
Proc. Natl. Acad. Sci. USA
Vol. 95, pp. 3583–3590, March 1998
Biophysics

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences
elected on April 29, 1997.

Structure-based prediction of the stability of transmembrane
helix–helix interactions: The sequence dependence of glycophorin
A dimerization

KEVIN R. MACKENZIE AND DONALD M. ENGELMAN*
Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave., New Haven, CT 06520

Contributed by Donald M. Engelman, January 27, 1998

ABSTRACT The ability to predict the effects of point
mutations on the interaction of a-helices within membranes
would represent a significant step toward understanding the
folding and stability of membrane proteins. We use structure-
based empirical parameters representing steric clashes, fa-
vorable van der Waals interactions, and restrictions of side-
chain rotamer freedom to explain the relative dimerization
propensities of 105 hydrophobic single-point mutants of the
glycophorin A (GpA) transmembrane domain. Although the
structure at the dimer interface is critical to our model,
changes in side-chain hydrophobicity are uncorrelated with
dimer stability, indicating that the hydrophobic effect does not
inf luence transmembrane helix–helix association. Our model
provides insights into the compensatory effects of multiple
mutations and shows that helix–helix interactions dominate
the formation of specific structures.

How the primary amino acid sequence of a polypeptide
determines its three-dimensional structure remains a funda-
mental question of both practical and intellectual interest in
the field of molecular biology. In the field of protein folding
and stability, membrane proteins have been less extensively
studied than have their soluble counterparts because of the
experimental difficulties encountered in handling membrane
protein systems. High-resolution structures are available for
perhaps a dozen membrane proteins, and calorimetric studies
of membrane protein folding are similarly rare (1), but new
biochemical methods or tools are expanding the list of acces-
sible experimental questions (2–4). Interest in membrane
protein folding is also being driven by the recognition that the
environmental constraints placed on membrane proteins may
make their folding and stability easier to understand than that
of soluble proteins (5).

The success of prediction methods designed to identify
a-helical membrane-spanning stretches from protein primary
sequence provides strong evidence that membrane protein
folding and stability are governed by rather different rules than
those of soluble protein folding. It is well established that the
hydrophobicity of a stretch of 20 residues is an excellent
predictor of whether that sequence will be located within a
membrane (6). For soluble proteins, on the other hand, not
only does hydrophobicity correlate very poorly with helicity
but no other single predictor serves to reliably identify regions
of secondary structure (7–9). Atomic details of membrane
protein structure will probably prove more complicated to
predict than helicity or topology (5), but the success of these
approaches to membrane protein structure and organization

hints that other simple rules for membrane protein folding
might be identified.

A framework for considering the formation of single mem-
brane-spanning helices and the association of these helices into
bundles has been provided by the two-stage model for mem-
brane protein folding (10). In the first stage of this model, the
insertion of hydrophobic helices into lipid bilayers generates
independently stable transmembrane helices. These are pro-
posed to behave as autonomous domains that are unable to
unfold or to leave the bilayer because of the high energy
penalties associated with breaking hydrogen bonds or exposing
hydrophobic side chains to water. The second stage of the
model consists of the lateral association of these helices.
Specific interactions between the intramembranous portions
of these helices are proposed to be responsible for the resulting
tertiary and quaternary structures, although lipids, ligands, or
extramembranous loops can influence this process. The set of
possible interactions is constrained by the membrane environ-
ment and by the topological disposition of the polypeptide as
determined by the biological insertion machinery (5, 11).

Investigations of the thermodynamics of membrane protein
folding can utilize the conceptual framework provided by the
two-stage model. For example, the model can greatly simplify
the estimation of the influence of amino acid substitutions on
the thermodynamic stability of homodimeric helix–helix in-
teractions within a bilayer. Sequence changes will alter the
absolute free energies of the species depicted in Fig. 1: the
water-solvated unfolded state (A), the monomeric transmem-
brane helix (B), and the dimeric helical state (C) each might
be stabilized or destabilized relative to the wild-type sequence.
Estimating the free-energy change of a sequence substitution
for state A is particularly challenging because of the difficulties
in predicting the ensemble of conformational states sampled
by an unfolded polypeptide and in accurately and precisely
calculating water–protein solvation energies. However, the
two-stage model proposes that the hydrophobicity of the
transmembrane peptide presents a sufficiently large thermo-
dynamic barrier to prevent it from leaving the membrane.
Because this means that the protein cannot interconvert with
the unfolded, water-soluble form, the effects of point muta-
tions on the stability of helix–helix interactions within mem-
branes can be determined by using a thermodynamic cycle that
includes only membrane-bound states, as illustrated in Fig. 2.
The change in free energy of dimerization because of an amino
acid substitution, DDGmut, can be obtained by determining
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either (DG2 2 DG1) or (DG4 2 DG3). The former expression
can be evaluated from experimental results, whereas the latter
may prove accessible by calculation, particularly if the solva-
tion of helices by lipid molecules can be easily computed or
estimated.

