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Abstract
If surfaces in a scene are to be distinguished by their color, their neural representation at some
level should ideally vary little with the color of the illumination. Four possible neural codes were
considered: von-Kries-scaled cone responses from single points in a scene, spatial ratios of cone
responses produced by light reflected from pairs of points, and these quantities obtained with
sharpened (opponent-cone) responses. The effectiveness of these codes in identifying surfaces was
quantified by information-theoretic measures. Data were drawn from a sample of 25 rural and
urban scenes imaged with a hyperspectral camera, which provided estimates of surface reflectance
at 10-nm intervals at each of 1344 × 1024 pixels for each scene. In computer simulations, scenes
were illuminated separately by daylights of correlated color temperatures 4000 K, 6500 K, and
25,000 K. Points were sampled randomly in each scene and identified according to each of the
codes. It was found that the maximum information preserved under illuminant changes varied with
the code, but for a particular code it was remarkably stable across the different scenes. The
standard deviation over the 25 scenes was, on average, approximately 1 bit, suggesting that the
neural coding of surface color can be optimized independent of location for any particular range of
illuminants.
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Introduction
What limits our ability to identify surfaces by their color despite changes in the color of the
light on the scene? The answer to this deceptively simple question depends on several
factors, including how many differently colored surfaces there are in a scene, how surface
colors are coded neurally, and how well such codings serve to label uniquely objects under
different lights. It is clear that if just two surfaces are sampled from a variegated scene, there
is very little risk of confusion: in general, their spectral reflectances will be different; their
codings under a given illuminant will be different; and this difference will persist when the
illuminant is changed. But, as the number of samples increases, the risk of confusion
increases. This is because the chance of similar spectral reflectances being selected
increases, and, as surface-color codings are not perfectly invariant under illuminant changes,
they are increasingly unlikely to preserve the smaller differences between some samples.

Present address David H. Foster, School of Electrical and Electronic Engineering, University of Manchester, Sackville Street
Building, Manchester M60 1QD, UK, email: d.h.foster@manchester.ac.uk.

Europe PMC Funders Group
Author Manuscript
Vis Neurosci. Author manuscript; available in PMC 2007 September 24.

Published in final edited form as:
Vis Neurosci. 2004 ; 21(3): 331–336.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



These are, of course, physically determined limits on identification, and, in practice,
performance will also depend on a variety of procedural, cognitive, and other factors.

The aim of this study was to obtain an estimate of the upper limits on neural identification
performance with some representative natural scenes. To this end, points were sampled from
rural and urban scenes under different daylights and the reflected light at each point given
one of four approximately illuminant-invariant neural codes, based on von-Kries adaptation,
spatial ratios of cone responses, and these quantities obtained with sharpened (opponent-
cone) responses (see e.g. Wandell, 1995; Maloney, 1999; Hurlbert &Wolf, 2004). The
success of each code in allowing these samples or pairs of samples to be identified under
different illuminants was quantified by information-theoretic methods. The principal
measure of performance was the information capacity, which represents how much
information in bits is preserved across the illuminant change. As explained later, information
capacity has certain advantages over a measure such as the proportion of correct
identifications, used in an earlier analysis of a different set of images (Nascimento et al.,
2002).

It was found that for each scene tested, the maximum information preserved under
illuminant changes varied with the code, but for any particular code the variation over the
scenes tested was small, with a standard deviation of approximately 1 bit. A possible
implication of this result for the optimization of visual performance in natural scenes is
briefly considered.

Methods
Image acquisition

A high-spatial-resolution hyperspectral imaging system was used to acquire data from 25
rural and urban scenes in the Minho region of Portugal, which has a temperate climate and
variety of vegetation and natural rock formations. Details of an earlier version of this system
have been given in Nascimento et al. (2002). The present system used a low-noise Peltier-
cooled digital camera providing a spatial resolution of 1344 ×1024 pixels (Hamamatsu,
model C4742-95-12ER, Hamamatsu Photonics K.K., Japan) with a fast tunable liquid-
crystal filter (VariSpec, model VS-VIS2-10-HC- 35-SQ, Cambridge Research &
Instrumentation, Inc., MA) mounted in front of the lens, together with an infrared blocking
filter. Focal length was typically set to 75 mm and aperture to f/16 or f/22 to achieve a large
depth of focus. The line-spread function of the system was close to Gaussian with standard
deviation approx. 1.3 pixels at 550 nm. The intensity response at each pixel, recorded with
12-bit precision, was linear over the entire dynamic range. The peak-transmission
wavelength was varied in 10-nm steps over 400–720 nm and the bandwidth (FWHM) was
10 nm at 550 nm, decreasing to 7 nm at 400 nm and increasing to 16 nm at 720 nm. Spectral
calibration was verified against test samples in a similar way to that described in
Nascimento et al. (2002).

