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Abstract
We present a new approach to molecular classification based on mRNA comparisons. Our method,
referred to as the top-scoring pair(s) (TSP) classifier, is motivated by current technical and practical
limitations in using gene expression microarray data for class prediction, for example to detect
disease, identify tumors or predict treatment response. Accurate statistical inference from such data
is difficult due to the small number of observations, typically tens, relative to the large number of
genes, typically thousands. Moreover, conventional methods from machine learning lead to decisions
which are usually very difficult to interpret in simple or biologically meaningful terms. In contrast,
the TSP classifier provides decision rules which i) involve very few genes and only relative expression
values (e.g., comparing the mRNA counts within a single pair of genes); ii) are both accurate and
transparent; and iii) provide specific hypotheses for follow-up studies. In particular, the TSP classifier
achieves prediction rates with standard cancer data that are as high as those of previous studies which
use considerably more genes and complex procedures. Finally, the TSP classifier is parameter-free,
thus avoiding the type of over-fitting and inflated estimates of performance that result when all
aspects of learning a predictor are not properly cross-validated.
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1 Introduction
Using DNA microarray technology, it is now possible to measure the expression levels of
thousands of genes simultaneously (Duggan et al. (1999);Lipshutz et al. (1999);Lockhart and
Winzeler (2000)). However, the number of profile measurements per experimental study
remains quite small, usually fewer than one hundred (Hughes et al. (2000);Pomeroy et al.
(2002)). When measured against the complexity of the systems being studied, the amount of
data available for modeling and inference is therefore severely limited. Discovery of the
underlying structure within these data, in particular correlation patterns or even higher-
dimensional interactions, is exceedingly difficult in this small-sample regime.

The small-sample dilemma in the statistical analysis of microarray data is well-documented in
the literature (Dudoit and Fridlyand (2003);Sebastiani et al. (2003);Simon et al. (2003);West
et al. (2001)). In view of well-known tradeoffs in computational learning theory between
sample size and model complexity (Hastie et al. (2001)), and between “bias” and
“variance” (Geman et al. (1992)), some simplifying assumptions (such as the reduction of the
dimensionality of the data and/or the family of classifiers) appear necessary. Indeed, there is
already evidence (Dudoit and Fridlyand (2003)) that relatively simple classification methods
as in Tibshirani et al. (2002) are competitive with more complex ones. Our results support and
extend this finding.

Another limitation of current methods for classifying gene expression profiles is the “black
box” dilemma. Standard methods in statistical learning and pattern recognition are routinely
applied to microarray data, examples being neural networks (Bicciato et al. (2003);Bloom et
al. (2004);Khan et al. (2001)), decision trees (Boulestiex et al. (2003);Dettling and Buhlmann
(2003);Zhang et al. (2003)) and support vector machines (Peng et al. (2003);Yeang et al.
(2001)). Typically, this results in predictions based on nonlinear functions of many expression
values, and consequently highly complex decision boundaries between the classes of interest.
Such boundaries are then difficult to summarize in simple terms or to characterize in a manner
which is biologically meaningful.

We address both problems – small samples and lack of interpretability – by basing our
predictions entirely on pairwise comparisons. More specifically, we attempt to differentiate
between two classes by finding pairs of genes whose expression levels typically invert from
one class to the other. Our approach is a particular instance of a larger class of rank-based
methods, all of which are characterized by immediately replacing expression levels by their
corresponding ranks (i.e., most heavily expressed, second most heavily expressed, etc.)
determined across all genes assayed using a single DNA microarray; this step is equivalent to
recording the gene having a larger expression intensity for each pair of genes on a DNA
microarray. Rank-based methods are therefore robust to quantization effects and are
invariant to pre-processing designed to overcome chip-to-chip variation, such as normalization
methods (Yang et al. (2001)), under the very mild (and nearly universally satisfied) assumption
that the normalization procedure is monotonic in the expression values, and hence preserves
ordering.

