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ABSTRACT Currents through ion channels are determined (among other parameters) by the concentration difference across the
membrane containing the channel and the diffusive transport of the conducted ion toward the channel and away from it. Calculation
of the current requires solving the diffusion equation around the channel. Here, we provide a quasi-steady approximation for the
current and the local concentrations at the channel together with formulas linking the current and local concentrations at the
channel to bulk concentrations and diffusion properties of the compartments.

INTRODUCTION

Transport of ions through membranes by channels or pores

is one of the basic processes in cell physiology. Currents

through ion channels determine plasma-membrane voltage

dynamics. Channels on the membrane of intracellular storage

compartments control the cytosolic Ca21 concentration. These

molecules represent sources and sinks, respectively, for the

concentration of the ion that they transport.

The ions reach a sink or move away from a source by

diffusion. Consequently, concentration gradients on both sides

of the membrane are necessarily involved in the transport

process and the concentrations at the channel are different

from bulk concentrations. The concentration profiles during

local release events of Ca21 called puffs (with IP3 receptor

channels) and sparks (with ryanodine receptor channels) are a

manifestation of large gradients inside cells that are due to

conduction through ion channels. Currents of ,0.1 pA may

cause gradients of 2–3 orders of magnitude between con-

centrations at the channel and bulk concentrations on the

relevant time and length scales (1,2). The reason is the strong

localization of the ion source within a few nanometers, i.e.,

the large flux density. Since the current through a channel or

transporter usually depends on the concentrations on both

sides of the membrane, calculation of the current requires

solving the complete diffusion problem.

Knowledge about the concentration gradients around trans-

port molecules may be required for modeling purposes by the

presence of regulatory binding sites for the conducted ion

within the range of large gradients. That applies to all channels

regulated by the ion they conduct and to communication with

other compartments, channels, or chemical species. For ex-

ample, it was observed that mitochondria taking up Ca21 may

be close to Ca21 release sites of the endoplasmic reticulum

(ER) and experience local concentrations much higher than

bulk concentrations (3).

The occurrence of gradients has serious consequences for

quantitative modeling. The above examples illustrate that

models using spatially averaged bulk concentrations may be

off by orders of magnitude in the concentrations at binding

sites. However, taking gradients into account may turn a

model from a system of ordinary differential equations into a

system of partial differential equations (PDEs), which are

much more difficult to solve. Moreover, since gradients are

often steep and fast, the partial differential equations are typ-

ically computationally expensive to integrate.

Here we present a method that actually exploits the fast

timescales. The concentration dynamics close to the channel

are dominated by the channel flux. Concentrations reach very

quickly a stationary state determined by the local fluxes and

the diffusion and reactions in the bulk. However, the details of

the bulk processes do not affect the local concentrations at the

channel. That was shown numerically for Ca21 release from

the endoplasmic reticulum (1) and we show it here again.

Binding of Ca21 to buffer molecules in the cytosol does not

affect the local concentration at the release channel as long as

release currents are large enough. That ‘‘large enough’’ value

is ;0.05 pA for physiological buffer parameters already;

i.e., it is met by realistic currents (1). On the basis of these

observations, we calculate the current and local concentra-

tions from a radically simplified set of partial differential

equations. The results of the calculations in this report are

simple expressions for the single channel current I
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The values �EðtÞ and �CðtÞ are the average concentrations in

ER and cytosol, respectively (at time t), or in the cytosol and

extracellular space for a plasma membrane channel. E(r¼ a, t)
and C(r ¼ a, t) are the corresponding local concentrations. F
is Faraday’s constant, Dc is the diffusion coefficients of free

Ca21 in the cytosol, and DE an effective diffusion coefficient

in the ER taking its tubular shape into account (4), a is the

radius of the channel vestibule (see Parameter Values), sc the

channel flux constant and g ¼ 1 has to be used here (see

Parameter Values). The quasi-stationary current and concen-

tration values in Eqs. 1 and 2 are approached for times larger

than t ¼ [(1 1 g)sc]
�1 upon channel opening and they are

reached after typically 10�5 s (see Discussion of the Fast

Transient). These results allow for substantial simplification

of the integration of the complete partial differential equations

(K. Bentele, A. Skupin, and M. Falcke, 2007, unpublished)

or—if spatial information is not required—even for a reduc-

tion of the concentration dynamics to a system of ordinary

differential equations as will be shown in this report.

The following two sections will introduce the processes

determining currents and gradients, model equations, and the

choice of parameter values. Subsequently, we derive a quasi-

steady approximation for the channel current and compare it

to the exact analytical solution of simplified linearized reac-

tion diffusion equations and simulations of the complete

nonlinear equations.

THE CONCENTRATION DYNAMICS

We model a single channel. The extension to many channels

tightly packed into a cluster or with larger spacing is indicated

in Discussion. The applicability of our results to plasma mem-

brane channels will be also discussed there. We will consider

the release of Ca21 from the endoplasmic reticulum (ER)

through a channel on its membrane and uptake by pumps. The

concentration dynamics comprise:

1. Diffusion of free [Ca21] in the cytosol Dc=
2[Ca21] and

the storage compartment DE=2[E];

2. Release from storage compartments by localized chan-

nels JIP3
¼ sc(r, t)([E] � [Ca21]) and spatially homo-

geneous leak current Jleak ¼ sl([E] � [Ca21]);

3. Uptake into storage compartments by spatially homoge-

neously distributed pumps JSERCA¼ �Pp½Ca21�2/(Kd
2 1

½Ca21�2); and

4. Buffering of calcium by [Ca21]-binding proteins [Bi]

with the reaction rate Ri ¼ �k1
i ½Bi�½Ca21�1k�i ½CaBi� in

cytosol and ER and buffer diffusion DB=2[Bi] in the

cytosol only.

The ER is a large tubular network embedded into the

cytosol (6). It was shown by Ölveczky and Verkman that dif-

fusion in such a complicated structure can be mapped onto

diffusion in unhindered space with a reduced effective dif-

fusion coefficient (4). That spares modeling the tubular

network. Similarly, we assume that all obstacles to diffusion

in the cytosol also cause only a reduction of the diffusion

coefficient. These simplifications turn a two-compartment

model into the two-species model (also known as the bidomain

model) with the species cytosolic Ca21 and lumenal Ca21 as

shown in Fig. 1.

Conduction of an ion through a channel involves a com-

plicated interaction between the channel molecule and the ion.