This simplification of the membrane protein-folding prob-
lem makes the two-stage model an appealing tool for exam-
ining the basis of the stability and specificity of helix–helix
interactions. Here, we use the two-stage model to analyze the
detergent-resistant homodimerization of the glycophorin A
(GpA) transmembrane helix. A previously published mutagen-
esis study determined the relative dimerization propensities of
more than 160 single-point mutants of the glycophorin A
transmembrane domain in a detergent environment (12).
Based on the average disruption caused by the 105 hydropho-
bic substitutions at each site along the transmembrane domain,
the authors identified a seven-residue motif as responsible for
dimerization (12, 13). These residues (Leu-75, Ile-76, Gly-79,
Val-80, Gly-83, Val-84, Thr-87) were subsequently shown by
the solution NMR structure of the GpA transmembrane
peptide dimer to be located at the dimer interface (14).

Given that the average disruptive effects of single-point
mutants accurately identified the residues at the dimerization
interface, we hypothesize that the details of the geometry of
the interface as seen in the wild-type structure may be used to
predict the oligomerization states of each of the individual
point mutants. We assume that any stable dimers seen in the
mutagenesis experiments will form the same interface as in the
wild-type case. Making no changes in the main chain atom
positions, we use a rotamer library to artificially create ‘‘struc-

tures’’ for sequence variants based on the NMR structure of
the wild-type sequence. We represent DDGmut using three
empirical parameters designed to describe differences in helix–
helix interactions and protein side-chain conformational en-
tropy between mutant and wild-type sequences. Regression
analysis identifies combinations of these parameters that best
fit the reported experimental dimerization propensities. Our
results indicate that predicted changes in steric clashes, side-
chain rotamer conformational freedom, and van der Waals
contacts within the dimer are able to reproduce the effects of
specific point mutations on GpA helix dimerization.

METHODS

Our approach begins with building structures for each se-
quence variant. The starting coordinates of nonhydrogen
atoms are taken from the NMR structure of the wild-type GpA
dimer (Protein Data Bank reference 1afo). Side-chain ‘‘mu-
tations’’ are made by using a library of rotamers corresponding
to the most commonly observed conformations of side chains
in a-helical regions of proteins whose structures have been
determined to high resolution (15–17). For residues with more
than one rotamer in the library, the rotamer having minimal
clashes or the largest number of intermonomer van der Waals
contacts is chosen. In cases where one side chain interacts
across the dimer interface with another side chain and both
have multiple allowed rotamers, all possible combinations of
rotamers at each site are tried. Variations about the ideal
dihedral angle of up to 615° for x1 and x2 of aliphatic residues,
and up to 630° for x2 of aromatic residues, are permitted to
alleviate small clashes. No energy minimization of the ‘‘mu-
tated’’ structures is performed.

Definitions of Empirical Parameters. Each structure is
scored for three parameters: dsrot, a measure of the gain of
side-chain conformational freedom associated with a substi-
tution; vdw, the increase in the number of favorable inter-
monomer van der Waals contacts associated with making a
substitution; and clsh, the extent to which the substitution
introduces a steric clash.

The parameter dsrot represents the side-chain rotamer
entropy change of a given substitution using the formula:

dsrot 5 log2FSWmon

Wdim
D

wt
S Wdim

Wmon
D

mut
G , [1]

where Wmon, the number of states available to a side chain in
a monomeric helix, is simply the number of rotamer library
entries for that residue. The number of states available in the
dimeric structure, Wdim, is determined by building each of
these rotamers into the structure—following the same rules as
for building the best structure for each mutant—and elimi-
nating any rotamers that make intermonomer steric clashes.
Values for dsrot range from 22 to 12 for the GpA data set.

The parameter vdw is calculated by taking the difference
between the number of favorable van der Waals contacts in the
mutant structure and in the wild-type structure. A ‘‘favorable
van der Waals contact’’ refers to any pair of atoms from
different monomers whose interatomic separation produces
significant attractive interactions, that is, from 0.4 Å less than
the ideal van der Waals separation (18) for those atom types
to 0.8 Å more than the ideal van der Waals separation. Values
for the parameter vdw range from 214 to 19 for the GpA data
set.

The parameter clsh is set to 0 for structures showing no
intermonomer van der Waals clashes, to 1 for structures having
clashes of less than 0.4 Å, and to 2 for structures having clashes
greater than 0.4 Å. ‘‘Clashes’’ refers to interatomic separations
of nonbonded atoms that are smaller than the closest ap-
proaches expected for those atom types because of electron

FIG. 1. Possible states for a peptide containing a stretch of
approximately 18 hydrophobic residues. Water-solvated, unfolded
molecules (A) may be inserted in the membrane as a-helices (B) that
in turn may associate to form higher-order structures (C).

FIG. 2. Thermodynamic cycle for point mutation of a dimerizing
transmembrane a-helix. Red arrows indicate the change in association
state (monomer to dimer), and blue arrows indicate that one residue
is being mutated (triangle to circle). The change in free energy of
dimerization caused by a mutation, DDGmut, may be obtained from
experimental data (DG2 2 DG1) or by computation (DG4 2 DG3).
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cloud repulsion (18). The 0.4 Å cut-off corresponds to the
r.m.s.d. of the backbone atoms of the members of the family
of NMR structures (14). Mutants that receive a clsh score of
2 have their vdw and dsrot scores set to 0.