There is no question that information is lost using a rank-based procedure. However, the results
reported here, obtained using several different data sets and based entirely on internal
comparisons within the profile, demonstrate that the amount of information residing in the
ordering of gene expression levels is more than sufficient to reliably perform classification and
other tasks. Indeed, in some cases, accurate prediction can be achieved by comparing the
expression levels of a single pair of genes.

In the following sections, we focus on a particularly simple example of a comparison-based
approach to classifying gene expression profiles – the “top-scoring pair(s)” or TSP classifier.
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A family of gene pairs is isolated and then a profile is classified based on a decision rule which
only involves comparing mRNA abundance in each pair and then aggregating the results. For
the TSP classifier, the participating pairs are those which achieve the largest “score” relative
to a simple measure of discrimination. Scores are estimated from the training data and there
are no parameters to tune since the number of top-scoring pairs is completely determined by
the data. In some cases, there is a single pair of genes achieving the top score and classification
then amounts to choosing the class under which the observed ordering within this pair is most
likely.

We demonstrate the efficacy of this method on several gene expression data sets involving
breast, prostate and leukemia cancers. We also illustrate how the TSP method can generate a
specific hypothesis for follow-up studies. Our classification rates are comparable to the best
results reported in the literature; moreover, in some cases those results are not properly
validated (e.g., by fully cross-validating parameter choices) and may be biased (Simon et al.
(2003);Dudoit and Fridlyand (2003)). In addition, the TSP classifier usually employs
considerably fewer genes and is easier to interpret.

Our approach to selecting informative pairs of genes is but one example of attempting to exploit
information residing in gene-gene interactions. Despite the evident importance of capturing
such joint statistics, the literature is sparse, due perhaps to the sample size limitations alluded
to earlier. The co-expression of genes in the cell cycle is considered in Li (2002) but there is
no connection with classification. The idea of evaluating genes in pairs in order to select
discriminating genes for classifying microarray data first appears in Bø and Jonassen (2002).
A subset of k gene pairs is selected based on a recursive procedure and a scoring criterion which
involves diagonal linear discriminant analysis and a two-sample t-test. Using the resulting 2k
genes in conjunction with standard classifiers, the authors demonstrate an improvement over
feature selection based on individual genes. In particular, there is nothing rank-based and the
pairing of genes is ignored during classification. They also report good prediction rates for two
cancer data sets using a few tens of genes, although the parameter choices (such as k) are not
part of the cross-validation. Our results corroborate their findings. Further, we show that the
information in gene pair interactions can be directly exploited using simple comparisons for
both scoring and decision-making.

In the following section we describe our rank-based approach to pair selection and
classification in more detail. The experiments with three cancer data sets are presented in §3,
including comparisons with other results in terms of accuracy and efficiency as well as a brief
description of the biological relevance of the top-scoring pairs. We conclude in §4 with some
remarks about ratios of concentrations, estimating prediction rates and sample size.

2 Comparison-Based Classification
Consider G genes whose expression levels X = {X1, X2, …, XG} are measured using DNA
microarrays and regarded as random variables. Each profile X has a true class label in {1, 2,
…, C}. For simplicity, we assume C = 2, although the results extend to higher numbers of
classes. We focus on detecting “marker gene pairs” (i, j) for which there is a significant
difference in the probability of Xi < Xj from class 1 to class 2. Profile classification is then
based on this collection of distinguished pairs. Here, the quantities of interest are pij(c) = P
(Xi < Xj|c), c = 1, 2, i.e., the probabilities of observing Xi < Xj in each class. These probabilities
are estimated by the relative frequencies of occurrences of Xi < Xj within profiles and over
experiments. Consequently, for our analysis it is sufficient to know the ranks of the expression
values within profiles on each microarray. This approach differs from nonparametric methods
for detecting differentially regulated genes (see, e.g., Sebastiani et al. (2003)) in which ranking
is done across experiments for each fixed gene.
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Let Δij = |pij(1) − pij(2)| denote the “score” of (i, j). An example of computing a score is provided
in Table 1. We seek gene pairs with “large” scores.