Since we are interested in the dependence of currents on bulk

concentrations, we take advantage of the fact that beyond the

Donnan potential range (5–10 nm (7)) and in a distance larger

than the Debye length from the molecule, the channel appears

simply as a concentration sink or source, respectively. Con-

sequently, an open channel is modeled by a small spherical

volume with a nonzero Ca21 source density proportional to

the concentration differencebetweenERand cytosol. The chan-

nel parameter sc(r, t) is positive at the location rc of an open

channel of radius a and zero otherwise—i.e., it is sc(r, t) ¼
Q(a � jr � rcj)sc if the channel is open with Q being the

Heaviside step function and sc(r, t)¼ 0 applies if the channel

is closed.

In principle, there could be many different buffers in the

cytosol or in the ER (denoted by [BE]), but we restrict

ourselves to only one mobile and one immobile (DBim
¼ 0)

buffer species in the cytosol and one immobile buffer in the

ER. The complete set of equations governing the concen-

tration dynamics reads

FIGURE 1 The model has two compartments: the ER, a tubular network

spanning the whole cell, and the cytosol. Calcium diffuses independently in

both. Diffusion in the ER can be mapped onto diffusion in the unhindered

space with an effective diffusion coefficient (Eq. 3). Ca21 in the cytosol

diffuses around many obstacles (including the ER) with an effective diffu-

sion coefficient as given in Table 1. Hence we can describe the dynamics

within the two compartments by defining two concentration fields in the

same spatial domain: E for the free calcium in the ER and C for free calcium

in the cytosol. These fields are coupled by fluxes through the ER membrane,

i.e., the channel flux, leak flux, and Ca21 pumps. The channel is in the center

of the volume.

2598 Bentele and Falcke

Biophysical Journal 93(8) 2597–2608



@½Ca
21 �

@t
¼ Dc=

2½Ca
21 �1 ½sl 1 scðr; tÞ�ð½E� � ½Ca

21 �Þ

� Pp

½Ca
21 �2

K
2

d 1 ½Ca
21 �2

1 +
i

R
c

i ; (3a)

@½E�
@t
¼ DE=

2½E� � g

(
½sl 1 scðr; tÞ�ð½E� � ½Ca

21 �Þ

�Pp

½Ca
21 �2

K
2

d 1 ½Ca
21 �2

)
1 R

E
; (3b)

@½Bi�
@t
¼ DBi

=
2½Bi�1 R

c

i ;

R
c

i ¼ �k
1

i ½Bi�½Ca
21 �1 k

�
i ð½Bi�T � ½Bi�Þ; i ¼ m; im; (3c)

@½BE�
@t
¼ RE ¼ �k 1

E ½BE�½E�1 k�E ð½BE�T � ½BE�Þ: (3d)

We assumed that binding of calcium does not affect the

diffusion properties of buffers and that the total buffer

concentration [Bi]T ¼ [Bi] 1 [CaBi] is initially uniform in

the cytosol and ER. Hence, only the free buffer has to be

considered (8). The cell is modeled as a simple sphere with

radius b. As will be seen below, that geometry is not im-

portant for the results since either local processes are consid-

ered or global processes are reduced to ordinary differential

equations. The location of the channel rc is neither important

for current values as long as it is not too close (order of Ca21

diffusion length) to the cell membrane. We choose rc ¼ 0.

The expressions in Eq. 3 are the complete problem, the

solution of which would provide the current through the

channel and the concentration fields. However, the expres-

sions in Eq. 3 cannot be solved analytically to obtain ex-

pressions for the current and local concentrations at the

channel. We will simplify them in several steps and will in

the end compare the currents calculated with the simplifica-

tions with simulations of the expressions in Eq. 3.

Based on simulations in Thul and Falcke (1), we assume

that the current through the channel does not depend on

buffer concentrations. Hence, we drop the buffer dynamics

for the purpose of calculating the current. To be able to apply

analytical methods for the solution of the PDEs we linearize

the remaining nonlinearity of the pump flux. For shorter

notation, we substitute [Ca21] and [E] by C and E and reach

@C

@t
¼ Dc=

2

r C 1 ½sl 1 Qða� rÞsc�ðE� CÞ � spC; (4a)

@E

@t
¼ DE=

2

r E� gf½sl 1 Qða� rÞsc�ðE� CÞ � spCg:

(4b)

We apply Neumann boundary conditions in the ER and

Dirichlet boundary conditions in the cytosol

Cðb; tÞ ¼ X; (5a)

@Eðr; tÞ
@r

����
r¼b

¼ 0: (5b)

The initial condition in the cytosol was always set equal to

the boundary condition value, i.e., C(r, 0) ¼ X. The initial

concentration in the lumen Y varies between different simu-

lations. The analytical solution of that system of PDEs is

given in the Appendix. We will need it to assess the quality

of the current approximation. We solved the expressions in

Eq. 4 analytically, but the complete expressions for the con-

centrations are several pages long. Hence, we will simplify

the problem further in Quasi-Steady Approximation for the

Channel Current.

It is worthwhile to introduce appropriate length- and

timescales: We scale length by the radius of the channel a,

time by sc, and the concentrations by the far-field concen-

tration in the cytosol CN, i.e.,

r ¼ r

a
; t ¼ tsc; (6)

c ¼ C

CN

; e ¼ E

CN

; (7)

and obtain

@c

@t
¼ dc=
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¼ dE=

2

r
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� �
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sc

c

� 	
; (8b)

with

di ¼
Di

sca
2; i ¼ c;E:

PARAMETER VALUES

The diffusion coefficient of free calcium in the cytosol was

measured by Allbritton et al. (15) to be ;Dc¼ 220 mm2 s�1.

Geometrical restrictions and the high viscosity of the lumenal

medium lead to an estimate of the diffusion coefficient of free

Ca21 in the ER of DE ¼ 40–70 mm2 s�1 (1,4).

The nonlinear pumps in Eqs. 3a and 3b were linearized,

such that the nonlinear and linear pump-rates agree exactly at

the inflection point of the Hill curve, i.e.,

J
lin

SERCA ¼ �spC; (9)

with

sp ¼
ffiffiffi
3
p

Pp

4Kd

� 87 s
�1
: (10)

The leak flux constant sl was fixed by the requirement that

the uptake of calcium into the ER by the pumps equals the

leak flux in the resting state. With typical resting concentrations

of ;C ¼ 0.1 mM in the cytosol and E¼ 750 mM, sl is in the
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order of 0.01 s�1 (6,10). The cytosolic resting concentration

of free Ca21 is determined by the plasma membrane fluxes.

Finally, we discuss how the channel flux parameter sc can

be estimated. Its value depends on the channel radius a. The

radius of a single channel vestibule was estimated by Mejı́a-

Alvarez et al. (7) to be in the order of 5–10 nm. We chose 6

nm as channel radius on that basis. Thul et al. fitted the fluxes

of a single channel measured in a lipid bilayer experiment

(1,11). We approximated their nonlinear expression for the

flux by a linear dependency

scðE� CÞ; (11)

and obtained sc � 3.4 3 106 s�1.

