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Abstract
The obesity epidemic causes misery and death. Most epidemiologists accept the hypothesis that
characteristics of the early stages of human development have lifelong influences on obesity-related
health outcomes. Unfortunately, there is a dearth of data of sufficient scope and individual history
to help unravel the associations of prenatal, postnatal, and childhood factors with adult obesity and
health outcomes. Here the authors discuss analytic methods, the interpretation of models, and the
use to which such rare and valuable data may be put in developing interventions to combat the
epidemic. For example, analytic methods such as quantile and multinomial logistic regression can
describe the effects on body mass index range rather than just its mean; structural equation models
may allow comparison of the contributions of different factors at different periods in the life course.
Interpretation of the data and model construction is complex, and it requires careful consideration of
the biologic plausibility and statistical interpretation of putative causal factors. The goals of
discovering modifiable determinants of obesity during the prenatal, postnatal, and childhood periods
must be kept in sight, and analyses should be built to facilitate them. Ultimately, interventions in
these factors may help prevent obesity-related adverse health outcomes for future generations.
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In the United States, obesity is epidemic and causes misery and death. By now most
epidemiologists accept that factors operating in early stages of human development can have
lifelong influences on obesity-related health consequences (1,2). Two paradigms that address
these issues are now converging. The first, dubbed the life-course approach to chronic disease
(3), posits that ultimate health outcomes result from a myriad of factors—ranging from the
macro level (e.g., the built environment) to the micro level (e.g., epigenetics)—interacting
dynamically from conception through adulthood. The second, the developmental origins
hypothesis of health and disease (4), emphasizes the primacy of the prenatal and early postnatal
periods.

No matter which paradigm you recognize, studies that have longitudinal data for the entire
period ranging from before birth to adulthood are extremely valuable. Few studies can boast
this design; but owing to research-quality data collected more than four decades ago from
pregnant women and their children through 7 years of age, the National Collaborative Perinatal
Project (NCPP) provides an example in which adult follow-up makes it possible to examine
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the long-term effects of these early-life exposures. In this issue of the Journal, Terry et al.
(5) have followed a subset of female NCPP children through the age of 40 years.

In their approach to studying early-life influences on adult body mass, Terry et al. have provided
two valuable services. The first is their analytic approach. Outcomes of most previous studies
of obesity have been mean body mass index (BMI) or the proportion of participants whose
BMI exceeds a single cutpoint (e.g., 25 kg/m2 or 30 kg/m2). These approaches do not account
for effects on other parts of the BMI distribution. Quantile regression is a flexible technique
that allowed Terry et al. to examine the effects of exposures at many different points in the
adult BMI distribution. This technique is analogous to the familiar ordinary least squares
regression, which estimates the effects of exposures on the mean of the outcome distribution.
In contrast, quantile regression can estimate the effects on the median of the distribution and
on the 10th and 90th percentiles (as in Terry et al.’s table 2 (5)), or any other percentile, or
indeed over the whole range of BMIs (6). The figures presented by Terry et al. (5) are based
on quantile regressions performed for numerous percentiles, enough to produce an apparently
continuous curve showing the predicted value of BMI for each quantile. The figures are a useful
way to present the results in terms of actual BMI values rather than the somewhat abstract
parameter estimates that the authors show for selected quantiles in their tables. In their figure
1 (5), for example, they illustrate that larger amounts of gestational weight gain had a greater
impact on the upper end of the adult BMI distribution than they had on the lower end.

The second service the authors provide is more subtle but perhaps even more important. Given
the strengths of the NCPP design, Terry et al. were able to examine combinations of pre- and
postnatal influences in the same analysis. The first generation of life-course studies showed
that the combination of lower birth weight and higher adult BMI confers the highest risk of
cardiometabolic consequences of obesity (7–9). A next generation of studies, incorporating
postnatal growth measures, has implicated excess weight gain throughout childhood as a
determinant of adverse obesity-related outcomes in adults (10,11). While Terry et al.’s study
outcome was limited to a measure of obesity itself (not its cardiometabolic consequences), the
authors took another step on the exposure side of the equation by incorporating data on prenatal
weight-related factors, as well as birth size and childhood weight gain. Examining prenatal
factors themselves, rather than relying on birth size as a proxy, is key to understanding the
relation of early developmental influences to factors operating during later periods of the life
course.

The article by Terry et al. (5) raises more questions than it answers. Accordingly, some
comments on methods, interpretation, and implications are warranted. Consider the quantile
regression method. Other methods for examining the entire BMI distribution exist. One of them
is multinomial logistic regression (12,13). Under that approach, one would examine
associations with preset categories of the outcome (e.g., BMI <18.5, 18.5–<25, 25–<30, and
≥30 kg/m2). Its advantage is simplicity of interpretation, but it assumes that the categories are
meaningful. Given the continuous nature of most associations between adult BMI and health
outcomes, these categories of BMI are somewhat arbitrary for etiologic work. In contrast, Terry
et al.’s quantile regression approach does not make assumptions about categories. For public
health or clinical decision-making, however, categorical information is often more compelling,
and the above BMI categories are in widespread use. Thus, no single approach is best. Tailoring
an analytic strategy to a conceptual model, the available data, and the utility of the findings,
as well as a combination of approaches within and across studies, will probably yield the most
robust results.