2.1 Gene Pair Selection
Detection of marker gene pairs is a problem in feature selection, and plays the same role in our
analysis as finding individual marker genes does in more standard methods (Dudoit et al.
(2002);Sebastiani et al. (2003);Tibshirani et al. (2002);Stolovitzky (2003)). One option for pair
selection might be to first select differentially-regulated or “marker genes” and only then
proceed from individual genes to gene pairs by restricting the search for marker pairs to pairs
of these marker genes. But two major drawbacks would ensue: 1) such post-filtering results
would no longer be invariant to normalization; and 2) by construction, only differentially
expressed genes could appear in the selected comparisons, thereby possibly losing
discriminating pairs in which at most one gene is itself differentially expressed. We therefore
adopt a more straightforward method based on direct search: We estimate Δij for every distinct
pair (i, j) and apply a selection rule based on the magnitude of Δij. An example of such a decision
rule, and the one we use throughout this paper, is to rank the scores Δij from largest-to-smallest
and select all pairs achieving the top score.

2.2 Classification
Pair selection results in a family P of distinguished pairs. Again, the gene pairs in P are precisely
those whose score is maximal; hence the number of pairs in P is not a parameter of the system
but rather data-driven. For medium sample sizes, there are usually only a few pairs which
achieve the top score; for example, in two of the three experiments presented here there is only
one such pair, and there are three pairs in the other experiment. For very small sample sizes
there may be many pairs; an example is given at the end of §3.

Any standard classification algorithm may then be implemented using P as input. We are
interested in algorithms for which classification decisions have a simple interpretation. Voting
is an example of such a decision algorithm, where individual votes are driven by maximum
likelihood. In this method, given a new expression profile X, an individual pair (i, j) in P votes
for the class for which the observed ordering between Xi and Xj is more likely; see the example
in Table 1. That is, if we observe Xi < Xj, then pair (i, j) votes for class 1 if pij(1) ≥ pij(2) and
votes for class 2 otherwise. The class with the most votes is chosen. We refer to the resulting
classifier as the top scoring pair(s) classifier, henceforth denoted TSP.

It is noteworthy that for classification based on a single gene pair, the sum of misclassification
probabilities over the two classes can be expressed as 1 − Δij, which provides a natural
justification for score maximization.

The procedure of tallying individual votes, while attractive from the point of view of simplicity
(Dudoit et al. (2002)), also can be derived as a maximum likelihood rule under the simplifying
assumptions that (i) individual comparisons are conditionally independent given the class, and
(ii) for some p we have either pij(c) = p or pij(c) = 1 − p for all (i, j) ∈ P and both classes c =
1, 2.

2.3 Error Estimation
In estimating the (generalization) error rate of a classifier, gene pair selection was performed
within the cross-validation loop. With n samples and (leave-one-out) cross validation (CV),
this means choosing n separate subsets P, one for each profile “held out” during training, then
classifying that profile. (Other methods for estimating the error rate could be considered; see
§4.) In particular, both the actual top-score, as well as the set of pairs which achieve it, may
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vary with the sample left out. The estimated prediction rate is then 1 − e/n where e ∈ {1, …,
n} is the number of errors observed in the cross-validation.

For our procedure there are no parameters to select inside the CV loop. For other procedures
that do require parameters, e.g., k-nearest neighbors, random forests and support vector
machines, the estimated prediction rates may be severely biased if performance is sensitive to
these parameters and they are not properly cross-validated (using an inner CV loop to choose
parameter values) (Dudoit and Fridlyand (2003);Simon et al. (2003);West et al. (2001)). The
TSP classifier avoids this source of bias.

3 Experiments
The TSP classifier was evaluated on three class prediction problems: Predicting the status of
lymph nodes in patients with breast tumors (Breast study); Classifying profiles into leukemia
subtypes (Leukemia study); Distinguishing prostate tumors from normal profiles (Prostate
study). Details involving these data (references, chips, samples sizes, web addresses, etc.) can
be found in the Appendix.

