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Abstract
Human motor imagery (MI) tasks evoke EEG signal changes. The features of these changes appear
as subject-specific temporal traces of EEG rhythmic components at specific channels located over
the scalp. Accurate classification of MI tasks based upon EEG may lead to a noninvasive brain-
computer interface (BCI) to decode and convey intention of human subjects. We have previously
proposed two novel methods on time-frequency feature extraction, expression and classification for
high-density EEG recordings (Wang & He: J Neural Eng, 1: 1–7, 2004; Wang, Deng & He: Clin
Neurophysiol, 115: 2744–2753, 2004). In the present study, we refined the above time-frequency-
spatial approach and applied it to a one-dimensional “cursor control” BCI experiment with online
feedback. Through offline analysis of the collected data, we evaluated the capability of the present
refined method in comparison with the original time- frequency-spatial methods. The enhanced
performance in terms of classification accuracy was found for the proposed approach, with a mean
accuracy rate of 91.1% for two subjects studied.

Index Terms
Electroencephalography; Motor imagery; Brain-computer interface; Time-frequency analysis; Time-
frequency-spatial analysis

I. Introduction
The ultimate goal of brain-computer interface (BCI) techniques is to provide those people with
severe motor disabilities alternative means of communication and control [1–2]. Typically, an
EEG-based BCI system extracts, from scalp-recorded EEG, features encoding human intention
and conveys the resulting control signals to the external world [1–7]. One type of brain-
computer interface is based upon detection and classification of the change of EEG rhythms
during different motor imagery (MI) tasks, such as the imagination of left- and right-hand
movements. The performance and reliability of such BCI applications rely heavily on the
accuracy of classifying MI tasks, which in turn rests on extraction and representation of MI-
related EEG features.
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However, experimental investigations by means of different imaging modalities have revealed
that MI may evoke neural activation extending multiple brain regions, including primary motor
area, supplementary motor area, premotor area, and prefrontal area etc. From the scalp EEG
signals, it has also been found that imagination of movement leads to short-lasting and
circumscribed attenuation (or accentuation) in mu (8–12 Hz) and beta (13–28 Hz) rhythmic
activities, known as event-related desynchronization (or synchronization) (ERD/ERS) [4]. The
precise timing and frequency of ERD/ERS also vary among subjects. All the above findings
suggest the complexity of MI feature, since it spans all the time, frequency and spatial domains.
Simply expressing MI features in one (or two) domain(s) while disregarding the other(s) may
result in lose of information that may contribute to more accurate MI classification.

Recently, our laboratory developed new approaches for motor imagery classification that
utilized information from time-, frequency- and spatial-domains [11–12]. In brief, both these
methods were based on narrow-band frequency decomposition, and classification on either
temporal features weighted over frequencies and sensor locations [11] or spatial patterns
synthesized over time and frequency [12]. In the previous work, we tested our proposed
methods on a MI dataset collected under offline condition. In the present study, we refined our
previously developed time-frequency-spatial methods for the purpose of performing online
analysis, and tested our time-frequency-spatial approach by analyzing single-trial EEG data
collected during online one-dimensional “cursor control” BCI experiments on two subjects.
The classification accuracy of the modified method was assessed in comparison with our
previously published time-frequency method.

II. Methods and Results
A. Data description

The human study was conducted according to a human protocol approved by the IRB of the
University of Minnesota. Two healthy subjects (one male and one female, both 23 years old)
participated in an online cursor control experiment utilizing BCI2000 – a general-purpose
system for BCI research [7]. Specifically, a subject sat in front of a monitor and watched a
cursor move continuously from left to right across the screen. A vertical target bar randomly
appeared near either the upper-right corner or the lower-right corner. The subject attempted to
deflect the cursor up or down to hit the bar by imagining left- or right-hand movement. The
scalp EEG signals were recorded from 32 electrodes placed according to 10–20 system with
the left ear reference and a sampling rate of 200Hz. The cursor movement was controlled in
real-time by an online BCI process that responded to subject’s motor imagery conditions based
on spectral power analysis of mu and beta rhythms [6–7].

Each subject completed a total of 480 trials. Each trial began with a 1 second period in which
the target appeared on the screen without the cursor. During the subsequent 4 seconds, the
cursor appeared and moved across the screen, with the subject performing the left- or right-
hand motor imagery task.