Another issue is the meaning of BMI itself. BMI is a useful proxy for adiposity in clinical and
public health applications, because even clinicians can cheaply and accurately measure weight
and height, at least after the age of 2 or 3 years (14). In addition, BMI is a good predictor of
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major health outcomes through at least middle age (15). For these reasons, epidemiologists use
BMI as a surrogate outcome. Like most surrogate outcomes, however, BMI has limitations,
primarily because it measures lean body mass as well as fat mass. Indeed, birth weight may be
more strongly related to lean mass than to fat mass in adulthood (16). Studies of the life-course
approach to adult obesity can benefit from having direct measures of adiposity, body fat
distribution, and the physiologic and metabolic sequelae of adiposity.

Next consider the exposures, from both an analytic and an interpretive perspective. In their
tables (5), Terry et al. show the impact of childhood weight gain per increment of 10 percentile
points. This approach is intuitive, but interpretation is murky. The biggest issue is that over
the 90th percentile, an increase of 10 percentile points is impossible. Similarly impossible is
a decrease of 10 points below the 10th percentile. Therefore, it is usually preferable to express
differences in childhood BMI with z scores. Another concern is the authors’ contention, based
on the data depicted in figure 2 (5), that the highest risk of adult overweight was present among
persons with lower birth weights who gained weight rapidly during childhood. The difficulty
is that Terry et al. did not show data for another group that may have had even higher risk—
babies born large who gained rapidly. Understanding the interplay between birth size and
subsequent weight gain is essential for pediatric clinicians, who regularly face questions about
optimal growth of their youngest patients.

Terry et al. take a traditional approach to modeling the exposures. In their table 2 (5), they
show how the estimates change as they enter groups of variables—maternal, birth, childhood
—into the model. This approach is very useful for examining the extent to which each later
group ‘‘mediates’’ the effects of earlier groups. However, it may not account for the complex
interdependencies of particular variables on each other. For example, within the childhood
group, it is plausible that weight gain from birth to age 4 months biologically entrains weight
gain from ages 4 months to 12 months. In other words, through hormonal or other influences,
excess weight gain in the earlier period may cause excess weight gain in the next. Including
both variables in the model at the same time might cause one to underestimate the overall
contribution of the earlier period. In life-course analyses, some investigators have
recommended pathway analyses using structural equation modeling to overcome these
difficulties (17). Whether that approach leads to greater biologic understanding or better
targeting of interventions is an open question.

Ultimately, one hopes that analyses like those of Terry et al. will lead to effective,
developmentally appropriate interventions for preventing adult obesity and its consequences.
This public health perspective requires consideration of a number of issues beyond ranking of
exposures based on relative deviance, the authors’ modeling counterpart to the R2 statistic. One
issue is the biologic meaning of each exposure. For example, maternal BMI may influence
offspring BMI through inherited genes, fetal environment, or postnatal environment. Any
particular intervention designed to change maternal BMI may have no effect on offspring BMI
if the intervention does not target a relevant etiologic pathway. For example, a drug taken to
reduce maternal body weight before or after pregnancy might not affect any pathway that leads
to offspring adiposity. Birth weight is another variable that can represent many different
etiologic pathways. On the other hand, gestational weight gain almost surely has its greatest
impact through the fetal environment. Gestational weight gain is thus closer to what we might
call a causative risk factor than is maternal BMI (or birth weight). As a consequence, even
though maternal BMI and gestational weight gain appeared to be fairly equivalent by virtue of
their similar statistical rankings at the 75th and 90th percentiles of adult BMI (Terry et al.’s
table 3 (5)), without more mechanistic information about the effects of maternal BMI, changing
gestational weight gain might be more effective. A related issue is the practical ability to change
any of these factors. Maternal prepregnancy BMI reflects a cumulative influence of many
factors over a woman’s entire lifetime—even before her own birth, as emphasized by Terry et
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al. (5). In some ways, trying to influence this variable is tantamount to solving the entire puzzle
of the obesity epidemic, a rather large challenge indeed. In comparison, affecting gestational
weight gain or perhaps infant weight gain, while daunting, seems within reach in the foreseeable
future. The implication is that while many of us are trying to address the obesity epidemic from
multiple fronts, let us not forget to test more focused interventions that could have a substantial
impact in the near future.

The question remains of how one might modify weight gain in pregnancy or early childhood.
Investigators are still in ‘‘infancy’’ in terms of discovering the key modifiable determinants of
weight gain during these periods and effective behavior-change strategies for altering these
factors. Continuing to identify and quantify these factors will make effective and cost-effective
interventions possible. The promise is that such interventions will help to prevent adverse
obesity-related health consequences for generations to come.
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