Images of scenes were obtained during the summers of 2002 and 2003, almost always under
a clear sky. Particular care was taken to avoid scenes containing movement. Before image
acquisition, the exposure at each wavelength was determined by an automatic routine so that
maximum pixel output was within 86– 90% of saturation. Immediately after acquisition, the
reflected spectrum from a small flat gray (Munsell N5 or N7) reference surface in the scene
was recorded with a telespectroradiometer (SpectraColorimeter, PR-650, Photo Research
Inc., Chatsworth, CA), the calibration of which was traceable to the National Physical
Laboratory. Images were corrected for dark noise, spatial nonuniformities (mainly off-axis
vignetting), stray light, and any wavelength-dependent variations in magnification or
registration. Spectral-reflectance functions at each pixel were estimated by normalizing the

Foster et al. Page 2

Vis Neurosci. Author manuscript; available in PMC 2007 September 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



corrected signal against that obtained from the gray reference surface. Initially, the
illumination was assumed to be spatially uniform in all scenes; the effect of indirect
illumination is considered later.

Color pictures (reconstructed from reflectance data) of some typical scenes are shown in
Fig. 1.

Cone responses
Responses of long-, medium-, and short-wavelength-sensitive cones at each point (pixel) in
each scene were calculated from the Smith and Pokorny set of fundamentals (Smith &
Pokorny, 1972, 1975) for daylight illuminants with correlated color temperatures 25,000 K,
6500 K, and 4000 K. Thus, if the illuminant spectrum is E(λ) and the spectral reflectance at
a point is R(λ), then the activity in long-, medium-, and short-wavelength-sensitive cones
with spectral sensitivities Q(λ) = L(λ), M(λ), and S(λ), respectively, is given by q = ∫
E(λ)R(λ)Q(λ) dλ, evaluated over the wavelength range 400 nm ≤ λ ≤ 720 nm. To control for
the effect of direct and indirect illumination, calculations were performed with and without
cropping of shadows in the scenes (Nascimento et al., 2002).

Surface-color codes
Four possible codes for surface color were tested: (1) a “gray-world” von-Kries code in
which each cone signal qi at a point i in the scene was divided by the mean for that cone
class over all points sampled in the scene (Buchsbaum, 1980; West & Brill, 1982); (2) a
spatial ratio of cone responses in which the cone excitation qi at a point i was divided by the
cone excitation qj from the same cone class at another randomly chosen point j in the scene
(Foster & Nascimento, 1994; Nascimento et al., 2002); (3) a spectrally sharpened version of
(1) in which the cone spectral sensitivities Q were replaced by those from opponent
combinations of cone responses (Buchsbaum & Gottschalk, 1983; Foster & Snelgar, 1983a;
Finlayson et al., 1994), as detailed later; and (4) an analogous spectrally sharpened version
of (2). To avoid extreme values of ratios in (2) and (4) distorting variance estimates, pairs of
points (i, j) were omitted when the divisors qj were less than a threshold value α max(qi)
with α = 0.01 (other values of α were also tested).

The codes in (1) and (3) provide information about the color of single surfaces and the codes
in (2) and (4) provide information about the relationship of surface colors, corresponding to
the perceptual phenomena of color constancy and relational color constancy (Foster &
Nascimento, 1994; Nascimento & Foster, 1997). Despite the sample points i and j in (2), and
in (4), being chosen randomly, spatial ratios of cone excitations (and their post-receptoral
combinations) are almost invariant under changes in illuminant (Foster & Nascimento,
1994; Nascimento et al., 2002). They have been argued to underlie the constancy of
perceived color relations under illuminant changes in complex scenes (Craven & Foster,
1992; Foster & Nascimento, 1994; Nascimento & Foster, 1997), and used to explain
performance in asymmetric color matching (Tiplitz Blackwell & Buchsbaum, 1988;
Nascimento et al., 2004), as well as the spatially parallel detection of violations in color
constancy (Foster et al., 2001) and the judgment of transparency (Westland & Ripamonti,
2000; Ripamonti &Westland, 2003). They provide a compelling cue for distinguishing
between illuminant and reflectance changes in scenes with multiple surfaces (Nascimento &
Foster, 1997).