Each mutant is also scored for the differences in hydropho-
bicity (ges) and side-chain volume (vol) between the mutant
and the wild-type sequence. Neither of these parameters
required any information or assumptions about the GpA
structure. The hydrophobicity scale for the ges term (6) gives
scores ranging from 24.4 to 13.8 kcal mol21 for the GpA data
set. The term vol is based on the volumes of the amino acids
(given in number of methylene units) and results in scores
ranging from 26 to 19 for the GpA data set.

Regression Analysis and Statistical Methods. The experi-
mental GpA dimerization propensities from SDSyPAGE re-
ported by Lemmon and coworkers (12) are represented in this
analysis as integers 0 through 3, with the score of 3 corre-
sponding to a dimerization level ‘‘as wild type’’ and zero
corresponding to ‘‘no dimer.’’ Coefficients of different com-
binations of the described parameters are least-squares fit to
these data by using the program MATHEMATICA (Wolfram
Research, Champaign, IL). The square of the regression
coefficient, R2, is reported, as are standard deviations (s) for
the best-fit coefficients; in cases where the 2s confidence limit
of a given coefficient overlaps zero, the corresponding param-
eter is excluded and the regression is repeated. Regressions
employing linear terms are reported here because inclusion of
second-order terms does not alter the coefficients of the linear
terms within error.

The regression analysis treats the dimerization phenotypes
as real numbers, but they should be considered integers when
evaluating the predictive properties of a given model. Accord-
ingly, the best-fit coefficients of each model are used to
generate calculated stabilities for each mutant; these real
numbers are rounded to the nearest integer, scored against the
experimental data, and arranged in a 434 correlation table
(Fig. 3). The extent of agreement between the model-derived
stabilities and the experimental stabilities, Rgrp, is calculated by
using the formula (19):
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where fi represents the frequency of experimental class i, fj
represents the frequency of model class j, and fij represents the
frequency of cell (i, j) in the correlation table (Fig. 3).

Probability Estimates. We judge the usefulness of each
regression model by comparing its prediction success rate with

the success rate achieved by using either of two simplistic
approaches to predicting stabilities of sequence variants of
GpA.

The first of these approaches sets the predicted stability of
all sequences equal to the mean of the experimental stabilities.
This choice minimizes the sum of the square of the error
associated with the ‘‘predicted’’ values. Because regression
analysis also yields models whose squared errors have been
minimized, this approach is equivalent to performing the
regression analysis with a constant term only. Any improve-
ment in prediction by a more complex model over the single
term therefore may be attributed to the additional terms
introduced.

A second approach sets the predicted stability of all se-
quences equal to the mode of the experimental data, thus
maximizing the possible score for a model consisting of a single
constant term. This method constitutes the ‘‘best guess’’ that
can be made assuming perfect knowledge of the bias in the
data set.

The statistical significance of a success rate may be esti-
mated by calculating the probability of randomly equaling or
exceeding that number of successful predictions. Assuming a
success rate of 1⁄4 for random predictions, this probability is
given by:

P~x,n! 5 O
i5x

n

@~1⁄4!i~3⁄4!~n2i!n!yi!~n 2 i!!#, [3]

where x represents the number of successful predictions made
by the model out of n attempts.

RESULTS

Table 1 presents four models obtained by fits to different
subsets of the mutagenesis data, together with statistical
measures of the quality of the fit and the predictive power of
these models. The estimated coefficients, standard errors, and
squared correlation coefficients derived by regression analysis
are presented on the left side of the table. The rightmost
portion of the table reports the agreement between the
experimental and calculated stabilities after the latter have
been rounded to the nearest integer. The number of correct
predictions achieved by the regression model (calc) should be
compared with the scores attained by setting the stability equal
to either the average (mean) or the most common (mode)
value of the experimental data. In parentheses below each
score is the probability of reaching that score purely by chance.

Regression Analysis Reveals Correlations. Model I uses
coefficients for the parameters clsh, dsrot, vdw, ges, and vol,
plus a constant term k, to fit all 165 pieces of experimental
data. The R2 and Rgrp

2 of '0.5 show that a correlation exists
between the model and the data, but this model correctly
predicts only 45% of the mutant stabilities and incorrectly
predicts wild-type stability to be 2 rather than 3.

To see if these parameters could better predict the behavior
of subsets of the data, we divide the data set into ‘‘apolar’’ and
‘‘polar’’ groups. Hydrophobicity has been previously noted to
affect the stability of GpA mutants: charged or strongly polar
substitutions at any site invariably disrupt the dimer, whereas
hydrophobic substitutions show a pattern of disruption that
corresponds to a helical repeat (12).

Polar Substitutions Are Weakly Predicted. Model II, which
is fit to the data for the slightly polar substitutions (Gly, Ser,
Thr, Tyr), shows poorer R2 and Rgrp

2 values than model I. Both
clsh and ges show negative correlations with stability; the other
terms do not contribute to the fit. Although this model predicts
stabilities better than using the mean of the data, the mode of
the data performs just as well (Table 1). We conclude that the
relative stabilities of slightly polar substitutions are not well
explained by these variables.

