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Deletion of PKBa/Akt1 Affects Thymic Development
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Background. The thymus constitutes the primary lymphoid organ for the majority of T cells. The phosphatidyl-inositol 3
kinase (PI3K) signaling pathway is involved in lymphoid development. Defects in single components of this pathway prevent
thymocytes from progressing beyond early T cell developmental stages. Protein kinase B (PKB) is the main effector of the PI3K
pathway. Methodology/Principal Findings. To determine whether PKB mediates PI3K signaling in the thymus, we
characterized PKB knockout thymi. Our results reveal a significant thymic hypocellularity in PKBa '~ neonates and an
accumulation of early thymocyte subsets in PKBa~'~ adult mice. Using thymic grafting and fetal liver cell transfer experiments,
the latter finding was specifically attributed to the lack of PKBa within the lymphoid component of the thymus. Microarray
analyses show that the absence of PKBa in early thymocyte subsets modifies the expression of genes known to be involved in
pre-TCR signaling, in T cell activation, and in the transduction of interferon-mediated signals. Conclusions/Significance. This
report highlights the specific requirements of PKB« for thymic development and opens up new prospects as to the mechanism
downstream of PKBa in early thymocytes.
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INTRODUCTION

The thymus constitutes the primary lymphoid organ for the
majority of T cells as its microenvironments provide an exclusive
combination of different stromal cell types critical for the
generation and selection of thymocytes to mature T cells [1].
During their thymic development, T lineage committed precursors
progress through an ordered sequence of differentiation events [2].
These events reflect the complex progression from immature
progenitors to post-selection T cells, which are tolerant to self but
recognize foreign antigens in the context of self-MHC molecules.
Immature intrathymic precursors are characterized by the absence
of CD4 and CD8 cell surface expression and are hence designated
double negative (DN) thymocytes. Based on the expression of
CD25 and CD44, DN thymocytes are further distinguished into
four sequentially evolving subpopulations (DN1-DN4) [3]. Early
during maturation, the productive rearrangement of the T cell
antigen receptor fi (TCRP) locus allows for the expression of
a nascent TCRJ chain that, together with the expression of the
pre-To (pTa) chain and the CD3 complex, forms the pre-TCR
complex [4]. This particular stage represents a critical checkpoint
in T cell development that is known as f-selection. Signaling via
a functional pre-TCR allows for the further differentiation of
thymocytes and initiates the surface expression of both CD4 and
CD8. Developing T cells concurrently expressing CD4 and CD8
(designated double positive, DP, thymocytes) rearrange their
TCRa locus, which enables the cell surface expression of a mature
TCRof complex. Subsequently, the events of positive and
negative TCR selection take place giving rise to single CD4- or
CD8-positive (SP) mature T cells that are eventually released into
the periphery [5]. Changes in the thymic stromal compartment
and alterations of key signaling pathways in thymocytes result in
an aberrant development and the lack of regular T cells.

The phosphatidyl-inositol 3 kinase (PI3K) signaling pathway has
been reported to be involved in lymphoid development as
impaired PI3SK signaling results in immunodeficiency, while
unrestrained signaling contributes to lymphoma formation and
autoimmunity [6]. The function of PI3K is to convert at the
plasma membrane phosphatidyl-inositol-(4,5)-bisphosphate (PIP2)
to the second messenger phosphatidyl-inositol-(3,4,5)-trispho-
sphate (PIP3). The 3'-phosphate lipid phosphatase PTEN

@ PLoS ONE | www.plosone.org

antagonizes the generation of PIP3 [7]. PIP3 acts as a binding site
for various intracellular enzymes that contain a pleckstrin homology
(PH) domain, such as the serine/threonine kinases phosphoinositide-
dependent kinase 1 (PDKI) and protein kinase B (PKB). Hence,
PIP3 promotes the translocation of the corresponding proteins from
the cytoplasm to the plasma membrane. Recruited at the membrane,
PDKI1 phosphorylates a key residue within the catalytic domain of
one of its substrates, PKB [8], which is the most important effector of
the PISK pathway. To be fully active, PKB needs to be
phosphorylated at a second key residue located in the hydrophobic
motif within the regulatory domain [9]. For this to occur, a number
of upstream kinase candidates have been identified, including DNA-
dependent protein kinase (DNA-PK) [10] or the rictor-rmTOR
complex [I1]. Once activated, PKB phosphorylates numerous
substrates influencing diverse cellular and physiological processes
attributed to the PI3K pathway [12].