A second estimate of sc is obtained by requiring a typical

current of 0.1 pA with a typical concentration difference

of 100 mM (1). That leads to sc � 5.7 3 106 s�1. The value

sc ¼ 4.3 3 106 s�1 used in most of the calculations is

between these two estimates.

If not stated otherwise, we will consider a cell radius b ¼
10 mm. The volume ratio g ¼ Vcyt/VER has to be set to

1 whenever local processes are considered and may assume

different values in spatially averaged dynamics. In these

cases, it was estimated to be ;10 from geometrical con-

siderations. The influence of immobile buffer in the ER can

be taken into account by an increased effective lumenal

volume VER, leading to the smaller value of g ¼ 1 (12),

which we used throughout this report.

QUASI-STEADY APPROXIMATION FOR THE
CHANNEL CURRENT

We simplify the expressions in Eq. 8 by using timescale

separation and small parameters. The ratios sl

sc
and

sp

sc
in the

expressions in Eq. 8 are much smaller than 1. Consequently,

we neglect the pump and leak flux:

@c

@t
¼ dc=

2

r
c 1 Qð1� rÞðe� cÞ; (12a)

@e

@t
¼ dE=

2

r
e� gQð1� rÞðe� cÞ: (12b)

The boundary conditions are now both set by the far-field

concentrations CN, and EN as

c r ¼ b

a

� �
¼ 1; (13a)

e r ¼ b

a

� �
¼ EN

CN

¼ eN: (13b)

We solved the expressions in Eq. 12 with initial conditions

equal to the boundary conditions in Eqs. 13a and 13b (c(r, 0)¼
1, e(r, 0) ¼ eN). Equation 12 is much simpler than the

expressions in Eq. 8, since the expressions in Eq. 12 are

uncoupled for r . 1.

The currents of the complete expressions in Eq. 8 and the

simplified problem in the expressions in Eq. 12 behave

identically initially: very fast rise and multiexponential relaxa-

tion to a (quasi-)stationary value (see Fig. 2). The two solu-

tions do not differ for short times and they relax to the same

(quasi-) stationary level. The fast dynamics is completely

captured by only taking into account the channel flux and

diffusion. The same applies to the solutions with no-flux

boundary conditions (Fig. 2 b). The solutions do not differ as

the current rises and relaxes to the (quasi-)stationary level.

After this relaxation the further time course is differential,

and the dynamics of pumps, leak flux, and plasma membrane

transport become important.

The fluxes determining the slow timescale have a minor

impact on concentrations and gradients close to the channel

but act mainly on spatially averaged concentrations. We

introduce that slow timescale into the simplified problem by

taking the average concentrations as boundary conditions,

i.e., CN ¼ �C;EN ¼ �E: To that end, we determine the time

dependence of the spatially averaged concentrations by

integrating the expressions in Eq. 4 over the cell volume V.

With the definition of the average concentration

�C ¼ 1

V

Z
V

dVC; (14)

we obtain

d �C

dt
¼Dc

V

Z
O

dS=C1slð �E� �CÞ�sp
�C1

1

V

Z
Vc

dVscðE�CÞ;

(15a)

d �E

dt
¼ �g½slð�E� �CÞ � sp

�C� � g

V

Z
Vc

dVscðE� CÞ; (15b)

FIGURE 2 Current calculated from the solution of the expressions in Eq.

12 taking only the channel current and diffusion into account (solid lines)

compared to the current from the complete problem (see the expressions in

Eq. 8) (dashed lines). Standard parameter values according to Table 1 were

used, if not mentioned otherwise. (a) Dirichlet boundary condition for the

expressions in Eq. 12 in the cytosol and ER keep the solution and the current

constant for large t, while the solutions of the expressions in Eq. 8 approach

all the same asymptotic state. The initial lumenal concentration varies from

bottom to top: E ¼ 5, 150, 350, 550, 750, and 900 mM. (b) The initial

concentrations are 10 mM in the cytosol and 150 mM in the ER here. As the

ER fills up, the current rises. The long timescale of pumping and leak flux

does not appear in the solution of the expressions in Eq. 12. The case with

no-flux boundary conditions for the expressions in Eq. 8 is additionally

shown (dotted line). The current saturates since the ER fills less due to the

lack of Ca21 entry into the cell. Identical values for the diffusion coefficients

(Dc ¼ DE ¼ 220 mm2 s�1) are used.
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with channel volume Vc. The integral over the cell surface O
arises from the boundary condition. The main contributions

come from the leak and pump fluxes, since the channel

current contribution has the small factor scVc/V � 10�3 s�1.

Eq. 15b has no boundary integral since we apply no flux

boundary conditions in the ER.

Another conclusion we can draw from the results in Fig.

2 is that the current reaches its stationary value for given

boundary conditions very quickly. That applies also to the

local concentrations (see Fig. 3). Therefore, we use a quasi-

steady approximation. We solve for the stationary solution of

the expressions in Eq. 12

0 ¼ dc=
2

r
c 1 Qð1� rÞðe� cÞ; (16a)

0 ¼ dE=
2

r
e� gQð1� rÞðe� cÞ; (16b)

with the boundary conditions

cðr ¼NÞ ¼ 1 eðr ¼NÞ ¼ �eðtÞ ¼
�EðtÞ
�CðtÞ; (17)

and apply it within the channel range to calculate the current.

As mentioned above, we set the spatially averaged concen-

trations as the boundary condition for the stationary solution

of the expressions in Eq. 16 and obtain a self-contained set of

equations as in Eqs. 15–17. The solution of the expressions

in Eq. 16 for r , 1 then reads

ciðrÞ ¼ 1 1
�e� 1

dck
2 1� sechðkÞ

k

sinhðkrÞ
r

� �
; (18a)

eiðrÞ ¼ 1 1 g
�e� 1

dEk
2

dE

gdc

1
sechðkÞ

k

sinhðkrÞ
r

� �
; (18b)

with k defined in Eq. 20 and for r . 1

coðrÞ ¼ 1 1
�e� 1

dc

k � tanhðkÞ
k

3

1

r
; (19a)

eoðrÞ ¼ �e� g
�e� 1

dE

k � tanhðkÞ
k

3

1

r
; (19b)

for which we required continuity of concentrations and

fluxes at the channel boundary. We obtain rather simple

expressions for the current and the concentration value at the

surface of the channel r ¼ 1,

cðr ¼ 1Þ ¼ 1 1 ½�eðtÞ � 1� 1
dc

k � tanhk

k
3 ; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dE 1 dcg

dcdE

r
;