FIG. 3. Correlation table for model III: calculated and experimen-
tal dimerization propensities. Binning of the data by experimental (i)
and calculated (j) stability enables direct comparison of the scores as
integers, where 0 corresponds to no dimerization and 3 corresponds to
wild-type dimerization. Model III scores 75 of 105 mutants correctly;
the clustering of the data at or near the diagonal is reflected in the Rgrp

2

of 0.760 (see Eq. 2).
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Hydrophobic Substitutions Are Well Predicted. In contrast,
model III, which is fit to the 105 apolar substitutions (Ala, Cys,
Val, Leu, Ile, Met, Phe, Trp), has excellent R2 and Rgrp

2 values
and remarkably high prediction accuracy. The wild-type sta-
bility and 75 mutant phenotypes are correctly calculated with
this equation; as shown in Table 1, the probability of achieving
this prediction rate by chance is essentially nil. Model III
makes 49 more correct predictions than are obtained by setting
the calculated stability to the mean of the apolar data subset:
this difference can be attributed to the three parameters clsh,
vdw, and dsrot. The data set is strongly biased to the score of
3 by mutations away from the interface, which usually score as
wild type. Nevertheless, model III makes 19 more correct
predictions than are obtained by setting the predicted stability
to 3. In fact, assigning the stabilities of substitutions at

nonmotif sites to 3 while setting motif sites to 1 (the mean score
of these sites) results in only 62 correct predictions, or 13 fewer
than are achieved by model III. Clearly, our model has
significant predictive value and does more than simply differ-
entiate between motif and nonmotif sites.

The correlation table in Fig. 3 demonstrates that even the
incorrectly predicted dimerization propensities of model III are
strongly biased toward the experimental score. Each mutant is
classified into one cell of a 434 table according to its exper-
imental (i) and calculated (j) stability. The majority of mutants
lie on the diagonal whereas the rest fall close to it, suggesting
that the parameters employed in the models are useful for all
mutants. However, more than half of the mutants whose
experimental dimerization propensities are scored as ‘‘2’’ are
calculated by model III to be as stable as wild type. Exami-
nation of these mutants reveals that most occur away from the
interface and thus receive scores of zero for clsh, vdw, and
dsrot. The slightly lowered stabilities of these mutants cannot
be explained by using the chosen empirical parameters, sug-
gesting that another physical mechanism, perhaps interactions
with detergent, might be involved.

Coefficients Provide Insight into Stability. Limiting the
coefficients of model III to a single decimal place, the calcu-
lated stability (calc) can be expressed:

calc 5 2.7 2 1.6 clsh 1 0.5 dsrot 1 0.2 vdw. [4]

The best-fit constant term of 2.7 is near the wild-type value of
3. This is quite satisfying, because the empirical parameters
were all defined as deviations from the wild-type structure.

FIG. 4. Components contributing to calc for six mutants of GpA,
with weightings given by Eq. 4, and comparison with experiment.
Values for expt are reported relative to the best-fit constant term, 2.7,
so that the difference between calc and expt accurately reflects the
model error. The series of mutations at Thr-87 shows that one, two, or
all three parameters may contribute to reductions in stability. Terms
may also offset one another. Substitution Val-80 3 Leu results in
superior packing (vdw) for one of the available leucine rotamers, but
because the other rotamers clash, this substitution incurs a large cost
in side-chain rotamer freedom (dsrot). By contrast, the parameter
dsrot has a stabilizing effect on the mutant Leu-753 Ala because the
wild-type residue loses rotamer freedom upon dimerization, whereas
the mutant side chain does not. This partially offsets the loss of
favorable packing (vdw) resulting from this sequence change. Muta-
tion Ile-763 Leu achieves superior packing to the wild-type interface
by rearrangement of the side chain of Leu-75, but this gain is offset by
the cost of excluding a side-chain rotamer. The agreement of calc with
expt is representative of the fit of the model; the mean squared error
is 0.27 for model III and 0.25 for these six examples.

FIG. 5. Correlation of calculated dimerization propensity and free
energy of dissociation for wild-type GpA and two point mutants.
Values for calc, using Eq. 4, are strongly correlated with the free
energies of dissociation, DGdiss, reported in ref. 20. The squared
correlation coefficient, R2, is 0.997 and the slope is 1.04 (60.03) kcal21.

Table 1. Models obtained by regression analysis to single-point mutants of GpA

Model
Data
(n)

Model coefficients

R2

Accuracy

k (s) clsh (s) dsrot (s) vdw (s) ges (s) vol (s) Rgrp
2 calc (Pcalc) Mean (Pmean) Mode (Pmode)

I All 2.26 21.29 10.28 10.10 20.36 20.06 0.535 0.496 79 45 59
(165) (0.08) (0.13) (0.11) (0.02) (0.04) (0.02) (2z10210) (0.28) (1z1023)

II Polar 1.67 20.83 –* –* 20.33 –* 0.312 0.240 24 14 24
(60) (0.19) (0.19) (0.09) (7z1023) (0.67) (7z1023)

III Apolar 2.72 21.62 10.54 10.19 –* –* 0.743 0.760 75 26 56
(105) (0.06) (0.11) (0.08) (0.02) (2z10223) (0.56) (2z1029)

IV All 1.91 –† –† –† 20.34 20.11 0.209 0.265 54 45 59
(165) (0.08) (0.06) (0.03) (0.02) (0.28) (1z1023)