3.1 Top-Scoring Pairs
There are three top-scoring pairs for the Leukemia data and only one for the Breast and
Prostate data; the actual top scores, and corresponding gene pairs, are identified in Table 2,
together with their individual t-statistics. Some of these genes would not be regarded as
“differentially regulated” on the basis of their individual t-statistics. Notice that the same gene
may appear in more than one pair.

3.2 Score Significance
The significance of a score can be assessed by a permutation analysis. For any given study,
artificial data sets can be constructed by randomly permuting the class labels, hence
maintaining the sample sizes n1 and n2 of the two classes. The resulting top scores are then
indicative of those obtained when attempting to classify based on profile labels which cannot
be predicted from the expression values while maintaining the overall statistical dependency
structure among the genes. In Figure 1, we display the histograms of top scores for the
Breast and Leukemia studies based on 1000 permutations. In the latter case, for example, there
is a top score for each of the 1000 random assignments of class labels to the n = 72 samples
constrained by n1 = 47 and n2 = 25. From the permutation analysis we can compute a p-value
associated with a given score obtained in the actual data by taking the fraction of permuted
data sets in which a score at least as large is obtained. This p-value can be interpreted as the
probability of observing such a large score under the null hypothesis that the pairs are non-
informative for classification. No score among the 1000 permutation trials came near the top
score actually observed (see Figure 1) on either the Leukemia or Prostate data, and hence the
estimated p-values are virtually zero. For the Breast data the estimated p-value of the top score
is 0.001.

3.3 Classification Results
An intuitive appreciation of the nature of decision-making for the TSP classifier (i.e., predicting
the class labels based entirely on the observed ordering among the pairs obtaining the top score)
can be gleaned from Figure 2. For each study, there is a scatter plot of the expression levels
for two genes – the unique top-scoring pair for the Breast and Prostate data and one of the
three top-scoring pairs for the Leukemia data.
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The estimated (correct) prediction rate of the TSP classifier for each study is displayed in Table
3 along with other reported results (and indicated references) for these data. All TSP results
are based on leave-one-out cross-validation.

3.3.1 Breast Study—In predicting the status of lymph nodes (affected or non-affected) in
the Breast study, there are nine errors and three ties out of the 49 cross-validation loops; random
tie-breaking then results in 10.5 errors on average which corresponds to an estimated
classification rate of 79%. For comparison, estimated error rates for these data, also based on
leave-one-out cross-validation and using a wide variety of common machine learning
techniques, are summarized in Dudoit and Fridlyand (2003) for varying numbers of pre-filtered
genes: m = 10, 50, 100, 200, 500, 1000, and m = 7129. Most parameter choices are external to
the cross-validation in estimating the error rates listed in the main comparison in Dudoit and
Fridlyand (2003); see the comprehensive discussion there. These external parameters include
those which are method-specific as well as the choice of the number of genes that are pre-
filtered.

For example, in the case of support vector machines, there are 48 experiments corresponding
to choosing the kernel (linear or radial), the penalty, the filtering method and the number genes
to be filtered; the number of errors varies considerably according to the protocol. Since the
TSP classifier based on a unique top-scoring pair can be interpreted as a linear decision rule,
albeit trivial, it can be seen as belonging to the same family of classifiers as a support vector
machine with a linear kernel.

All of these methods are more complex than the TSP classifier and relatively few parameter
choices yield better results. Moreover, it is not clear that some of these differences would
remain after proper cross-validation of the other methods. One fully cross-validated experiment
was performed in Dudoit and Fridlyand (2003) for k-NN and naive Bayes, resulting in 9 errors
in both cases (and always using 10 genes).

3.3.2 Leukemia Study—The feasibility of cancer class prediction (as well as class
discovery) based on gene expression monitoring was established in the pioneering work of
Golub et al. (1999). The test case was separating AML from ALL leukemias (see Table 3 for
a brief summary of the method in Golub et al. (1999)). Prediction rates are reported for a
classifier based on fifty genes using cross-validation to measure accuracy on the initial data
set of n = 38 acute leukemia samples (two samples are labeled “uncertain” and remaining 36
are correctly classified) as well as on an independent sample of 34 samples (making “strong
predictions” for 29, all correct). Following the same protocol for training and testing, the
TSP classifier correctly classifies 31 of the 34 samples (all three mistakes on ALL samples).
On the combined data sets (see the Appendix), the TSP classifier uses five genes (the three
pairs listed in Table 2) and classifies 68 samples correctly out of 72.