(20)

Is ¼ �4pr
2
dc

@c

@r

����
r¼1

¼ 4p½�eðtÞ � 1�k � tanhk

k
3 : (21)

Equation 21 is the scaled form of Eq. 1. We insert this ap-

proximation for the current into Eqs. 15a and 15b now as

d �C

dt
¼ Dc

V

Z
O

dS =C 1 slð�E� �CÞ � sp
�C

1
4pa

3

V

scðk � tanhkÞ
k

3 ð �E� �CÞ; (22a)

d �E

dt
¼�g slð �E� �CÞ�sp

�C1
4pa

3

V

scðk� tanhkÞ
k

3 ð �E� �CÞ
� 	

:

(22b)

These equations can be solved in closed form for no-flux

boundary conditions. For shorter notation, we introduce the

new parameter

s̃c ¼
4pa

3

V

scðk � tanhkÞ
k3 ; (23)

which measures the contribution of one channel to the time

course of the average concentrations. It is also convenient to

define additionally

v ¼ sp

sl 1 s̃c

: (24)

The solution of the expressions in Eq. 22 in the case of

vanishing surface integrals reads

�CðtÞ ¼ gX 1 Y

ð1 1 gÞ1 v
� ðY � XÞ � vX

ð1 1 gÞ1 v
e
�t½ð11gÞðsl1s̃cÞ1sp �;

(25a)

�EðtÞ ¼ ð11vÞ gX 1Y

ð11gÞ1v
1g
ðY�XÞ�vX

ð11gÞ1v
e
�t½ð11gÞðsl1s̃cÞ1sp �;

(25b)

where X and Y denote the initial cytosolic and lumenal con-

centration, respectively. The average concentrations change

on a timescale t ¼ ½ð11gÞðsl1s̃cÞ1sp��1:
We cannot solve the equations in closed form with

Dirichlet boundary conditions in the cytosol since we do not

know the amount of calcium entering the cell through the

plasma membrane from the expressions in Eq. 22. Therefore,

FIGURE 3 Concentration profiles for different times in the cytosol. The

steady state near the channel is quickly established. We used the standard

parameter values of Table 1.
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with Dirichlet boundary conditions, the expressions in Eq.

22 were solved numerically and the surface integral was cal-

culated using the explicit time- and space-dependent solution

given by Eq. 54 (see Appendix).

The approximation works very well in both cases. Fig. 4 b
shows the exact current and the approximation for no-flux

boundary conditions. The fast transient at the beginning is

not reproduced by the approximation. However, the devia-

tion is restricted to the initial transient and for times larger

than ;100 ms the approximation is excellent; it clearly

reproduces the slower dynamics due to varying average

concentrations. These observations all hold for the case with

Dirichlet boundary conditions in the cytosol, too, as can be

seen in Fig. 4 a. Here, we varied the initial concentration in

the ER. Consequently, there is an influx or efflux of calcium

through the cell membrane, which leads to an increase or

decrease of the concentration within the ER.

Discussion of the fast transient

The most important parameters controlling the current are

sc, a and the diffusion coefficients. sc is relevant for the fast

buildup of the current due to release of the locally stored

calcium on a timescale t ¼ [(1 1 g)sc]
�1. Fig. 5 shows that

the maximum current is reached at ;t.

We investigated the fast current transient with respect to

its dependence on these parameters. The scaled current

decreases with increasing sc (Fig. 5 a). Since the unscaled

current is given by 2Fsca3 �CIs; it does not decrease for large

sc but saturates (see also Eq. 29b).

In Fig. 5 c we vary the diffusion coefficients Dc and DE.

Calcium has to diffuse toward the channel inside the ER to

maintain the current. Hence, it is not surprising that the

smallest current has the smallest diffusion coefficient in the

ER. Currents increase as well with increasing diffusion

coefficient in the cytosol. The rise in diffusion decreases the

local cytosolic Ca21 concentration, and therefore increases

the concentration difference across the channel, which causes

larger current. The currents for parameter sets with the same

deff (see below) relax to the same stationary current.

Calcium ion channels are grouped into tightly packed

clusters. Therefore, several open channels within a single

cluster can be lumped into one conducting volume equal to the

sum of the conducting volumes of all open channels (1,13).

Hence, the dependence on the radius of the channel area a is

also examined (Fig. 5 b). The scaling of the current has to be

taken into account in the interpretation of the results in Fig.

5 b. The channel radius varies from 100 nm to 10 nm from

bottom to top. Again the scaled current decreases, whereas the

unscaled stationary current grows linearly for large a (Eq.

29a). The relaxation time increases for larger radii since

diffusion has to equilibrate on a larger length scale. For both

sc and a, a larger value implies a larger, transient deviation of

the time-dependent solution from the stationary current.

We introduce another dimensionless parameter deff¼ 1/k2¼
dcdE/(dE 1 gdc), which is ;0.34 for a channel radius a ¼ 6

nm and 1.2 3 10�3 for a¼ 100 nm. We can regard deff as an

effective dimensionless diffusion parameter, taking into ac-

count the diffusion inside the cytosol and ER and addition-

ally the channel parameters sc and a. The dimensionless

current increases with the effective diffusion parameter deff.

The larger the dimensionless current the faster it relaxes to

the stationary value in all examples in Fig. 5. We conclude

that the rate of relaxation to the stationary value grows with

increasing deff. Besides uniquely determining the scaled sta-

tionary current, deff is also a measure for relaxation toward it.

Asymptotic behavior of the single
channel approximation

The quasi-stationary current after the fast transient is given

by Eq. 21. Fig. 6 shows the function (k � tanh k)/k3

representing its k-dependency. It is equal to 1
3

for k ¼ 0 and

converges to zero for k / N. k / 0 holds for a / 0 or

sc / 0. For k / 0, we obtain

I }a
3
; for a/0; (26a)

I }sc; for sc/0; (26b)

and for k / N,

k� tanhk

k
3 � k�1

k
3 ; k� 0: (27)

The latter approximation is rather good for k $ 2 already, as

Fig. 6 shows. We rewrite k as

k¼ ak; k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE 1Dcg

DcDE

sc

r
; (28a)

FIGURE 4 Approximation of the single channel current: dashed lines show

the exact solution of the expressions in Eq. 8, solid lines the approximation

(Eq. 1) with �C and �E from the solution of the expressions in Eq. 22. The

approximation is excellent for t . 102 ms. Beside initial concentrations, all

other parameter values are from Table 1. (a) The case with Dirichlet bound-

ary conditions in the cytosol. The initial concentration within the ER varies

from 5 mM to 900 mM from bottom to top as in Fig. 2 a, and we used always

the same initial cytosolic concentration of 0.1 mM. (b) The approximation

with no-flux boundary conditions can be calculated analytically (expressions

in Eq. 25). The initial cytosolic concentration is 10 mM, the initial

concentration in the ER is 150 mM, and identical diffusion coefficients as in

Fig. 2 b were used. The approximation captures the slow dynamics due to

varying average concentrations.
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k¼ ffiffiffiffiffi
sc

p
k9; k9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE 1Dcg

DcDE

a
2

r
; (28b)

and reach

I }
a

k
2�

1

k
3; for a$

2

k
; (29a)

I }
1

k9
2�

1ffiffiffiffiffi
sc

p
k9

3; for sc $
2

k9

� �2

: (29b)

The asymptotic expressions are valid for a $ 7 nm and sc $

6 3 106 s�1 with the standard parameters listed in Table 1.