The sizes (n) of the ‘‘polar’’ (Gly, Ser, Thr, Tyr) and ‘‘apolar’’ (Ala, Cys, Val, Ile, Leu, Met, Phe, Trp) subsets are given in parentheses. Standard
deviations (s) are given in parentheses below the coefficients. R2 is the square of the regression coefficient. Accuracy: number of mutant phenotypes
correctly predicted by the regression model (calc), the mean of the data (mean), or the mode of the data (mode). The probability of equaling or
exceeding these scores by chance, as calculated using Eq. 2, is given in parentheses below the accuracy scores.
*Excluded from regression: 2s confidence limits for the coefficient overlap zero.
†Excluded from regression to test a hypothesis.
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The relative importance of steric clashes, side-chain rotamer
entropy, and van der Waals contacts to the stability of GpA
transmembrane helix–helix interactions can be inferred from
the products of the coefficients and ranges of each parameter.
For the apolar data subset, clsh ranges from 0 to 2, and so the
second term on the right-hand side of Eq. 4 can reduce calc by
as much as 3.2. Because dsrot ranges from 22 to 12, the third
term can affect calc by 1.0 in either the positive or negative
direction, whereas the vdw range of 212 to 19 means that the
final term can raise calc by up to 1.8 and lower it by as much
as 2.4. Any of the three empirical parameters therefore can
significantly alter the predicted stability. The three compo-
nents contributing to calc are depicted graphically in Fig. 4 for
an instructive set of mutations. Because both vdw and dsrot
have the capacity to increase the calculated stability, our model
has the potential to predict compensations or even outright
increases in dimer stability.

Calculated Propensities Correlate with Experimental Dis-
sociation Free Energies. The recent determination of the
dissociation constants for a GpA fusion protein and two point
mutants by equilibrium ultracentrifugation in nonionic deter-
gent (20) provides the opportunity to compare the predicted
dimerization propensities with experimental helix–helix inter-

action free energies. The strong correlation between calc and
the dissociation free energies (Fig. 5) suggests that model III
might be placed on an energy scale. From the slope of the line
in Fig. 5, each calc unit corresponds to one kcal mol21 of
dissociation free energy. With this scale, the terms of Eq. 4
might be viewed as representing the energetic impacts of
single-point mutations on GpA transmembrane helix ho-
modimerization, in units of kcal mol21. More data will be
needed to assess the precision and accuracy of this energy
scale, but we can compare the empirically derived scale with
theoretical estimates of side-chain rotamer entropy. The en-
tropic cost of restricting, for two GpA monomers, a given side
chain from two rotamer states to one may be estimated by
counting the reduction in the states of the system (21); the
corresponding free-energy change is given by 2TDS 5
2zRTln2, or 0.84 kcal mol21. The coefficient of dsrot from
model III indicates that restricting a single side-chain rotamer
from two states to one costs 0.54 (60.08) kcal per mole of
dimer (Table 1). This agrees well with theory, especially
because nonequivalent population of the rotamers could re-
duce the theoretical estimate. Simple methods such as those we
present here may have potential for quantitative estimation of
helix–helix interaction free energies.

FIG. 6. Sequences, inferred structures, and calculated and experimental dimer stabilities for insertion mutants of GpA. Sequences of GpA fusion
proteins from ref. 23 are aligned by using Thr-87. Inserted or mutated residues are in red; residues aligned with the motif are in large type. Numbering
of residues in the panels corresponds to their positions in the motif alignment, not to numbering in the construct. Values for calc and DGapp values
are computed by using Eq. 4 and 5, respectively. The six panels show the packing at the interface resulting from building these sequences into the
GpA wild-type backbone geometry. Molecular surfaces are displayed for wild type, 3A, 4A, and 4A(G79L), where one monomer approaches within
1.5 Å of the other and serve to depict the close packing across the interface. For sequences 1A and 2A, clashes are created upon building in the
residues, and the surfaces serve to highlight these steric collisions. (wildtype) The wild-type residues Leu-75, Ile-76, Gly-79, and Val-80 exhibit
excellent intermonomer packing. (1A) Introducing Val at position 79 of the motif generates a steric clash. (2A) Either Met at position 79 or Ile
at position 75 will clash with any rotamer of the Phe at position 76. (3A) Four weakly disruptive single mutations are placed into motif positions,
but our model indicates that these should have compensatory interactions with one another. The Ala at position 79 would clash slightly in the
wild-type sequence as described previously (14), but having Ala replace Val at position 80 eliminates this clash and generates good packing. The
Phe side chain of position 75 would need to swing away from the interface to avoid a clash in a wild-type context, but the space afforded by the
Gly at position 76 enables close packing between the Phe side chain and the backbone of the opposite monomer. (4A) Interactions between Ala
residues at 79 and 80 are favorable, as for 3A. Placing Val in position 76 reintroduces the favorable interactions obtained in the wild type by having
a b-branched residue at the dyad. (4A(G79L)) As 4A, except that a (wild-type) Leu is placed at position 75 in a new geometry. The rank order
of the calculated and predicted dimerization propensities compare well, showing that the stabilities of these mutants can be predicted by using the
same rules as were used for the single-point mutants.
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Multiple Mutations Are Well Predicted. If the agreement
between calc and the experimental stabilities described above
reflects the presence of chemical information in the empirical
parameters, then the effects of multiple sequence changes
might also be predicted by this model. A series of single and
multiple alanine insertion mutations of GpA generated by von
Heijne and coworkers (22, 23) provides the opportunity to test
this idea. We analyze the single alanine insertion variants (22)
as well as all sequence variants in ref. 23 having up to four
residues inserted. The data include 15 insertions of a single
Ala, a double-point mutant (Leu-75 3 ValyIle-76 3 Ala), 1
insertion of AlaAla, 4 insertions of AlaAlaAla (with various
point mutations), and 12 insertions of AlaAlaAlaAla (with
various point mutations). To score these insertion mutations
for the empirical parameters, the sequences are aligned with
wild type to minimize changes to the motif, usually with Thr-87
as a reference point (Fig. 6). Changes to residues in the
motif-aligned positions are treated as multiple-point muta-
tions. To obtain experimental scores for these mutants, we
compute an apparent free energy of dissociation, DGapp, from
the monomer and dimer band concentrations reported in refs.
22 and 23 by using the equation:

