the involved radiation dose
but also slow data acquisition.

Technically speaking, the limited data reconstruction
strategy holds the promise to enhance the CT/micro-CT per-
formance significantly. This strategy may reduce the X-ray
radiation exposure and improve the data acquisition speed
at the same time. The importance of performing exact image
reconstruction from the minimum account of data has been
recognized for long time. The first landmark achievement is
the well-known fan-beam half-scan formula [4]. A relatively
recent milestone is the fan-beam super-short-scan formula
developed by Noo et al. [5]. Let u(r") be a smooth function
on a compact support Q C R?, with ¥ = (r,7,) and R? the
2D real space. Define the line integral

psi) = | ulsi(g) + i () dr )

fors € Rand 0 < ¢ < 7, where u(¢) = (cos¢,sin¢) and
ut(¢) = (—sing,cos¢). p(s, §) can be extended to ¢ € R by
p(s,¢+m) = p(—s,¢). For a fixed ¢y, by Gel'fand and Graev
[6] and Noo et al. [7], the backprojection data
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can be expressed as the Hilbert transform of y along the line
L through ry which is parallel to 7 = (— sin ¢y, cos ¢):

o) = 2V [l - )% = () R) )

where “PV” represents the principal value. By the inversion
formula of the finite Hilbert transform [8], the backprojec-
tion data can be inverted to reconstruct the function y. In [7],
Noo et al. proposed a sufficient condition for exact and stable
ROI reconstruction from 2D limited data, which can be sum-
marized as [9]: “the function y can be exact reconstructed at a
point ry if one can find a unit vector i = (— sin ¢y, cos ¢o) and
a simply connected segmented L, C L of the line L parallel to n
through ry such that (i) the segment Ly includes 1o and covers
the whole support of  along L, that s, u(r') = 0 for r € L\Ly;
and (ii) for each v € L, and each angle ¢ € [¢o, po+7] the line
integral p(s, ¢) are known for a neighborhood of s = 1 - u(¢).”
In the cone-beam geometry, the groundbreaking work by
Katsevich allows exact image reconstruction from truncated

helical cone-beam data of less than two turns [10-12]. His
results were further improved by a backprojection-filtration
formulation in the helical cone-beam case [13] and its gener-
alization [14-22], which permit transversely truncated data
as well. Last year, Defrise et al. further strengthened their
above-quoted sufficient condition by modifying (i) as “the
segment Ly, contains ry and at least one of its end points is out-
side the convex hull of the support of y along L” [9]. This latest
finding represents the up-to-date record in the area of limited
data reconstruction.

In this paper, we present a general ROI/VOI reconstruc-
tion approach using a truly truncated Hilbert transform on
a line-segment inside a compactly supported object aided by
partial knowledge on one or both neighboring intervals of
that segment. As a result, the most flexible ROI/VOI recon-
struction can be exactly performed in the fan-beam/cone-
beam geometry. We are excited by numerous practical pos-
sibilities and associated benefits in image quality improve-
ment and radiation dose reduction [23]. In Section 2, we will
study the inverse problem of the truncated Hilbert transform
and establish the uniqueness and stability of the solution. In
Section 3, we will formulate a new sufficient condition for ex-
act reconstruction of an ROI from limited data and propose
a generalized reconstruction approach. In Section 4, we will
implement our method and present representative simula-
tion results. Finally, in Section 5, we will discuss the relevant
issues and conclude the paper.

2. TRUNCATED HILBERT TRANSFORM WITH PARTIAL
NEIGHBORING INFORMATION

In reference to [9], let us denote the 2D u(r") on certain line
L as f(x), where x is the one-dimensional (1D) coordinate
along the line L. Without loss of generality, we further as-
sume that the support of f(x) on Lis [—1,1]. Denote by

1
g - -1 [ o @

the Hilbert transform of f(x). By Tricomi [8], f(x) can be
recovered from its Hilbert transform g(x) by

1
Jffﬁfu):Cf+%PVf4ﬂwJTjﬁy?;’ )

where

1
q:%ijM )

is a known quantity. Our main contribution can be summa-
rized in the following theorem.