In the present study, the first half of the trials were used as training data and the latter half of
the trials were used as test data. Considering the effect of online feedback on human adaptation,
the training dataset constituted less featured changes of mu and beta rhythms as the data was
collected when the subjects were not very experienced with motor imagery tasks. The testing
dataset should contain more obvious features.

B. Feature extraction
During the off-line analysis, the single-trial EEG signals were sequentially preprocessed by
applying surface Laplacian filtering, frequency decomposition and feature extraction. The
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recorded scalp EEG represents the noisy spatial overlap of activities arising from diverse brain
regions. Surface Laplacian filtering attempts to accentuate localized activity and reduce
diffusion in multi-channel EEG [8–10]. Assuming that the distances from a given electrode to
its directional neighboring electrodes are approximately equal, the surface Laplacian can be
approximated by subtracting the average value of the neighboring channels from the channel
of interest [8], as Eq.(1)

V j
Lap = V j −

1
n ∑

k∈Sj
Vk (1)

where Vj is the scalp potential at the jth channel, and Sj is an index set of its neighboring
channels. After Laplacian filtering, 9 electrodes (Fig. 1) over the sensorimotor cortex were
selected for feature extraction.

The EEG components from 6 to 30 Hz were further decomposed into multiple frequency bands
using a constant-Q (also called proportional-bandwidth) scheme [11]. Specifically, we
constructed a set of fourth order Butterworth band-pass filters, each of which span the indicated
octaves with the ratio (Q) of the center frequency to the bandwidth being chosen to be a
constant. The neighboring frequency bands had certain overlapping to allow a proper
redundancy of signals. In the present study, we used 13 frequency bands with center frequencies
at 6.0, 6.9, 7.8, 9.0, 10.2, 11.7, 13.4, 15.3, 17.5, 20.0, 22.8, 26.1, 29.8 Hz, respectively.

We delineated the ERD and ERS features [4–5] within each frequency band by extracting the
envelope of instantaneous powers of decomposed signals using Hilbert transform [12]. Fig. 2
shows a typical example of recorded raw data and the intermediate preprocessing results. The
ERD/ERS features were further simplified by down-sampling the envelope, since the high
frequency (>5Hz) components can be ignored for most envelopes (See [12] for details).

C. Time-frequency-spatial pattern
After the previously-described preprocessing, an envelop that appeared as a down-sampled
trace in the time domain was extracted for each frequency band and each sensor location
respectively. Fig. 3 illustrates an example of all the extracted envelops as specified to their
associated frequency bands and sensor labels. At each of the nine selected channels, the signal
was decomposed into 13 frequency bands yielding 13 envelopes. Thus a single-trial EEG data
had a total of 117 envelopes. Instead of classifying each envelope feature individually and
subsequently synthesizing the classification results to generate a single classified condition,
we composed all envelopes into a single feature vector p, namely time-frequency-spatial
pattern (TFSP).

From training dataset, two characteristic TFSPs, PL and PR, were obtained by averaging TFSPs
corresponding to left- or right-hand motor imagery. However, the envelopes at different sensor
locations and different frequency bands may not equally contribute to accurate classification,
or some envelopes may cause wrong classification, due to the complicated nature of ERD/ERS
phenomena. Therefore, the characteristic TFSPs need to be optimized, which is described in
details in Section II.D.

Given known characteristic TFSPs, a testing trial can be classified to belong to either left-hand
or right-hand motor imagination. This was accomplished by calculating the correlation
coefficients (CC) between the TFSP of the given trial (denoted as p) and the respective
characteristic TFSP P (P=PL or PR). The CC between p and P is written as Eq. (2).

C(p, P) = (p − p̄)T (P − P̄)
∥ p − p̄ ∥ ⋅ ∥ P − P̄ ∥ (2)
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where p̄ and P̄ denote the mean values of p and P respectively. And the classification result
was obtained by evaluating Eq.(3),

f (p) = sgn (C(p, PL ) − C(p, PR)) (3)

If f(p)>0, the subject is classified as performing left-handed MI, otherwise, the subject is
classified as performing right-handed MI.