DGapp 5 2RT ln ([monomer]2y[dimer]). [5]

Given that insertions within the motif must rotate and translate
the residues that participate in the wild-type interface relative
to one another, this class of mutants would not be expected to
dimerize (22, 23). In agreement with these expectations, our
model suggests that insertion of one or two alanines after
position 81 disrupts dimerization because of steric clashes (Fig.
6, constructs 1A and 2A). More significantly, our model also
explains the unexpected finding that insertion of three or four
alanines supports dimerization (23). The model shows how
sequence changes that disrupt the GpA dimer as single-point
mutations can be structurally compatible with the GpA inter-
face as part of a multiple substitution [Fig. 6, constructs 3A, 4A,
and 4A(G79L)]. Fig. 7 shows the excellent correlation between
calc and the apparent free energy of dissociation, DGapp, for
wild type and all 33 mutants reported by von Heijne and
coworkers that bear up to four inserted residues (22, 23). Like
the examples in Fig. 6, which are plotted in Fig. 7 with triangles,
many of these constructs dimerize despite containing inser-
tions within the seven-residue GpA motif that place individ-
ually disruptive sequence changes at motif positions. With the
exception of a single point, the dimerization behavior of all

these constructs is well explained by our model. We conclude
that the model is able to account for compensatory interac-
tions between multiple-point mutations.

On the other hand, the outlier in Fig. 7, mutation 4A(G79L,
A2W), is predicted by our model to be nondimeric due to an
inferred clash, but this sequence actually forms a large amount
of dimer. Similarly, several more extensive insertion mutations
reported in ref. 23 are not well described by our model; for
instance, the stabilities of 6 of 11 insertions of five residues are
poorly predicted by calc. We conclude that the assumptions in
our approach are no longer valid for this class of mutations:
either our method fails to account for the effects of such
extensive changes to the GpA motif or the peptides associate
in a fashion that is not analogous to wild-type GpA dimeriza-
tion.

Changes in Hydrophobicity and Volume Are Poor Predic-
tors of Stability. Although the parameters ges and vol have
some small predictive value in the regression analysis of the
entire data set (model I) and are included in the initial
regression for model III, confidence limits indicate that these
two parameters do not contribute significantly to the fit of the
‘‘apolar’’ subset (Table 1). Because changes in side-chain
hydrophobicity and volume have proven useful in understand-
ing the relative stabilities of point mutants of soluble proteins
(24–26), we now focus on these terms.

We fit model IV to the entire data set, specifically excluding
clsh, vdw, and dsrot to test the predictive values of the
remaining two terms. The poor R2, Rgrp

2 , and accuracy (Table
1) conclusively demonstrate the minimal value of these terms
as predictors of GpA dimer stability. It is noteworthy that for
all regressions presented in Table 1, uvolu and vol were each
tried in turn. Because increases and decreases in side-chain
volume at the interface should both be detrimental to dimer
stability (by causing clashes and packing voids, respectively), it
was expected that the term uvolu would provide superior
predictive power. Surprisingly, in no model does the more
physically reasonable form of the function give an improved fit
to the data. Tested subsets (polar, apolar, interfacial, nonin-
terfacial) also showed no significant predictive value for ges,
uvolu, or vol, although uvolu does show a weak negative corre-
lation with stability for the interfacial subset.

We note that the lack of correlation between ges and the
experimental dimer stabilities in model III is not simply due to
the apolar data set exhibiting a small range of hydrophobicity
changes. In fact, apolar substitutions such as Gly3 Phe (22.7
kcal mol21) and Ile 3 Ala (11.5 kcal mol21) result in large
transfer free-energy changes and a range of more than 8 kcal
per GpA dimer for the term ges. By contrast, the free-energy
scale derived for model III shows that the effects of single
apolar substitutions actually modulate the dimerization free
energy of GpA by no more than 3 kcal mol21 or so. Because
ges has a range more than twice that of the experimentally
observed association free energies in the apolar subset, the
absence of a statistically significant correlation with dimer
stability must indicate that hydrophobicity changes are simply
lacking in predictive value.