The linear dependence of the current on the channel radius a
was found in Thul and Falcke (1), too. Simulations in that

study described the channel as a hole in a plane membrane in

difference to the spherical channel volume here. Neverthe-

less, the linear dependence on a holds for both cases.

The asymptotic limits upon varying the diffusion coeffi-

cients are

Is }
dE

g
� dE

g

� �3
2

; for dE/0; dc finite; (30a)

Is }dc�d
3
2
c; for dc/0; dE finite: (30b)

The values dE / N and dc finite implies the vanishing of g/

dE and therefore leads to a finite dimensionless current given

by Eq. 21 with k ¼
ffiffiffiffiffiffiffiffiffi
1=dc

p
. For dc / N and dE finite, we

obtain the dimensionless current with k ¼
ffiffiffiffiffiffiffiffiffiffi
g=dE

p
.

The current is controlled by three processes: diffusion

from the bulk toward the channel inside the ER, the channel

conductivity sc, and diffusion away from the channel into

the bulk of the cytosol. If one of these processes becomes

very fast, the other two still limit the current.

Validity of the quasi-steady approximation

In this section we go through the most important assumptions

underlying the approximations we applied. We assumed that

processes at the cell membrane do not have any direct effect

on the channel current and solved the expressions in Eq. 16 in

an infinite domain. We assess this assumption by calculating

the current from the solution of the expressions in Eq. 16 in a

finite domain with radius rf and expand it with respect to r�1
f ;

Is;rf
¼ 4pðeðtÞ�1Þ 1

k
2 +

N

n¼0

k� tanhk

k

� �n11
1

r
n

f

; (31)

where the first term just reproduces Is. The relative devia-

tion is

Is;rf
� Is

Is

¼ +
N

n¼1

k� tanhk

k

1

rf

� �n

#
1

rf� 1
; (32)

where we used 0 # k�tanhk
k # 1 and rf . 1, as the cell

boundary is clearly outside the channel. For the very

unfavorable case with an effective channel radius a ¼ 100

nm and a cell radius b ¼ 5 mm, i.e., rf ¼ 50, the maximum

relative deviation is only ;2%.

Further, we assumed timescale separation between local

concentrations at channels and the average concentration.

Does this still hold with many open channels or does the

average dynamics become fast then, too? Since several open

channels within one cluster can be modeled like a single

channel with an effective radius, the approximation will be

checked for channel radii from a ¼ 6 nm to a ¼ 100 nm. For

a ¼ 6 nm, the timescale separation clearly holds. For the

FIGURE 5 Dependence of the

scaled single channel current Is ¼
2Fsca3 �Cð Þ�1

I on sc, channel radius

a, and the diffusion coefficients Dc,

DE; solid lines show the approxima-

tion Eq. 21 with �e ¼ eN ¼ Y=X; and

dashed and dotted lines show the time-

dependent solution of the expressions in

Eq. 12. Time is given in units of ((1 1

g)sc)
�1, which is the relevant timescale

for the buildup of the current. Parameter

values not mentioned are in Table 1. (a) Scaled single channel current for different sc, varied from bottom to top (sc, ((1 1 g)sc)
�1): (107 s�1, 0.05ms), (3 3

106 s�1, 0.17 ms), and (5 3 105 s�1, 1 ms). (b) Scaled single channel current for different channel radii a, varied from bottom to top: 100 nm, 40 nm, and 10 nm.

(c) Scaled single channel current for different diffusion coefficients. The dotted lines show the current for Dc ¼ 220 mm2 s�1 and DE from bottom to top: 10

mm2 s�1, 40 mm2 s�1, and 150 mm2 s�1, whereas the dashed lines give the current for DE¼ 220 mm2 s�1 and Dc from bottom to top: 10 mm2 s�1, 40 mm2 s�1,

and 150 mm2 s�1.

FIGURE 6 The solid line shows the function ðk � tanhkÞ=k3, which can

be approximated by ðk � 1Þ=k3 for k $ 2 (dashed line).
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maximum radius a ¼ 100 nm we obtain a value of s̃c,

defined in Eq. 23, of ;1.5 3 10�2 s�1 (all other parameters

like in Table 1). Multiplying the channel source term in the

expressions in Eq. 22 with a rather large number of 104 open

clusters, we obtain 1043s̃c � 150 s�1 as an estimate for the

rate of spatially averaged concentrations. Thus timescale

separation still holds.

Additionally, timescale separation has to hold for all other

processes like buffering and the opening and closing of

channels. Opening rates of a channel reach from 2 to 40 s�1

and closing rates from 150 to 1000 s�1 (14). These processes

have to be at least slower than the relaxation of the current to

a quasi-stationary level. This timescale is determined by t ¼
[(1 1 g)sc] and deff ¼ DcDE=ða2scðDE 1 gDcÞÞ, but unfor-

tunately cannot be estimated better since it involves the re-

laxation of many modes. We only can give numerical values

for a given parameter set. For our standard parameters and a

large radius a ¼ 100 nm it is ;1 ms. That can be considered

as a maximum value.

Finally, we address the validity of the approximation in a

nonlinear context. We did a set of comparisons of the quasi-

steady approximation for the current and local concentra-

tions embedded into the spatially averaged dynamics of the

nonlinear problem (the expressions in Eq. 3) with simula-

tions of the complete nonlinear partial differential system for

the expressions in Eq. 3. The averaged equations are

d �C

dt
¼ ðs̃c 1slÞð �E� �CÞ�Pp

�C
2

K
2

d 1 �C
2 1 +

i

�R
c

i ; (33a)

d �E

dt
¼�g ðs̃c 1slÞð �E� �CÞ�Pp

�C
2

K
2

d 1 �C
2

� 	
1 �R

E
; (33b)

d �Bi

dt
¼ �R

c

i ¼�ki
1 �Bi

�C1k
�
i ð½Bi�T� �BiÞ; i¼m; im; (33c)

d �BE

dt
¼ �R

E¼�kE
1 �BE

�E1k
�
E ð½BE�T� �BEÞ; (33d)

where we replaced the average of nonlinear functions of

concentrations with the functions of the average. A surface

integral does not appear since we applied no-flux boundary

conditions in the ER and cytosol. The parameter s̃c is

defined in Eq. 23. The results of some simulations are shown

in Fig. 7. They illustrate that the approximations are appli-

cable with different sets of parameter values. The quasi-

steady approximation works very well for the complete

nonlinear problem and for a wide range of parameters cov-

ering physiological ranges of ion channel currents.