Theorem 1. a, b, ¢ are three real numbers with —1 < a < b <
¢ < 1 (see Figure 1). A function f(x) supported on [—1,1] can
be exactly reconstructed on [b, ¢) if (i) f(x) is known on (a, b);
(i) g(x) is known on (a, ), and (iii) the constant Cy is known
(see Figure 1).
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FIGURE 1: Setting for Theorem 1, where f(x) is supported on
[—1,1] and known on (a, b), while its Hilbert transform known on
(a,c).

Proof. By (5), we have the inversion formula
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Denote by h; (x), hy(x), h3(x), and hy(x) the four integrals on
the right-hand side of (7), respectively. In other words,

V1= x2f(x) = Cy +hi(x) + hy(x) + h3(x) + hy(x).  (8)

For a < x < b, the left-hand side of (8) is known. By our
assumptions, /1, (x) and h3(x) are known for any x. Therefore,

hi(x) + ha(x) = V1 =x2f(x) = Cf — ha(x) — h3(x) ~ (9)

is known for a < x < b. Note that fora < x < ¢,
1 (¢ dy
== _ a2
hy(x) ”Lg(y) -y e

! d
hato) = | g1

y

(10)

are given by ordinary integrals, because y — x # 0 for -1 <
y <aandc < y < 1. Let us define complex functions h,(z)
and hy(z) forz € C as

a

h(z) = J g1 - yzd—y’

) y—z
o dy (11)
o) = | o= 2
By the Cauchy integral theorem, h(z), hs(z), and hence
h1(z) + h4(z) are analytic on the complex plane C with cuts
along the real axis from — oo to g and from ¢ to +oo. In partic-
ular, h;(z) + hy(2) is analytic on the real interval (g, ¢). From
(9), h1(x) + hy(x) is known on (a, b), and the right-hand side
of (9) is also analytic on (g, b). Note that f(x) is not an ana-
lytic function but fi(x) = V1 — x2 f(x) — Cy — hy(x) — h3(x)
can be extended to an analytic function fi(z) in a neighbor-
hood of (a, b). Since h;(z) + ha(z) is an analytic function on
(a, ¢), the known analytic function fi(z) can be analytically

continued from (a, b) to (a, c). In other words, hi(x) + ha(x)
is now known on (g, ¢). Using (8), f(x) can now be uniquely
reconstructed since hy(x) and h;(x) are known on (a,c) as
well. This proves Theorem 1. O

Now let us study the stability of this reconstruction ap-
proach and estimate its error bound. Suppose that the func-
tion f(x) is measured as f.(x) with a measurement noise
er(x) by

fe(x) = f(x) +ep(x) fora<x<b, (12)
with
lef(x)| <e fora<x<b, (13)

where ¢ > 0 is a small number. We also assume that the back-
projection (2) produces an error bounded by ¢. In terms of
the Hilbert transform,

g(x) = g(x) +g(x) for —1<x<1, (14)
with
leg(x)| <& for —1<x<1. (15)

We expect that the variation rate of the error term g (x) is
small. This can be seen from the fact that g(x) as a backpro-
jection in (2) is defined by an integral and hence by an av-
eraging process. This can also be seen from a data sampling
point of view. The data sampling will lead to a small variation
rate of &,(x) in a stochastic sense. Recall that

hy(x) + hs (x) = %PV ch(y)w/l Y

Rewriting the PV integral in (15), we have

c 1— 92— =<
hy(x) + h3(x) = %p\/L g(}’)ﬁ g(xN—xdy

dy (16)
— X

Y

y—x
2 c
+g(x)w/l 2 oy dy
v ay—Xx
1 g1 —y? = glx) V1 — 2
=—PVJ dy
T a y—Xx
T 52 _
+g(x) I—x log(c x).
v xX—a

(17)

Let us change g(x) to g.(x) asin (14). Then hy(x) + h3(x) will
become

haze(x) = hy(x) + h3(x) + enp3(x) fora<x<c,  (18)
where the error term is bounded by

c—x
og (=)
where the relationship in (17) and the bound in (15) have
been used. Here C is a constant. Note that this error bound

|e23n(x)| < Ce+ % , (19)
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becomes large when x is close to ¢. This suggests that one
should only seek to reconstruct f(x) on [b,cs] with ¢s < ¢
appropriately. The right-hand side of (19) also becomes large
when x is close to a. This will not cause any problem since
f(x) is known on (a, b).