Polar Substitutions May Destabilize the Helical Monomer
in SDS. Interestingly, the coefficient for the parameter ges
exhibits, within error, the same negative value for models I, II,
and IV despite the fact that model III rules out changes in
transfer free energy as a significant contributor to dimer
stability (Table 1). We note that model III is obtained by
regression of the apolar data subset only: it would appear that
the polar residues included in the data sets for regression
models I, II, and IV cause a slight negative correlation between
ges and the experimental dimer stability. We suggest that the
disruptive effects of hydrophilic residues are a result of the
SDSyPAGE system in which the dimerization is assayed.

The introduction of polar side chains must destabilize the
association of GpA helices with the hydrophobic interiors of

FIG. 7. Correlation of calculated dimerization propensity and
apparent free energy of dissociation for wild type and 33 multiple
mutants of GpA. Values for calc, using Eq. 4, are shown to be strongly
correlated with the apparent free energies of dissociation, DGapp,
computed by using Eq. 5 and data from refs. 22 and 23). Excluding the
outlier, the squared correlation coefficient, R2, is 0.845 and the slope
is 0.85 (60.07) kcal21. Triangles indicate data points corresponding to
sequences depicted in Fig. 6.
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detergent micelles because of the energetic cost of burying
polar side chains away from water. A structural alternative
available in micelles—but not in membranes—is for the pep-
tide to break the helix near the hydrophilic site and expose the
main-chain and side-chain hydrogen bond donors and accep-
tors to water at the micelle surface. The described changes in
monomer gel mobility of strongly polar point mutants of the
GpA fusion protein on SDSyPAGE (12) are consistent with
alterations in the association of the protein with the detergent
micelle. The destabilizing effects of strongly polar substitutions
on GpA dimerization independent of position in the trans-
membrane sequence therefore may be attributed to a de-
creased stability of the monomeric helix (12) relative to an
unfolded monomeric species. This idea is supported by data
from model peptides, which exhibit helicity in micellar envi-
ronments that is correlated with the hydrophobicity of a
central uncharged segment of the peptide (27). We propose
that the GpA transmembrane domain is uniformly hydropho-
bic enough to remain associated with the interior of SDS
micelles as an a-helix, and that hydrophobic substitutions do
not affect this but simply modulate helix–helix interactions. In
contrast, the dimer stabilities of polar GpA mutants probably
reflect not only helix–helix interaction effects but also reduc-
tions of the stability of the helical monomer relative to the
unfolded state.

DISCUSSION

From the close agreement between calculated and experimen-
tal dimerization propensities we conclude that the major
features needed to understand the sequence dependence of
GpA helix–helix interactions are contained within the param-
eters clsh, dsrot, and vdw, which describe steric clashes,
rotamer freedom, and favorable van der Waals interactions.
Because the success of the approach depends on the rules used
to score the set of mutants, we must consider the underlying
assumptions of the method as well as the parameters and
coefficients when we attempt to infer properties of helix–helix
interactions from these results.

In generating monomer and dimer ‘‘structures’’ for the
sequences containing point mutants, we assume that each
monomer will remain in essentially ideal a-helical geometry
and that side chains will take conformations corresponding to
rotamers compatible with a helical backbone. These assump-
tions reflect our expectations about the accessible conforma-
tions of a transmembrane polypeptide based on free-energy
considerations. Monomeric helices within a bilayer are free to
populate local conformational energy minima because they are
not experiencing tight and specific interactions with other
species; presumably these minima correspond to ideal helical
geometry and favorable side-chain rotamer positions. The
two-stage model argues for minimal perturbation of the ideal
helical geometry of the monomer upon dimerization, because
a large energy penalty would otherwise accompany changes in
the backbone hydrogen bonds within a low dielectric environ-
ment. The predominance of low-energy rotamers for residues
within mutant dimers can be rationalized in a similar fashion:
altering a side chain from a preferred rotamer position in the
monomer to a sterically unfavored side-chain dihedral angle
upon dimerization would destabilize the dimer by several
kilocalories per mole.

On the other hand, a sufficiently strong driving force for
dimerization could overcome the energy costs of poor local
geometry. Such a driving force is unlikely in this system, given
the small interaction surface between GpA monomers (14),
the lack of intermonomer hydrogen bonds or salt bridges, and
the negligible role played by the hydrophobic effect in the
thermodynamic cycle diagrammed in Fig. 2. Although these
points do not apply to all membrane proteins, our assumptions
provide a useful conceptual limit in which to consider trans-

membrane helix–helix interactions. We note that because our
model is able to explain how changes as extensive as insertion
of four residues affect GpA dimer stability, the structural
assumptions are shown to be quite robust in this system.

Despite the fact that the range of the parameter ges exceeds
the estimated range of the experimental dissociation free
energies, hydrophobicity is without predictive value for the
apolar substitutions of GpA. This contrasts with many studies
of soluble proteins, where hydrophobicity has been shown to
play an important role in folding and stability (26, 28, 29).
However, this result is consistent with the two-stage model,
which states that the energy from the hydrophobic effect is
expended in the first stage of folding, upon insertion of a
hydrophobic peptide into the bilayer as an a-helix. Because the
lateral association of helices takes place within a nonpolar
bilayer, the hydrophobic effect should have a negligible influ-
ence on the reaction. The regression analysis of the apolar
subset of the data thus supports the central precept of the
two-stage model: helical membrane folding is separated into
two thermodynamically distinct steps, and so the hydrophobic
effect does not modulate helix–helix association.