The invariance to illuminant changes produced by von-Kries scaling is incomplete (West &
Brill, 1982; D'Zmura & Lennie, 1986), as is that by spatial ratios (Foster & Nascimento,
1994; Nascimento et al., 2002), but the effectiveness of each can be improved (Finlayson et
al., 1994) by applying them to sharpened sensor spectral sensitivities L#, M#, and S# derived
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from opponent interactions, mainly between long- and medium-wavelength-sensitive cones
with little involvement of short-wavelength-sensitive cones (Sperling & Harwerth, 1971;
Foster, 1981; Foster & Snelgar, 1983b). These interactions can be modeled linearly, both at
the neural level in macaque monkeys (e.g. Shapley et al., 1981; Lee et al., 1993) and
behaviorally in rhesus monkeys (Sperling & Harwerth, 1971) and humans (Foster &
Snelgar, 1983a). On theoretical grounds, optimum weights for sensor sharpening have been
calculated by Finlayson et al. (1994) as L# = 2.5L − 2.0M + 0.1S for long-wavelength-
sensitive mechanisms, M# = 1.6M − 0.7L − 0.1S for medium-wavelength-sensitive
mechanisms, and S# = 1.0S − 0.1M + 0.1L for short-wavelength-sensitive mechanisms.
Their peaks coincide with those observed psychophysically (Foster & Snelgar, 1983b), and
these weights were the ones used here. Receptoral and post-receptoral components of
adaptation were not distinguished (Webster & Mollon, 1995).

These codes are neither exhaustive nor necessarily optimal (nor do they involve the spatial
domain (cf. Ruderman et al., 1998)), but they are broadly representative (Maloney, 1999;
Hurlbert & Wolf, 2004). Although (1) and (3) refer to single points and (2) and (4) refer to
pairs of points, both depend on scaling cone signals. That is, in von-Kries coding each cone's
response is normalized by the responses across all the points sampled in the scene, whereas
in spatial-ratio coding each cone's response is normalized by the response at another, single,
randomly selected point. These two models therefore represent two extremes of the spatial
extent over which cone responses are normalized. Without averaging, color-code values
from spatial ratios might therefore be expected to be more variable than those from von-
Kries scaling.

Information-theoretic measures
First consider the following simple representation of identification performance. Suppose
that for a fixed pair of illuminants E1 and E2 (e.g. 25,000 K and 6500 K) and surface-color
code (e.g. von-Kries-scaled responses), n points (pixels) are drawn at random, without
replacement, from a selected scene. Suppose that each point under illuminant E2 is paired
with a point under illuminant E1 having the closest color-code value. Depending on several
factors, this identification may or may not be correct. In an earlier analysis of spatial ratios
of cone excitations (Nascimento et al., 2002, p. 1488), the probability p of making a correct
identification of pairs of regions (pixels) within scenes was estimated for just two sizes of
samples, n = 100 and n = 1000, but larger, limiting values of n were not tested (nor was the
separate question of the probability of making a correct identification of single rather than
pairs of regions). Critically, this measure of performance does not fully summarize the
information preserved; for the probability of making an error can have the same value
whether the error is small or large (i.e. whether the incorrectly identified point is close to or
far from the correct point). But if the error is small, more information is preserved than
when the error is large. In other words, estimates of the probabilities p(i, j) of identifying
point j under illuminant E2 with point i under illuminant E1 are required for all points 1 ≤ i, j
≤ n, and not just the single value p = p(i, i) averaged over all i.

A more comprehensive measure of identification performance across illuminants E1 and E2
is provided by the mutual information I(E1; E2) from information theory (e.g. Cover &
Thomas, 1991; MacKay, 2003). Informally, I(E1; E2) represents the reduction in uncertainty
about the n sample points under illuminant E1 given knowledge about the points under
illuminant E2. More formally, it is defined as follows. If p(i, j) is the probability of
identifying point j under illuminant E2 with point i under illuminant E1, then
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(1)

where  and . If the base of the logarithm is 2, then I(E1;
E2) is expressed in bits. Numerical estimates will be given later, but for comparison upper
limits on the information used by observers have been estimated as 29–58 bits in some
attentive-detection tasks (Verghese & Pelli, 1992) and 36–49 bits in a partial-report task
(Sperling, 1960).