DISCUSSION

We have presented a quasi-steady approximation for the

current through ion channels. The approximation provides

excellent agreement with exact simulations for times larger

than t ¼ [(1 1 g)sc]
�1, which amounts to 10�5 s for typical

parameters. That quick approach of the current to the quasi-

stationary value guarantees as well that values calculated

with the approximated current like, e.g., signal mass or dis-

tant concentrations, will be close to exact, too.

The quasi-steady approximation sets currents in relation to

bulk concentrations (Eq. 1) and provides formulas for local

concentrations (the expressions in Eq. 2). It is thus another

tool for the experimental analysis of in vivo currents and

concentrations if we know the values of the parameters in

these formulas. We estimated sc of the IP3 receptor channel

for a ¼ 6 nm to be 3.4–5.7 106 s�1. The parameters afflicted

with the largest uncertainty are the lumenal parameters �E and

DE. The cytosolic parameter �C has little influence on the

current since it is much smaller than �E. Dc is known with an

acceptable uncertainty to be ;220 mm2 s�1 (15).

Local concentrations can be obtained from parameter

values or alternatively by using current values suggested by

experiments and detailed simulation studies (1). With the

TABLE 1 Parameters

Parameter values

X 0.1 mM Cytosolic resting level of free Ca21, initial and

boundary condition.

Y 750 mM Lumenal resting level of free Ca21, initial and

boundary condition.

sc 4.3 3 106 s�1 Channel flux constant.

sp 86.6 s�1 Linear pump rate constant.

Pp 40 mM s�1 Nonlinear pump rate constant.

Kd 0.2 mM Dissociation constant for nonlinear pumps.

sl �0.01 s�1 Leak flux constant.*

Dc 220 mm2 s�1 Diffusion coefficient of free Ca21 in the cytosol.

DE 70 mm2 s�1 Diffusion coefficient of free Ca21 in the ER.

a 6 nm Channel radius.

b 10 mm Cell radius.

g 1 Volume ratio Vcyt/VER.

[Bm]T 100 mM Total concentration of mobile cytosolic buffer.

k1
m 200 (mM s) �1 On-rate of mobile cytosolic buffer.

k�m 33.3 s�1 Off-rate of mobile cytosolic buffer.

DBm
40 mm2 s�1 Diffusion coefficient of cytosolic buffer.

[Bim]T 100 mM Total concentration of immobile cytosolic buffer.

k1
im 200 (mM s) �1 On-rate of immobile cytosolic buffer.

k�im 333 s�1 Off-rate of immobile cytosolic buffer.

[BE]T 5000 mM Total concentration of immobile lumenal buffer.

k1
E 1 (mM s) �1 On-rate of immobile lumenal buffer.

k�E 600 s�1 Off-rate of immobile lumenal buffer.

Parameter definitions

dc
Dc

sca2
Dimensionless diffusion coefficient within cytosol.

dE

DE

sca2
Dimensionless diffusion coefficient within ER.

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dE1gdc

dcdE

r
Eigenvalue of the Laplace operator (=2c ¼ k2c).

V
4

3
pb3 Cell volume.

s̃c

4pa3sc

V

k � tanhðkÞ
k3

Channel flux constant for averaged concentrations.

*The parameter sl is chosen such that the lumenal resting level equals 750

mM. Depending on whether we assume linear or nonlinear pumps, the value

used differs by ;8%.
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parameter values for a and Dc of Table 1 and I ¼ 0.1 pA we

obtain for the local cytosolic concentration at r¼ a ;31 mM

(which is 2–3 orders-of-magnitude larger than cytosolic

resting levels). The local concentration dip in the ER is (31

mM) 3 gDc/DE. That illustrates again that gradients are not

negligible in quantitative modeling. Even qualitative mod-

eling has to take them into account since they determine the

regime of channel state dynamics (16).

There are several studies using steady-state approximations

for the complete diffusion problem (8,17,18). However, we

noticed that this can be a rather poor approximation for

different reasons. The timescale to reach the steady solution

across the whole cell is in the range of 1 s or more. That is

longer than typical release events. Furthermore, if no flux

boundary conditions in the lumen are used, the stationary

solution for the whole cell has a partially depleted endoplas-

mic reticulum and consequently underestimates currents (18).

The quasi-steady approximation avoids these problems.

G. D. Smith suggested a matching procedure to obtain the

current from bulk concentrations (17). The matching proce-

dure relies on the stationary solution of the fast buffer ap-

proximation, which is given as an implicit equation. That

does not lead to an explicit formula for the current like

Eq. 1 and the relation between current and bulk concentration

depends on buffer parameters. Here we showed that in good

approximation the current depends on the bulk concentra-

tions of free Ca21 only and not on buffer parameters. Buffer

parameters determine the current only indirectly via the free

Ca21 concentrations.

The quasi-steady approximation opens up two different

routes of modeling of problems with many channels. If we

neglect information on spatial interactions of individual chan-

nels and assume that they are coupled by the average concen-

tration only, the expressions in Eqs. 22 or 33 apply. If we

would like to include spatial concentration profiles in the cy-

tosol into a model, we can use the quasi-steady approximation

to turn the channel source terms in Eq. 3a into d-functions

with a strength given by Eq. 1. That simplifies the solution of

the PDEs substantially since the value of the average lumenal

concentration can still be obtained from spatially averaged

equations. It allows for application of Green’s function to

solve the linearized cytosolic problem (K. Bentele, A. Skupin,

and M. Falcke, 2007, unpublished). Since the clusters form

an inhomogeneity in the cytosolic PDE consisting of a sum

of d-functions, the solution by Green’s function illustrates

that the cluster current contributions simply superpose lin-

early in that approximation. Therefore, the quasi-steady ap-

proximation neglects local interaction between channels by

the concentration profiles in the calculation of these profiles.