From a consideration of the molecular species in Fig. 2, we
expect that the energy terms affecting helix–helix association
will include helix–helix, helix–lipid, and lipid–lipid interaction
enthalpies as well as peptide and lipid rotational, translational,
and conformational entropies. Because we attempt to account
for differences in dimer stabilities of sequence variants, we
ignore terms (such as helix translational or rotational entropy)
that should be independent of the peptide sequence. The
absence of experimental information about lipid or detergent
molecules precludes the design of structure-based parameters
involving these species, and so our method parametrizes only
two energy terms. Helix–helix interactions are represented by
the empirical parameters clsh and vdw, which are defined to
account for intermonomer steric clashes and favorable van der
Waals contacts introduced between monomers by mutations.
Peptide conformational entropy is represented by the term
dsrot, which counts side-chain rotamer states; because the
helix backbone should not be able to undergo changes in
conformation, this term should suffice. We ignore vibrational
entropy contributions as well as any intrinsic energetic differ-
ences between rotamers (21, 30).

Despite completely neglecting several energy terms, model
III reproduces the experimental dimerization propensities
remarkably well. We emphasize that the neglected energy
terms may still contribute strongly to the net free energy of
dimerization—this analysis merely shows that amino acid
changes in the sequence of the interacting helices do not
greatly modulate the total contribution from these terms. It
should be stressed that our parameters were designed for
simplicity: our goal was to determine whether these minimal
concepts could account for the behavior of the GpA system.
Rather than inferring that our simple empirical parameters
manage to compensate for the neglected energy terms, we
conclude that helix–helix interactions and side-chain confor-
mational entropy are the dominant terms affecting the se-
quence dependence of GpA self-association.

Model III provides insight on the relative importance of the
empirical parameters and suggests that stability ‘‘trade-offs’’
may be understood by using simple structure-based rules.
Although the term clsh plays a dominant role in determining
the predicted stability of many single-point mutations, second-
site mutations can alleviate the clashes caused by a single
mutation and thereby regain wild type calculated, and ob-
served, dimerization propensities. This is entirely consistent
with the large coefficient attributed to clsh by the regression,
and reiterates a familiar point from other studies of molecular
recognition: steric clashes provide excellent control over spe-
cific interactions (31). Our success in predicting the stabilities
of multiple substitution mutations suggests that the concepts
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represented by the model may be useful in the rational redesign
of helix–helix interactions.

Although this approach appears to yield considerable phys-
ical insight into the sequence specificity of GpA dimerization,
it is important not to overinterpret the details of the model.
Although the definitions of the empirical parameters are
structure-based, they do not strictly correspond to physical
energy terms. For example, the magnitudes of the model
coefficients tell us that a mild clash should have the same
energy cost as the loss of eight favorable van der Waals
contacts, or about 1.5 kcal. By contrast, inspection of the
Lennard–Jones potential reveals that a ‘‘mild’’ 0.3 Å clash has
an astronomical energy penalty (18). These two different views
of the energy associated with a steric clash can be reconciled
with one another by viewing the regression coefficients in the
context of the assumptions made by our method. Consider a
substitution that results in a 0.3 Å clash and scores clsh 5 1
under our method, assuming that no backbone atoms move at
all. The energy of this artificially generated structure would
indeed be very high; but in the real world, a slight separation
of the helices might accommodate the clash. However, the
nearly ideal packing of the wild-type GpA dimer interface
means that such a separation of the helices would cause a
decrease of the total intermonomer van der Waals interaction
energy, resulting in an observed phenotype of perhaps 1 or 2.
The experimentally observed reduced stability of the dimer
would be ‘‘best-fit’’ by our regression analysis as if it resulted
from the scored clash, because the method does not acknowl-
edge any rearrangement of helices. Depending on the detailed
geometry, some ‘‘mild’’ clashes will be more readily accom-
modated by rearrangements than others, so the clsh coefficient
of our model simply corresponds to the single best-fit com-
promise over the existing data. This highlights the empirical
nature of our approach and emphasizes the fact that physical
insights obtained from these parameters should always be
accompanied by a set of caveats. Indeed, a similar argument
could be proposed for how slight deformations of the helix
backbone, rather than translations, might avoid some clashes.
Whatever the precise physical basis for the success of our
model, the central point is that the properties of sequence
variants can be inferred from the wild-type structure by using
a few simple rules.

Our model provides a rational basis for the sequence
specificity of GpA transmembrane helix dimerization. Three
structure-based empirical parameters representing a set of
simple concepts—predicted clashes, van der Waals contacts,
and changes in side-chain rotamer freedom—are able to
reproduce the qualitative dimerization propensities of more
than 100 hydrophobic single-point mutants (and 30 insertion
mutants) of the GpA transmembrane domain. The model
demonstrates that the determinants of stability and specificity
of transmembrane helix–helix interactions in detergent envi-
ronments may be at least qualitatively understood by using
extensions of the ideas outlined in the two-stage model for

membrane protein folding (10). This finding suggests that
arriving at an understanding of the structures and stabilities of
a-helical integral membrane proteins may be feasible by using
simple methods and ideas.
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