As the number of sample points n increases, so generally does the mutual information. But
difficulties with evaluating the form of the estimate given in eqn. (1) can arise when n is
large and the probabilities p(i, j) are small (Brillinger, 2002). Fortunately, when n is so large
that the distribution of color-code values may be treated as continuous, an estimate of an
upper bound C on I(E1: E2) can be taken from an analysis of the capacity of an additive noise
channel, where the noise between input and output corresponds to the differences in code
values under illuminants E1 and E2. Suppose for the moment that the noise is distributed
normally. Then the capacity of a Gaussian channel has a simple formulation in terms of the
quotient of the variances (more generally covariances) of the code values and of the noise
(Cover & Thomas, 1991). This quotient corresponds in effect to the number of
distinguishable code values.

Suppose, more precisely, that each point in the scene is coded, say, as a triple of scaled cone
responses (l1, m1, s1) under illuminant E1, and that under illuminant E2 this triple becomes
(l1 + Δl, m1 + Δm, s1 + Δs), so that (Δl, Δm, Δs) is the difference in code values. Let K1 be
the covariance of (l1, m1, s1) and KΔ the covariance of (Δl, Δm, Δs), evaluated over the
1,376,256 (1344 × 1024) pixels in the scene. Then the information capacity of the channel is
given (Cover & Thomas, 1991) by

(2)

where |K| denotes the determinant of K. It is emphasized that eqn. (2) represents an upper
bound for a particular color code: if the code values are not distributed normally, then the
mutual information is less than C. This formulation involves no contribution from receptoral
or neural noise (Vorobyev & Osorio, 1998; Simoncelli & Olshausen, 2001).

If the noise is not distributed normally, then it may still be shown that eqn. (2) cannot be
exceeded with normally distributed code values and nearest-neighbor identification
(Lapidoth, 1996). In the present analysis, a nonlinear compression of code values was
assumed to occur before identification. A logarithmic nonlinearity (Ruderman et al., 1998)
and a Naka-Rushton nonlinearity (Naka & Rushton, 1966) produced almost identical
decreases in the kurtosis of code values from a mean of 27.7 to −0.1 and of differences in
code values (the estimated noise) from a mean of 90.2 to 1.75. Interestingly, this
improvement in the normality of the distributions had only a moderate effect on values of C:
those obtained with von-Kries scaling actually decreased on average by 0.8 bits, and those
with spatial ratios increased on average by 1.4 bits.

Results
Fig. 2 shows the information capacity C in bits for surface identification in scenes under
changes in daylight illuminant from a correlated color temperature of 25,000 K to 6500 K.
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Mean values of C over the 25 scenes are shown for von-Kries scaling of cone responses, the
spatial ratio of unscaled cone responses, and those codes with optimally sharpened cone
spectral sensitivities, all with logarithmic compression. Table 1 gives the corresponding
numerical values for all three illuminant changes, that is, 25,000 K to 6500 K, 4000 K to
6500 K, and 25,000 K to 4000 K. Both sample means and sample standard deviations are
shown. The sample standard deviations indicated by an asterisk are inflated owing to the
influence of one scene, a close-up of a red rose, which produced low values of C with spatial
ratios of sharpened spectra, particularly with the illuminant change 4000 K to 6500 K
(where C = 8.2 bits).

For comparison, Table 2 shows the corresponding proportion p of correct identifications for
a fixed number of samples n = 100 drawn repeatedly from the 1,376,256 pixels available in
each scene. Included in this table are values of p for raw, unscaled cone responses, but still
with logarithmic compression (estimates of C provided by eqn. (2) cannot be used with raw
responses because the estimated noise does not have zero mean). These values differ from
those given in Nascimento et al. (2002), where long-, medium- and short-wavelength-
sensitive samples were treated independently. As n increased, the value of p decreased; for
example, for an illuminant change of 25,000 K to 6500 K and von-Kries scaling with
sharpened spectra, p = 0.96 with n = 100 (penultimate column Table 2), whereas p = 0.52
when n = 10000.

Similar results, not shown here, were obtained with scenes cropped to minimize the effects
of shadows (as in Nascimento et al., 2002). Decreasing the threshold α for division in the
calculation of cone-excitation ratios from 0.01 to 0.005 (Methods) produced a decrease in
the largest value of C for ratios from 14.1 (last column Table 1) to 13.8.

As might be anticipated, a formal repeated-measures analysis of variance of the data
summarized in Table 1 showed highly significant effects of spectral sharpening [F(1,24) =
119, P < 0.001], von-Kries scaling versus spatial ratios [F(1,24) = 54.0, P < 0.001], and
illuminant change [F(2,48) = 622, P < 0.001]. There was, however, no significant difference
between the effects of spectral sharpening on von-Kries scaling and spatial ratios (F(1,24) =
0.67, P = 0.4).