D. Optimization of characteristic TFSPs
In the above procedures, no selection of sensors or frequency bands was involved. However,
the inclusion of non-informative or misleading envelope features may affect the classification
accuracy. Instead of completely discarding specific sensor locations or frequency components
from feature extraction, we optimized the characteristic TFSPs by processing each space-
frequency-specific envelope separately.

The characteristic TFSPs were optimized by screening through every trial in training dataset.
First, we obtained two 117-dimensional vectors for left-hand and right-hand motor
imaginations from the grand average of the respective trials in training dataset. Assuming all
of the envelope signals equally contributed to the construction of these initial characteristic
TFSPs, we assigned the same weight to all of the envelope signals. Next, we screened the entire
training dataset from the first trial to the last, and updated the weight for each envelope during
each screening step by means of an envelope-deleting test. If using the initial characteristic
TFSPs gave correct classification of the currently screened trial, we deleted one envelope that
corresponded to a certain sensor location and a certain frequency band from both the
characteristic TFSPs and the trial TFSP. If classification on the “shortened” feature was wrong,
it meant that the deleted envelope was “incorrectly deleted” as it contributed to the correct
classification of the given trial. This envelope was then rewarded by increasing its weight by
a fixed value. Otherwise, its weight remained unchanged. The same procedure was repeated
until we have tested deleting every envelope signal. If the initial characteristic TFSPs gave rise
to a wrong classification of the currently screened trial, the same envelope deleting procedure
was applied. If deletion of one envelope reversed the classification result, meaning that the
deleted trial accounted for the original wrong classification, we punished this envelope by
decreasing its weight by a fixed value. Otherwise, its weight remained unchanged. Similarly,
the same procedure was repeated for every envelope signal. Thirdly, after screening all the
training trials, we evaluated the weight of each envelope. For the envelope signal whose
updated weight was smaller than a preset threshold, we completely removed it from the feature
vector. Finally, we refined the characteristic TFSPs by multiplying the amplitudes of envelopes
with their respective weights. As a consequence, the vectors of characteristic TFSP were
reshaped in a way to enhance the overall classification accuracy of training dataset.

For classifying any testing trial, the envelope signals in its feature vector were multiplied by
their associated weights, and the correlation coefficient was then calculated between the
resulting feature vector and the optimized characteristic features.

E. Classification accuracy
Table I shows the classification accuracy rates of two subjects. The accuracy rates using the
two methods were compared. As assessed by the results at the end of the interval, the averaged
classification accuracy of the present method was 91.1% in two human subjects, while the
previous method achieved 85.3% in these same two human subjects. All classification rates
discussed here were calculated for the entire 5 seconds data, as the target timeline when the
subjects were to make the correct control of the cursor.
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F. Offline “cursor control” by using the TFSPs
We investigated the possibility of the cursor control using the present method. In this case, the
cursor was “moved” by 13 steps during the entire 5-sec interval. Since the calculation time of
a trial was about 0.3 seconds using the present algorithm (implemented in Matlab), the cursor
movement was performed every 0.3 seconds. The vertical deflection at the jth step can be
calculated from Eq. (4), assuming positive to move upward and negative to move downward,

d j = K ⋅ (C(p, PL ) − C(p, PR)) (4)

where K is a positive constant. It was set such that the maximal |dj| was less than half of the
screen height. In our “offline” setting, a cursor would appear and move from the middle of the
left side on the screen in the same manner as BCI2000. The cursor would move upward or
downward by left- or right-hand motor imagery, respectively.

Fig. 4 shows a typical example of cursor orbits controlled by subject #1 using the present
method when the classification was correct in the test dataset. The upper three orbits refer to
left-hand motor imagery, and the lower three orbits refer to right-hand motor imagery.

III. Discussion
The present study suggests the applicability of the time-frequency-spatial pattern (TFSP)
approach to classification of motor imagery EEG recorded in an online BCI experimental
setting. Although the data analysis and parameter refinement were performed off-line, all of
the analysis scenarios are analogous to an online setting and can be implemented in a BCI
system to control cursor movement in real-time.