To determine the stability of the analytic continuation of
fi(z) = hi(z) + hy(z) from (a, b) to (a, c), we point out that,
different from f;(x), the measured function with error term
Ef 1(x),

f1e(x) = V1 = x2 fo(x) = C — hpse(x) = fi(x) +ep1(x),
(20)

with f;(x) and hy3.(x) asin (12) and (18), cannot be extended
to an analytic function. The stability of the analytic continu-
ation of fi(z) thus depends on the numerical method used.
In Section 4, we will use the projection onto the convex sets
(POCS) method [24] to compute the analytic continuation
and f(x) from the measured data fi.(x). The stability of our
algorithm therefore follows from that of POCS. In view of
(20), (12), (13), (18), and (19), the reconstruction error is

bounded by
c—x
log (x - a) ’

(21)

V1=x2| fe(x) — f(x)| < Cie+ Cre

The following comments are in order on the above the-
orem: first, no information on f(x) and g(x) is needed on
[—1,a] and [c,1], hence we are truly dealing with a trun-
cated Hilbert transform. Second, the method employed in
[9] can be adapted to reconstruct f(x) on [b, c) directly, and
more sophisticated algorithms may be designed in the fu-
ture. Third, although u(r") is assumed to be a 2D function,
Theorem 1 can be readily applied in the 3D case. Fourth, for
practical implementation, both f(x) and g(x) are discretized
at fine steps. Regarding the assumption of the finite-length
interval (a, b), it can be as small as the sampling step so that
f(x) can only be known on one sampling point inside the
interval (a, b)!

From Theorem 1, we have the following corollaries.

Corollary 1. Let a, b, c,d be four real numbers with —1 < a <
b < c <d < 1. A function f(x) supported on [—1,1] can be
exactly reconstructed on (a,b] and [c,d) if (i) f(x) is known
on (b, c); (ii) g(x) is known on (a, d), and (iii) the constant Cy
is known.

Corollary 2. Let a, b, c,d be four real numbers with —1 < a <
b < c <d < 1 A function f(x) supported on [—1,1] can be
exactly reconstructed on [b, c] if (i) f(x) is known on (a, b) and
(¢,d), (i1) g(x) is known on (a,d), and (iii) the constant Cy is
known.

The proofs and stability analysis of Corollaries 1 and 2
can be made similar to that for Theorem 1. Under the
same assumption, the reconstructed error of Corollary 2 is

bounded by

V1=x2| fi(x) — f(x)] < Gse. (22)

In fact, for b < x < ¢ in Corollary 2, the corresponding term
of [log((c — x)/(x — a))| in (21) is bounded. Note that there
is no term which can go to infinity. This better control of re-
construction error is a main advantage of this reconstruction
scheme with f(x) being known on two intervals.

3. DATA SUFFICIENT CONDITION AND
RECONSTRUCTION APPROACH

From Theorem 1, we immediately have the following new
data sufficient condition for exact and stable reconstruction
of an ROI from limited projection data.

Condition 1. The function y can be exact reconstructed at a
point ry if one can find a unit vector 7 = (— sin ¢, cos ¢y)
and a simply connected segmented L, C L of the line L par-
allel to 7 through 7y such that (i) the segment L, contains ry
and a segment Ly C L, on which the function y is known,
and (ii) for each r € L, and each angle ¢ € [¢o, po + 7]
the line integral p(s,¢) are known for a neighborhood of
s=r1-u(¢).