Biological Context The first two pairs in Table 2 compare expression levels of L11373
(protocadherin gamma subfamily c,3; PCDHGC3) and D86976 (minor histocompatibility
antigen; HA-1) with that of X95735 (zyxin; ZYX). ZYX is a member of the LIM protein family,
co-localizes with integrins at sites of cell-substratum adhesion and is postulated to serve as a
docking site for the assembly of protein complexes involved in regulating cell motility. The
expression level of ZYX is up-regulated substantially in AML (382 in ALL versus 3258 in
AML). Average expression levels of PCDHGC3 and HA-1 were (respectively) 1349 and 1396
in ALL versus 1063 and 1057 in AML. Differences between expression level in ALL and AML
were not significant. Thus, PCDHGC3 and HA-1 may function in the TSP classifier as
reference genes against which up-regulation of ZYX becomes highly discriminatory. Many
other machine learning methods have also identified ZYX as a highly discriminating marker
of ALL versus AML (Soukop and Lee (2003);Hwang et al. (2002);Siedow (2001);Golub et al.
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(1999)). The third pair is J05243 (the human nonerythroid -spectrin SPTAN1) and M23197
(the myeloid differentiation CD33 antigen). CD33 is well recognized as being a cell surface
marker for AML (Griffin et al. (1983);Bradstock et al. (1989)), as it is generally not expressed
in ALL (average expression level 174) but is expressed in most myeloid leukemias (average
expression level 861). Expression of SPTAN1, which is involved in receptor binding and actin
crosslinking, is elevated in ALL (average expression level 868) relative to AML (average
expression level 162). This differential expression pattern produce a highly discriminating
inversion of class probabilities.

3.3.3 Prostate Study—The results in Singh et al. (2002) confirmed a strong correlation
between patterns of gene expression obtained at the time of diagnosis of prostate cancer and
various clinical and pathological aspects of the disease. Specifically, it was established that
“sufficiently robust” gene expression differences could be found to predict the identity of
prostate samples. Results are reported for a k–nearest neighbor classifier (with Euclidean
distance) applied to m genes for selected values of m (see Table 3). Prediction rates are
estimated separately for each m using leave-one-out cross-validation, yielding a range from
86% to 92%, with top performance for m ≥ 4. The choice of k does not appear to be cross-
validated, in which case the estimated prediction rates may be biased upwards.

Biological Context The top scoring gene pair using the TSP classifier is M84526 (human
adipsin complement factor D; DF) and M55914 (human c-myc binding protein; MBP-1). C-
myc is a DNA-binding phosphoprotein protooncogene involved in the regulation of cell growth
and differentiation and binding of MBP-1 to c-myc leads to tumor suppression (Pancholi
(2001)). DF is a serine protease secreted by adipocytes into the bloodstream and functions as
part of the alternative complement pathway of the innate immune system (Walport (2001)).
Adipsin was identified as one of the top 50 marker genes in Singh et al. (2002), however, c-
myc was not. Nonetheless, the joint behavior of c-myc and adipsin is highly discriminative of
non-tumor versus prostate tumor samples, yielding a prediction rate of 95%.