However, interaction will be negligible for channels more than

a diffusion length of free Ca21 apart and channels close to each

other—like in a cluster—can be subsumed into a single source

with a volume equal to the sum of the volumes of the subsumed

open channels (19). Furthermore, note that the expressions for

the quasi-steady current and local concentrations do not contain

any reference to a specific geometry. They apply to any volume

which is large enough (see Validity of the Quasi-Steady Approx-

imation) and consequently also to plasma membrane channels.

In summary, the quasi-steady approximation provides

simple formulas for analysis of experimental results and will

allow for simple models without losing the information about

local concentrations at open channels.

APPENDIX: TIME-DEPENDENT SOLUTION OF
THE EXPRESSIONS IN EQ. 4

Solving for the time-dependent solution of the expressions in Eq. 4 starts

with Laplace-transforming them. This leads to the boundary value problem,

sC̃�Cðr;0Þ ¼Dc=
2

r C̃1gC̃ðrÞ; (34a)

sẼ�Eðr;0Þ ¼DE=
2

r Ẽ1gẼðrÞ; (34b)

where C̃ and Ẽ denote the Laplace transformed functions and

gC̃ðrÞ ¼�spC̃1Qða� rÞðẼ� C̃Þsc 1ðẼ� C̃Þsl; (35a)

gẼðrÞ ¼�ggC̃ðrÞ; g¼ Vcyt

VER

: (35b)

FIGURE 7 Comparison of simulations of the expressions in Eq. 3 (dashed

lines) and the quasi-steady approximation of the expressions in Eqs. 1 and 2

(solid lines). �C and �E required for the evaluation of the expressions in Eqs.

1 and 2 were obtained by numerical integration of the expressions in Eq. 33.

In panels a–c, the colors indicate the following parameter sets: red, a ¼ 6

nm; green, a¼ 20 nm and mobile buffer diffusion coefficient DBm
¼ 70 mm2

s�1; blue, a ¼ 50 nm; and sl is such that 150 mM is the stationary lumenal

concentration with channels closed. These stationary concentrations were

also the initial conditions in panels a–c. All other parameter values are as in

Table 1. (a) Cytosolic concentration at the surface of the channel, (b) the

corresponding lumenal concentration and (c) the channel current. (d) The

cytosolic concentration at the surface of the channel is plotted. The initial

concentrations were C ¼ 100 mM in the cytosol and 600 mM in the ER,

which is not the stationary state with closed channels. The colors again

indicate different channel radii: red, a ¼ 6 nm; green, a ¼ 20 nm; and blue,

a ¼ 50 nm. To reach an asymptotic state within a reasonable computa-

tion time, the maximal pump-rate was set to Pp ¼ 4000 mM s�1 and a

corresponding sl � 1 s�1. All other parameter values are as in Table 1.
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The initial conditions are

Cðr;0Þ ¼ X (36a)

Eðr;0Þ ¼ Y; (36b)

and the boundary conditions after Laplace transformation read

@C̃ðrÞ
@r

����
r¼0

¼ 0; (37a)

C̃ðbÞ ¼ X

s
; (37b)

@ẼðrÞ
@r

����
r¼0

¼ 0; (37c)

@ẼðrÞ
@r

����
r¼b

¼ 0: (37d)

As the initial state is assumed to be homogeneous, the Dirichlet boundary

conditions are chosen equal to the initial conditions to avoid any discon-

tinuous jumps in the concentration profiles.

The solution of the problem will be obtained by solving the equations

separately in- and outside the channel, i.e., for r , a and a , r. The

corresponding solutions will be indexed with i and o. The proper matching

conditions at r ¼ a are continuity of concentrations and fluxes. They have to

be fulfilled for each s:

C̃iðaÞ ¼ C̃oðaÞ; (38a)

ẼiðaÞ ¼ ẼoðaÞ; (38b)

@C̃iðrÞ
@r

����
r¼a

¼ @C̃oðrÞ
@r

����
r¼a

; (38c)

@ẼiðrÞ
@r

����
r¼a

¼ @ẼoðrÞ
@r

����
r¼a

: (38d)

Two constants are chosen as particular solutions of the inhomogeneous

equations. They are determined by the linear systems

s1ðsc 1sl 1spÞ �sc�sl

�gðsc 1sl 1spÞ s1gðsc 1slÞ

� �
A
ðiÞ

B
ðiÞ

� �
¼ X

Y

� �
;

(39a)

s1ðsl 1spÞ �sl

�gðsl 1spÞ s1gsl

� �
AðoÞ

B
ðoÞ

� �
¼ X

Y

� �
: (39b)

The solutions are

A
ðiÞ

BðiÞ

� �
¼

sX 1ðsc 1slÞðY 1gXÞ
sðs1siÞ

sY 1ðsc 1sl 1spÞðY 1gXÞ
sðs1siÞ

0
BB@

1
CCA; (40a)

A
ðoÞ

B
ðoÞ

� �
¼

sX 1slðY 1gXÞ
sðs1soÞ

sY 1ðsl 1spÞðY 1gXÞ
sðs1soÞ

0
BB@

1
CCA; (40b)

si ¼ ðg 11Þðsc 1slÞ1sp; (40c)

so¼ ðg 11Þsl 1sp: (40d)

The homogeneous system is solved by the Ansatz

C̃
Ẽ

� �
ðrÞ ¼ a1

a2

� �
ckðrÞ; =

2

r ckðrÞ ¼ k
2
ckðrÞ: (41)

That leads to the equations inside the channel

Dck
2� s�ðsc 1sl 1spÞ sc 1sl

gðsc 1sl 1spÞ DEk
2� s�gðsc 1slÞ

 !

3
a1

a2

� �
¼

0

0

� �
; (42)

and analogously outside the channel with sc ¼ 0. The determinant of the

coefficient matrix has to vanish for nontrivial solutions, which provides

the equations to determine the eigenvalues k (Tr and D denote the trace and

the determinant of the matrix, respectively),

ki;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
�TrðMiÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMiÞ2�4DðMiÞ

q �s
; (43a)

ki;2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
�TrðMiÞ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMiÞ2�4DðMiÞ

q �s
; (43b)

ko;1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
�TrðMoÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMoÞ2�4DðMoÞ

q �s
; (43c)

ko;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
�TrðMoÞ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMoÞ2�4DðMoÞ

q �s
; (43d)

and eigenvectors

a
ði;1Þ
1

a
ði;1Þ
2

� �
¼

1
2Dcgðsc 1sl 1spÞ

Dcðs1gðsc 1slÞÞ�DEðs1sc 1sl 1spÞ1DcDE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMiÞ

2�4DðMiÞ
p

 !
;

(44a)

a
ði;2Þ
1

a
ði;2Þ
2

� �
¼

1
2Dcgðsc 1sl 1spÞ

Dcðs1gðsc 1slÞÞ�DEðs1sc 1sl 1spÞ�DcDE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMiÞ2�4DðMiÞ
p