To illustrate our above condition, let us define the field of
view (FOV) A C R? as follows: for any ¥ € A and ¢ € [0, ),
there exists an s satisfying p(s,¢) through the point r. It is
well known that a necessary condition for exact reconstruc-
tion of an ROI is that the ROI must be contained in the FOV
of a CT scan. Now, we consider circular FOVs as shown in
Figure 2. Traditionally, to reconstruct an ROI exactly, all the
lines going through the compact support of the object func-
tion should be measured [25], which indicates that the recov-
erable region is empty for all the cases. The condition by Noo
et al. [7] allows that u(r") at any point 7 inside the FOV is re-
coverable if there exists a line through 7 and the intersection
between the line and compact support of u(r") is completely
contained in the FOV. Hence, we can have a small recover-
able ROI as shown in Figure 2(a). The condition by Defrise
et al. [9] claims that u(r") at any point 7 inside the FOV is
recoverable if there exists a line segment in the FOV through
7 and at least one of its ends is outside the convex hull of
the object support. In contrast to the condition by Noo et al.,
the recoverable ROI is greatly enlarged as in Figure 2(b). Our
new data sufficient condition states that u(r ) at any point 1’
inside the FOV is recoverable if there exists a line segment in
the FOV through r and the function y is known on part of
that line segment. Clearly, the condition of Defrise et al. is
a special case of ours. Defreise et al. require that the known
part, which equals to zero, should be outside of the convex
hull of the compact support. In fact, this is unnecessary ac-
cording to our new data sufficiency condition. The known
part can be inside the convex hull with u(r) = 0 or even in-
side the compact support with u(r) is known, as shown in
Figures 2(c) and 2(d), respectively. It should be pointed out
that the above analysis can be directly extended to the 3D case
for VOL
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FiGure 2: Circular field of view (FOV) and recoverable regions of interest (ROI) according to different data sufficiency conditions. (a) A
small recoverable region per the condition by Noo et al., (b) the enlarged recoverable region per the condition by Defrise et al., (c) and (d)
the recoverable region per our new data sufficiency condition when the FOV is contained in the convex hull of the compact support of the
object and covers a part of known region. The dashed lines outline the FOV. The gray-region represents the recoverable ROI, where the exact
reconstruction can be performed.

(b)

FiGure 3: Illustration of the general exact ROI reconstruction approach in the case of a T-shaped ROLI. (a) Per the data sufficiency condition
by Defrise et al., a group of vertical line segments can be exactly and stably reconstructed; and (b) per our new data sufficiency condition,
a group of horizontal line segments can also be exactly and stably reconstructed using our truncated Hilbert transform technology. The

textured regions are known before the involved truncated Hilbert transforms are performed.

To reconstruct the object function inside an FOV satis-
fying our data sufficient condition, a general reconstruction
approach is given in the following steps:

(i) construct a group of line segments each of which goes
through both known and unknown regions;

(ii) reconstruct the unknown region based on Theorem 1
in Section 2;

(iii) repeat Steps (i) and (ii) until the object function at all
eligible points inside the FOV is reconstructed.

Our approach works like a water stream flowing from a
known region to all the connected unknown zones subject to
our data sufficiency condition. Figure 3 illustrated this pro-
cedure with a T-shaped ROI. Note that using our approach
there are multiple ways to perform exact ROI/VOI recon-
structions, suggesting opportunities for further theoretical
and numerical studies.

4. SIMULATION RESULTS

Similar to what Defrise et al. did in [9], we computed the
inversion of the truncated Hilbert transform as used in
Theorem 1 using the projection onto convex sets (POCS)
method [24]. Using the notation in Section 2, our goal is
to determine a second-order continuous function f(x) €
L?(R) in the intersection of the following five convex sets:

(i) C1 = {f € X(R) | (Hf)(x) = g(x), x € (a,0)},
(i) G = {f e LA(R) | f(x) = fo(x), x € (a,b)},
(i) Cs = {f € L*(R) | (1/n) [1} f(x)dx = Cy},

(iv) Cs={f € *(R) | f(x) =0, x € [-1,1]},

(V) Cs = {f €L*(R) | f(%) < fonaw» X € [~ 1,11},

where fy(x) is the known part, and fnax is the upper bound
of f(x). With an initial guess of the unknown function,
which can be constructed over the known object support, the
POCS algorithm iteratively projects an intermediate solution
to each of the above five convex sets until it converges to a
satisfactory result.
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(b)

FIGURE 4: Representative slice of the thorax phantom reconstructed from a complete dataset. (a) A rectangular ROI for reproducing the
results by Defrise et al.; (b) and (c) are two cross-shaped ROIs for evaluating our truncated Hilbert transform technology.