3.3.4 A Very Small Sample Case—We applied the TSP classifier to one extreme case in
terms of the ratio of sample size to the number of genes: We considered classifying gene
expression profiles consisting of 22, 283 probes for 22 samples of myocardial tissue samples
of patients diagnosed with idiopathic cardiomyopathy (IDCM) (12 samples) versus control (10
samples); these data are described in the Appendix. Previous studies have shown that virtually
perfect discrimination between IDCM and controls can be achieved by methods including
hierarchical clustering [36] and multidimensional scaling (unpublished results). Not
surprisingly, many pairs provide perfect discrimination between IDCM and controls, so that
best observed score is maximal (Δ = 1.0), and this score is realized by a large number (2,460)
of gene pairs. Some of these top-scoring pairs are surely spurious due to the very small sample
size and the very large space of possible gene pairs. Despite this, the cross-validated 100%
prediction rate demonstrates that the discriminating power of the entire family of pairs
estimated to achieve the maximal score is not due to chance. (Were the pairs detected purely
by chance, then, for each loop of CV, each such pair would vote correctly with probability one-
half, which is inconsistent with the cross-validated estimate. Consequently, many of the high-
scoring pairs are genuinely informative.) Thus accuracy is maintained but at the possible
expense of transparency. However, further analysis in this study (e.g., determining which pairs
are most discriminating) is limited by the very small sample size.

4 Discussion
We have introduced a new classification methodology for microarray data based entirely on
pairwise comparison of relative gene expression levels. Basing prediction on ratios of
concentrations provides a natural link with biochemical activity which can only become
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stronger – more biologically meaningful – when mRNA abundance is replaced by actual
protein expression data. Indeed, the full potential of this method may not be realized until high-
throughput protein comparisons become practical.

Moreover, concrete hypotheses about the predictive significance of specific mRNA
comparisons are generated naturally by the method, and follow-up studies could be focused
on the corresponding list of gene pairs. Examples were provided in the cases of separating
leukemia subtypes and detecting prostate cancer.

We have chosen leave-one-out (“n-fold”) CV to estimate the error rate of the TSP classifier in
order to provide an “apples-to-apples” comparison with the other work we cite. In addition,
this method is well-known to have low bias. On the other hand, methods such as k-fold CV
and bootstrap resampling techniques have been asserted to have smaller variance (see, e.g.,
Efron (1983);Efron and Tibshirani (1997)) and be more appropriate for microarray analysis in
many cases (Braga-Neto and Dougherty (2004)). For instance, with 10-fold CV, the estimated
error rates should be unbiased for a training set of size .9n (rather than of size n) although
sensitivity to the training set may be smaller than with n-fold CV. Of course, performance is
expected to degrade somewhat due to the smaller number of training samples for constructing
the classifier.

For the three data sets presented here the estimated prediction rate with 10-fold CV is consistent
with the rates estimated with leave-one-out CV. Earlier, we had included another study – the
benchmark Golub data (Pomeroy et al. (2002)). These data consist of gene expression profiles
measured in embryonal tumors of the central nervous system. One objective is to predict the
outcome of treatment for medulloblastoma tumors, with tissue samples labeled as “non-
survivor” (n1 = 21 samples) or “survivor” (n2 = 39 samples). The prediction rate of the TSP
classifier as measured by leave-one-out CV is 83% (corresponding to 11 errors in 60 loops),
which is substantially higher than the rates reported in Dudoit and Fridlyand (2003) as part of
the same large comparison study cited earlier in connection with breast cancer. In fact, there
is a unique top-scoring pair (the human polyposis locus (DP1) gene (Genbank ID M73547)
and the human E2 ubiquitin conjugating enzyme UBE2D2 (Genbank ID U39317) which
appears to have biological interest; moreover, neither of these genes was identified as being
important to prediction of treatment outcome using prior classification methods (Pomeroy et
al. (2002)) and neither turns up significant when tested for differential expression. Nonetheless,
in this case the estimated prediction rate with 10-fold CV is much lower than with leave-one-
out CV, more in line with the results using other methods. Due to this ambiguity, we decided
to remove this experiment.

We have focused our study on the TSP classifier in which predictions are based entirely on the
top-scoring pairs. In most of the cases we have encountered there is in fact a unique top-scoring
pair. However, there may be many pairs of genes whose relative expression values is
informative. Moreover, the top-scoring pair may change when the training data is even slightly
perturbed by adding or deleting a few samples. One avenue of future work is to find a more
stable, comparison-based signature than the top-scoring pair or pairs. For example, one may
also consider a k – TSP classifier based on all pairs achieving the k best scores. In this case,
k is a parameter that should be estimated using cross-validation, hence requiring a double loop
of cross-validation to estimate the generalization error. An investigation of the k – TSP
classifier, and other extensions of the method introduced here, will be reported elsewhere.