 !
;

(44b)

a
ðo;1Þ
1

a
ðo;1Þ
2

� �
¼

1
2Dcgðsl 1spÞ

Dcðs1gslÞ�DEðs1sl 1spÞ1DcDE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMoÞ2�4DðMoÞ
p

 !
;

(44c)

a
ðo;2Þ
1

a
ðo;2Þ
2

� �
¼

1
2Dcgðsl 1spÞ

Dcðs1gslÞ�DEðs1sl 1spÞ�DcDE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMoÞ2�4DðMoÞ
p

 !
;

(44d)

with Mi/o

Mi¼
�ðs1ðsc 1sl 1spÞÞ=Dc ðsc 1slÞ=Dc

gðsc 1sl 1spÞ=DE �ðs1gðsc 1slÞÞ=DE

� �
;

(45a)

Mo ¼
�ðs1ðsl 1spÞÞ=Dc sl=Dc

gðsl 1spÞ=DE �ðs1gslÞ=DE

� �
; (45b)

resulting in
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TrðMiÞ ¼�
Dcðs1gðsc 1slÞÞ1DEðs1sc 1sl 1spÞ

DcDE

;

(46a)

TrðMoÞ ¼�
Dcðs1gslÞ1DEðs1sl 1spÞ

DcDE

; (46b)

DðMiÞ ¼
sðs1siÞ

DcDE

; (46c)

DðMoÞ ¼
sðs1soÞ

DcDE

: (46d)

A necessary condition for the eigenvalue to vanish is that DM(i/o) is zero.

This is the case if s ¼ 0, s ¼ �sI, or s ¼ �so, respectively. It depends on

the sign of Tr(M(i/o)) as to which k will vanish, since we have k }ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�TrðMði=oÞÞ 6 jTrðMði=oÞÞj

p
for D(M(i/o)) ¼ 0. Thus we get zero eigen-

values according to

kði=oÞ;1ðs¼ 0Þ ¼ 0; (47a)

ki;2ðs¼�siÞ ¼ 0; (47b)

ko;2ðs¼�soÞ ¼ 0: (47c)
It should be further noted that the eigenvectors cannot become singular for

any value of s. The denominators of the eigenvector components that could

potentially become singular are of the form ðA� BÞ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1BÞ2 � D

q
. This

expression can only become zero if D ¼ 1 4AB, which is equivalent to

gDcDE(sc 1 sl)(sc 1 sl 1 sp) ¼ 0 and gDcDEsl(sl 1 sp) ¼ 0. However,

all these parameters are positive and hence, this condition can never be

met.With the eigenvalues and eigenvectors, we are able to construct the full

solution. The solution has to be bounded at r ¼ 0. That excludes cosh(kr)/r
from the solution for r , a. We finally arrive at

C̃i

Ẽi

 !
ðrÞ ¼

a
ði;1Þ
1

a
ði;1Þ
2

 !
K1

sinhðki;1rÞ
r

1
a
ði;2Þ
1

a
ði;2Þ
2

 !
K2

sinhðki;2rÞ
r

1
A
ðiÞ

B
ðiÞ

 !
; (48a)

The boundary conditions (Eqs. 37a–d) and matching conditions (Eqs. 38a–

d) lead to a linear system for the six constants Ki, given in matrix form by

WK¼ h: (49)

For Dirichlet boundary conditions in the cytosol and Neumann boundary

conditions in the ER, we obtain

h¼ LðsÞ
sðs1siÞðs1soÞ

;� gLðsÞ
sðs1siÞðs1soÞ

;0;0;

�
ðX�YÞsl 1Xsp

sðs1soÞ
;0

�T

; (50)

where we have used the short-hand notation

LðsÞ ¼ ððX�YÞs�ðY 1gXÞspÞsc: (51)

The solution of Eq. 49 then reads

K¼W�1h; W�1¼ 1

DW
adjðWÞ (52)

with the adjoined matrix adj(W). The adjoined matrix cannot become

singular for any value of s, since it is a combination of products and sums of

the components of the eigenvectors, eigenvalues and the hyperbolic

functions, which all cannot become singular as stated above. The constants

Ki can only become singular due to the zeros of the determinant DW and the

singularities of h.

We have to transform back the solution from Eq. 48. However, the

constants Ki are very complicated expressions (several pages of Mathe-

matica output). This is the reason why we are not able to calculate the series

expansions around the potential branch points s ¼ �si, s ¼ �so, and s ¼ 0,

which would be necessary to exclude the functions to be multivalued.

However, we solved the simpler problem with Dc ¼ DE and could show that

it does not have any branch points. On these grounds we assume the

solutions to be single-valued. The concentration profiles obtained from it

seem to be physically meaningful, thus supporting this assumption. Further-

more, the singularities at s ¼ �si and s ¼ �so turned out to be removable.

In the end, the residuum at the poles s ¼ s9 can be calculated as

ResðKÞjs¼s9 ¼
1

@DW=@sjs¼s9

adjðWÞh; (53)

with infinitely many of them along the negative real axis.

Now, we can use the theorem of residues to calculate the inverse Laplace

transform. We have to consider the singularities of the constants Ki and of

the particular solution Aði=oÞBði=oÞ
 �T
in Eq. 48.

The time-dependent solution finally takes the form

Ci

Ei

� �
ðr; tÞ ¼ +

N

n¼0

a
ði;1Þ
1

a
ði;1Þ
2

 !
ResðK1Þ

sinhðki;1rÞ
r

"

1
a
ði;2Þ
1

a
ði;2Þ
2

 !
ResðK2Þ

sinhðki;2rÞ
r

#
s¼sn

e
snt

1

ðsc 1slÞðY 1gXÞ
si

ðsc 1sl 1spÞðY 1gXÞ
si

0
BB@

1
CCA; (54a)

C̃o

Ẽo

 !
ðrÞ ¼

a
ðo;1Þ
1

a
ðo;1Þ
2

 !
K3

coshðko;1ðr � aÞÞ
r

1 K4

sinhðko;1ðr � aÞÞ
r

� �

1
a
ðo;2Þ
1

a
ðo;2Þ
2

 !
K5

coshðko;2ðr � aÞÞ
r

1 K6

sinhðko;2ðr � aÞÞ
r

� �
1

A
ðoÞ

B
ðoÞ

 !
: (48b)
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The first mode n¼ 0 refers to the stationary solution s0¼ 0. Since all sn , 0,

n 6¼ 0, the contribution of the single spatial modes decay exponentially fast.

Therefore, only a finite number of modes contribute to the concentration

profiles for t . 0.
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