Discussion
Surface color provides a highly reliable signal by which surfaces can be identified despite
changes in the illuminant. But there are physical factors limiting neural performance.
Expressed in information-theoretic terms, the maximum level of information preserved by
von-Kries scaling under changes in daylight was approximately 14 bits for a shift in
correlated color temperature of 25,000 K to 6500 K and 4000 K to 6500 K, and 11 bits for a
shift of 25,000 K to 4000 K, all with sharpened cone spectral sensitivities. Contrary to
expectation, the potentially larger variance associated with spatial ratios of cone excitations
produced an only slightly less effective code, by 0.4–0.5 bits, with both sharpened and
unsharpened spectra.

Despite the variety in the population of scenes analyzed, the maximum information
preserved by any particular surface-color code was remarkably stable over those scenes. For
all codes and illuminant changes, the standard deviation in information capacity over scenes
varied between 0.7 and 1.5 bits (excluding the close-up rose scene), suggesting an
approximate invariance of natural scenes that might be exploited by the visual system. That
is, under a particular illuminant change, the amount of information that can be preserved by
a particular neural coding of a scene is likely to be within approximately 1 bit of the amount
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of information that can be preserved by the same coding of any other scene under the same
illuminant change.

These results have yet to be confirmed with a larger population of scenes, illuminant
changes, and illuminant-invariant codes. Moreover, they represent physical limits on visual
performance set by the spectral sensitivities of cone receptors, the spectral reflectances of
natural surfaces, and changes in natural illuminant spectra. When noise within the visual
pathway and the limitations of memory are taken into account, these limits are likely to
decrease. Nevertheless, the present data suggest the possibility that, in general, performance
in using color information to identify surfaces within a scene is sufficiently stable that it can
be optimized independent of location for any particular range of illuminants.
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Fig. 1.
Examples of color pictures obtained from a sample of 25 hyperspectral images of rural and
urban scenes.
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Fig. 2.
Mean information capacity C, in bits, for surface identification in scenes under daylight
changes of correlated color temperature 25,000 K to 6500 K. Coding is by von-Kries scaling
of cone responses, the spatial ratio of unscaled cone responses, and those codes with
optimally sharpened cone spectral sensitivities. Data based on a sample of 25 rural and
urban scenes. Error bars show sample standard deviation.
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Table 1

Information capacity C, in bits, preserved in natural scenes under various changes in daylighta

Codes with LMS spectra Codes with sharpened spectra

Illuminant
change

von Kries Spatial ratio von Kries Spatial ratio

25,000 K – 6500 K Mean C 11.43 11.02 14.44 14.08

S.D. C 0.76 0.69 1.36 1.28

4000 K – 6500 K Mean C 11.78 11.37 13.90 13.40

S.D. C 0.72 0.69 1.71* 1.84*

25,000 K – 4000 K Mean C 8.62 8.19 11.34 10.83

S.D. C 0.73 0.67 1.42 1.55

a
Entries show means and sample standard deviations of C for von-Kries scaling of cone responses, the spatial ratio of unscaled cone responses, and

those codes with optimally sharpened cone spectral sensitivities. Correlated color temperature of the illuminant changed from 25,000 K to 6500 K,
4000 K to 6500 K, and 25,000 K to 4000K. Data based on a sample of 25 rural and urban scenes each of size 1344 × 1024 pixels.

*
S.D. ≤ 1.53 if one scene omitted (see text).
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Table 2

Proportion p of correct identifications of 100 surfaces or pairs of surfaces in natural scenes under various
changes in daylighta

Codes with LMS spectra Codes with sharpened spectra

Illuminant
change

von Kries Spatial ratio Raw von Kries Spatial ratio

25,000 K – 6500 K

Mean p 0.92 0.79 0.07 0.96 0.85

S.D. p 0.07 0.09 0.02 0.07 0.07

4000 K – 6500 K

Mean p 0.91 0.79 0.05 0.93 0.80

S.D. p 0.08 0.10 0.02 0.11 0.09

25,000 K – 4000 K

Mean p 0.75 0.59 0.04 0.85 0.67

S.D. p 0.13 0.13 0.01 0.13 0.11

a
Entries show means and sample standard deviations of p. Other details are as in Table 1, but with additional data on raw unscaled cone responses

with logarithmic compression.
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