The time-frequency-spatial approach which we explored previously [12] was only tested in a
MI dataset obtained without online control or feedback. While good performance was obtained
of the previous time-frequency-spatial method in a group of 8 human subjects, it is important
to test its performance and applicability in an online BCI experiment where human adaptation
is incorporated. The present study thus provides such a preliminary evaluation of our time-
frequency-spatial approach in classifying motor imagery tasks during online BCI experiments.

Due to the nature of online data, we have improved our time-frequency-spatial method as
described in the Methods Section, in order to achieve a virtual “online” ability. The present
TFSP method is relatively fast and can be implemented in a 3.2 GHz PC for about 0.3 sec/trial
using Matlab (about 10 sec/trial for the previous method).

Note that the present improved version of TFSP method not only provides faster
implementation of the previous TFSP method, but also further refines the previously reported
TFSP algorithm [11-12]. In our previously developed algorithm, features for classification
were not explicitly expressed as an integrated time-frequency-spatial pattern, but instead either
the spatial patterns (or temporal patterns) were extracted for each time-frequency pair (or
frequency-space pair), and were first classified separately and then weighted synthesized to
generate a single final classification result. With our current algorithm, all the information that
spans the time, frequency and spatial domains were incorporated into a single feature vector
in a high-dimensional feature space. Any time-frequency-spatial specific combination (e.g. at
1-sec and 9-Hz over C4 electrode) corresponded to an axis in the feature space. Classification
based on such an integrated feature vector can take into account implicitly coupled information
from different sensor locations and frequency bands, which may play a contributive role in a
successful classification. Encouragingly in the present study, an improvement of about 6% for
the mean accuracy rate was achieved in the two subjects studied.
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In addition to intrinsic human adaptation due to online feedback, our optimization procedures
on characteristic TFSPs (described in Section II.D) also provides a mechanism for adaptation
of algorithm itself. Note that in our present study, the characteristic features were extracted
and optimized from the first half of the entire 480 trials, which contained less contributive
information. However, in real BCI application, it is possible to periodically “calibrate” the BCI
system itself, by screening the latest training data to update the characteristic features in a way
described in Section II.D. The BCI system with both online feedback and machine adaptation
is expected to have better (than what we reported) and gradually improving performance.

The time-frequency based approach has been explored [11–14] for feature extraction and
shown to provide an effective way to improve classification accuracy. This suggests that the
electrophysiological process associated with motor imagery is a spatio-temporal process and
encoded in the frequency domain. Our work on deconvolving the volume conduction effect to
enhance the performance of EEG-based BCI suggested the feasibility of enhancing EEG-based
BCI by solving the EEG inverse problem [15–16]. These results using equivalent dipole models
and cortical current density models [15–16] suggested another means of improving the
performance of EEG-based BCI. However, solving the EEG inverse problems is normally time
intensive and it is still a challenge to develop computationally efficient algorithms to realize
online BCI based on the inverse solution of EEG. The time-frequency-spatial approach which
we are exploring in the present study, represents an important alternative to extract effective
information from the multi-channel EEG for classifying motor imagery in order to develop a
efficient EEG-based BCI system.
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Fig 1.
The montage of EEG electrodes used for feature extraction in the present study.
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Fig 2.
a) Raw data of single-trial recording; b) after surface Laplacian filtering; c) frequency
component over averaged training trials and its envelope features after Hilbert transformation.
The signals were recorded from channel C3 of subject #1 for right-hand motor imagery.
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Fig 3.
The characteristic TFSP for right-hand motor imagery in one subject. “Envelope No.” are from
1 to 13, corresponding to the center frequencies 6.0, 6.9, 7.8, 9.0, 10.2, 11.7, 13.4, 15.3, 17.5,
20.0, 22.8, 26.1, 29.8 Hz respectively.
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Fig 4.
An example of cursor orbit by using the present method for subject #1. Horizontal axis is time
during a trial. The vertical axis corresponds to a width of a screen. These 6 orbits of a cursor
were results of correct case in the test data. The upper three orbits refer to left-hand motor
imagery. The lower three orbits refer to right-hand motor imagery. Subject #2 had a similar
cursor control trajectory.
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Table I
Accuracy Rates [%] Of 2 Human Subjects

Previous method [12] Present method

Subject #1 85.0 91.3
Subject #2 85.4 90.8

Mean 85.3 91.1
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