The results already provide strong evidence that discriminating comparisons among expression
levels can be discovered even under conditions of small sample size. Given the large number
of variables (genes), we regard n = 100 as “small.” With somewhat larger samples, say several
hundreds, the induction of modest-depth decision trees, based on successive entropy reduction
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and using only comparison questions, becomes feasible, thereby maintaining results which are
both easy to interpret and invariant to normalization. The corresponding decision rules would
then be based on more complex mRNA comparisons involving more than two genes. The
methodology extends almost without modification to more complex and heterogeneous data
sets, for example consisting of mixed mRNA and protein abundances.

Finally, one could also envision modeling the statistical dependency structure among families
of genes and proteins, for example regulatory pathways, based on observed order statistics.
With small amounts of data, it may only be possible to collect reliable estimates of pairwise
comparisons among expression levels. More data could lead to estimating the order statistics
of triplets, and so forth. This provides a natural, hierarchical family of models which can be
adapted to the amount of data.

5 Appendix: Data Sets
The first three sets of data, the main ones used to test the classifier, are publicly available from
the Kent Ridge Bio-medical Data Set Repository (http://sdmc.lit.org.sg/GEDatasets/
Datasets.html).

• Breast: Determining Lymph Node Status in Breast Tumor Samples: The data (West
et al. (2001)) consist of gene expression profiles measured in breast tumor samples.
Profiles were obtained using Affymetrix HuGeneFL arrays comprised of G = 7, 129
human probe sequences. One objective was to improve predictions about the future
course of disease by accurately determining the status of the lymph nodes. Tissue
samples were labeled as “positive” (affected node present, n1 = 25 samples) or
“negative” (affected node absent, n2 = 24 samples).

• Leukemia: Classifying Profiles from Different Leukemia Subtypes: The data (Golub
et al. (1999)) consist of gene expression profiles with G = 7, 129 probes (6, 187 human
genes) from 27 bone marrow samples of ALL (acute lymphoblastic leukemia) and
from 11 samples of AML (acute myeloid leukemia), also obtained with Affymetrix
HuGeneFL arrays. There is also a test set consisting of 34 samples (20 ALL and 14
AML). In order to utilize the same method of error estimation (namely, leave-one-
out cross-validation) on all studies, we combined these two data sets into one of size
n = 72 with n1 = 47 ALL samples and n2 = 25 AML samples.

• Prostate: Distinguishing Tumors from Normal Profiles: The data is drawn from the
study of prostate cancer reported in Singh et al. (2002), where three separate class
prediction problems are investigated based on expression values for G = 12, 600 genes
and ESTs derived from Affymetrix HU95Av2 microarray chips. One problem is to
assign profiles to either tumor or normal tissue class (the others involve predicting
clinical outcome and pathological features). There are n1 = 52 prostate tumor samples
and n2 = 50 non-tumor samples, selected from among several hundred radical
prostatectomy patients.

• Cardiac: Classifying Gene Expression Profiles from Control Versus Failing Human
Heart Tissue. Recently, we have used the Affymetrix GeneChip HG-U133A
oligonucleotide array with G = 22, 283 probes to identify genes that are differentially
regulated in left ventricular midmyocardial tissue isolated from patients diagnosed
with end-stage idiopathic dilated cardiomyopathy (IDCM) versus that from patients
in which cause of death is unrelated to heart disease (Yung et al. (2004)). Experiments
were conducted on n = 22 preparations of which n1 = 10 were tissue samples obtained
from control tissue and n2 = 12 were from patients diagnosed with IDCM (all data
are available at www.ccbm.jhu.edu). The goal is to correctly classify gene expression
profiles into control versus IDCM categories.
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Figure 1.
The distribution of top scores for a random class label permutation analysis. The locations of
the top score on the real Breast and Leukemia data sets are shown in red; the estimated p-
values are 0.001 and 0 respectively. The top-score histogram for the Prostate data looks
qualitatively the same as the one for Leukemia, and the maximum score achieved among all
of the artificial data sets is 0.586; the score observed on the real data is Δ = 0.902.
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Figure 2.
Scatter plots for a top pair of genes for each study. The two classes are represented using red
and blue, the axes represent the expression levels of the two genes and the dotted line y = x
represents the decision boundary.
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Table 1
An example of scoring a gene pair from the prostate study. Expression levels for 12,600 probes are obtained for
52 profiles associated with class 1 (prostate tumors) and 50 associated with class 2 (normal tissue). (See the
Appendix for details on this study, which involves detecting prostate cancer.) For a particular pair (i,j) of genes
we have identified, the 102 profiles are labeled according to the above 2 × 2 contingency table. These data lead
to the probability estimates pij(1) = 50/52 and pij(2) = 3/50, which results in the score