(a)

(b)

FIGURE 5: Reconstructed results in the rectangular ROI indicated in Figure 4(a) using the approach developed by Defrise et al. (a) Recon-
structed ROI from noise-free data, and (b) the counterpart from noisy data. The display window is [0.9,1.1].

The above POCS method was numerically implemented
in Matlab to demonstrate the correctness of our data suffi-
cient condition and generalized reconstruction framework.
As illustrated in Figure 4, the function y(f ) is an axial slice
of the FORBILD thorax phantom [26] with two small el-
lipses added to the heart to make it more challenging for re-
construction, which was also used in the paper by Defrise et
al. [9]. Nontruncated fan-beam projection data of 1200 di-
rections were analytically computed over a full-scan range.
Hence, the backprojection function g at any point can be
calculated along any line to simulate different FOV config-
urations. First, we repeated the work by Defrise et al. [9] to
reconstruct a rectangular ROI indicated in Figure 4(a) from
noise-free projection data. Then, we reconstructed two cross-
shaped ROIs in Figures 4(b) and 4(c) using our approach

proposed in Section 3. While in Figure 4(b) we used the prior
information that the reconstructed function was zeros out-
side its compact support, we assumed that the central part
of the cross-shaped ROI was known in Figure 4(c). To test
the stability of our method, the above results were repeated
from noisy data with 2 x 10° photons per incident ray. The
representative images were presented in Figures 5 and 6. As
compared to the results in [9], our reproduced image quality
in Figure 5 seemed better. The possible reasons include (a)
the condition f(x) < fmax was used for the POCS method
with fimax = 2, and (b) 400 iterations was executed, which is
twice that in [9]. As seen in Figures 5 and 6, the reconstructed
image quality in the cross-shaped ROIs is very comparable to
that in the rectangular ROI. This validated our data sufficient
condition and general ROI reconstruction approach.
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(c)

-

FIGURE 6: Reconstructed results in the cross-shaped ROIs indicated in Figures 4(b) and 4(c) using our approach. (a) and (c) are reconstructed
from noise-free data. (b) and (d) are the counterpart from noisy data. The display window is [0.9,1.1].

5. DISCUSSIONS AND CONCLUSIONS

While our work has been presented in the context of X-ray
CT and micro-CT, we underline that the significance and
implication of our results are far beyond what has been de-
scribed above. The same or similar techniques can be applied
for X-ray phase-contrast imaging and tomography, emission
tomography including PET and SPECT, and other modali-
ties that rely on a projective imaging model. Our proposed
approach can be used not only for exact reconstruction of
an ROI/VOI but also for approximate reconstruction of vari-
ous types. Furthermore, new lambda tomography techniques
may be developed based on the truncated Hilbert transform
theory proposed in this paper and will be further refined in
the future. The conventional wisdom has been that the ex-
act and stable reconstruction of an ROI/VOI inside an ob-
ject support is generally impossible from truly truncated data
that go only through the ROI/VOIL. However, according to
our new data sufficiency condition, such an exact and sta-
ble reconstruction becomes feasible if a small subregion is
known inside the ROI/VOI, even though the projection data
remain truly truncated!

In conclusion, we have presented a general ROI/VOI re-
construction approach using a truly truncated Hilbert trans-

form on a segment of a chord inside a compactly supported
object aided by partial knowledge on one or both neigh-
boring intervals of that segment. Our approach and associ-
ated new data sufficient condition allows the most flexible
ROI/VOI image reconstruction from the minimum account
of data in both the fan-beam and cone-beam geometry. We
are actively working along this direction to realize major the-
oretical potentials and enable innovative practical applica-
tions.
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