Δij = ∣ 50
52 −

3
50 ∣ = .902. Since pij(1) > pij(2), the classifier based on this gene pair votes for class 1 for a

profile with Xi < Xj and for class 2 otherwise.
Xi < Xj Xi > Xj

class 1 50 2 52
class 2 3 47 50
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Table 2
The top scoring pair(s) for each study, together with the top score and individual t-statistics.

Problem Score Genbank ID 1 t-stat 1 Genbank ID 2 t-stat 2
Breast 0.838 X03453 4.39 X82634 2.25

Prostate 0.902 M84526 7.46 M55914 4.13
Leukemia 0.979 L11373 1.99 X95735 10.92
Leukemia 0.979 D86976 1.60 X95735 10.92
Leukemia 0.979 J05243 7.87 M23197 6.62
Gene descriptions

X03453 Bacteriophage P1 cre gene for recombinase protein

X82634 Homo sapiens mRNA for hair keratin acidic 3-II

M84526 Human adipsin/complement factor D mRNA, complete cds

M55914 Homo sapiens c-myc binding protein (MBP-1) mRNA, complete cds

L11373 Human protocadherin 43 mRNA, complete cds for abbreviated PC43

X95735 Homo sapiens mRNA for zyxin

J05243 Human nonerythroid alpha-spectrin (SPTAN1) mRNA, complete cds

M23197 Human differentiation antigen (CD33) mRNA, complete cds

D86976 Human mRNA for KIAA0223 gene, partial cds
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Table 3
Some comparisons of performance between the TSP classifier and previously reported prediction rates. All
TSP results are based on leave-one-out cross-validation. Breast: The range 41% – 88% (Dudoit and Fridlyand
(2003)) covers both parameter settings, including the number of genes, and classification methods: k-nearest
neighbors (8 – 26 errors in 49 samples), diagonal linear discriminant analysis (8 – 19 errors), diagonal quadratic
discriminant analysis (11 – 26 errors), logitboost (9 – 21 errors), random forests (6 – 20 errors) and support vector
machines (7 – 29 errors). More details appear in the text. Leukemia: In Golub et al. (1999), first the most
“informative genes” are discovered by correlating profiles with ideal class identity vectors (a “signal-to-noise”
variation on the t-statistic) and choosing the most significant ones based on a permutation test; these genes are
then combined with a weighted voting scheme involving the correlations, class averages and a threshold for
determining the “prediction strength” of a vote. The two stated rates, 85% and 95%, refer, respectively, to
validation on the test set (see text) and leave-one-out cross-validation on the training set. Prostate: In Singh et
al. (2002), a k-nearest neighbor classifier was applied to m genes (for selected values of m from 1 to 256) identified
by measuring differential expression from normal to tumor samples using a variation of the signal-to-noise
statistic (Golub et al. (1999)). For each m, prediction error was estimated using leave-one-out cross-validation;
the range 86% – 92% corresponds to 4 ≤ m ≤ 256; the choice of k is not specified in Singh et al. (2002).

Problem Sample Size TSP (# genes) Previous Results (# genes)

Breast 49 79% (2) 41%-88% (10-7129)
Leukemia 72 94% (5) 85%,95% (50)
Prostate 102 95% (2) 86%-92% (4-256)
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