Mice genetically impaired for single components of the PI3K
signaling pathway display distinct deficiencies in the development
and function of the immune system. For instance, severe combined
immunodeficiency (SCID) in mice correlates with a nonsense
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mutation within the gene of the DNA-PK catalytic subunit (DNA-
PRes) [13-15]. Moreover, mice deficient for DNA-PHRes exhibit
a severe immunodeficiency partly associated with a block in T cell
development due to impaired variable/diversity/joining (VD])
rearrangements at the DN3 stage [16]. Furthermore, deletion of
PDRT in T cell precursors prevents T cell differentiation at the DN
to DP transition and downregulates the cell size of immature
thymocytes [17], suggesting that signals downstream of PDKI1
and/or DNA-PK are essential for T cell development. On the
other hand, heterozygous deletion of PTEN and T cell-specific
PTEN-null mutation in mice lead to increased thymic cellularity
and the development of not only lymphoid hyperplasia, which
progresses to T' cell lymphoma, but also autoimmunity likely due
to impaired Fas signaling [18-21]. Mutations in PTEN allow
unrestrained PIP3 production, which results in constitutive PKB
activation. Correspondingly, mice engineered to express a consti-
tutively active form of PKB in T cells display a phenotype similar
to that of PTEN-mutant mice [22-24].

Three PKB isoforms encoded by separate genes and of identical
structural organization have been described for mammalian cells:
PKBa, PKBf, and PKBy [25]. While PKBa is ubiquitously
detected, PKBf and PKBy tend to be expressed in a tissue-specific
pattern. Targeted disruption of each of these isoforms in mice has
helped to elucidate the physiological i vivo relevance of the PKB
1isoforms, revealing both specific and redundant functions [26-34].
However, specific immunological defects have not been reported
for single mutant mice.

To characterize the specific contribution of distinct PKB isoforms
within the PI3K signaling pathway for thymic development, we
investigated mice deficient for each of the isoforms of PKB. Our
results reveal a significant thymic hypocellularity in PKBa /™~
neonates and an accumulation of early thymocyte subsets at the DN
to DP transition during adult T cell development in PEBo.”’~ mice
due to cell-autonomous effects. Moreover, in early thymocytes PKBa
regulates genes known to respond to pre-TCR, TCR, or interferon
signaling. This report uncovers the specific requirements of PKBa
for thymic development.

RESULTS
The deletion of PKBa leads to a hypocellular thymus

in mouse neonates
To determine the potential impact of PKB on thymic de-
velopment, we analyzed the thymus of PAB mutant mice. The
disscction of neonates revealed that the size of PKBo’~ thymi was
reduced to less than half that of wild-type controls (Figure 1A, top
panel). We and others had previously reported that genetic
ablation of PKBo leads to a decreased body weight [26,28,34],
suggesting a general but proportional reduction in the size of any
organ. To confirm this, we compared the weight of the thymus in
relation to the body weight. In neonatal mice deficient for PRBoL,
the thymus weight was reduced to 60% of wild-type controls when
normalized to the body weight (Figure 1A, bottom panel). This
finding was specific since the weight of other organs, such as the
kidney, was reduced in proportion to the reduction of body weight
(Figure 1A and data not shown). In contrast to the results in
neonatal mice, the relative weight of the thymus was not
diminished in adult animals deficient for PABo (Figure SIA),
a result that is consistent with our previous findings [34].
Western-blot analyses showed that all three PKB isoforms were
present within the thymus of wild-type neonates (Figure 1B, top
panel), rendering it possible that a deletion of either PKBp or PKBy
could also affect thymic size. Mice deficient for either of these
isoforms demonstrated, however, a normal thymus weight
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(Figure 1C). Moreover, the loss of one of the PKB isoforms was
not compensated by an upregulation in the expression of any of
the other isoforms (Figure 1B, bottom panel). Taken together,
these data indicate that the loss of expression of a PKB isoform is
not off set by higher expression levels of another isoform and that
PKBu is necessary for the normal size of the neonatal thymus.

The organ size is determined by the number and/or the volume
of its cells. While the size of thymocytes was not affected by the loss
of PKBa (Figure 2A), the number of PKBa~’~ thymocytes was
significantly reduced in newborns (but not in adults) when
compared to that of wild-type littermates (Figure 2B, left panel,
and S1B). Hence, a lower thymocyte cellularity accounted, in
neonatal mice, for the diminished tissue weight and also correlated
with a decrease in peripheral T cells (Figure 2B, right panel). To
determine whether the decreased thymic cellularity of neonatal
mice was caused by an increase in programmed cell death, we
performed TUNEL assay on thymus tissue sections as well as
annexin V/propidium iodide staining of thymocytes. The
frequency of apoptotic cells within the thymus was similar for
control and PKBa~’~ neonates, excluding the possibility of
increased programmed cell death to account for the noted
hypocellularity (Figure 2C and 2D).

The lack of PKBa leads to an accumulation of
thymocyte subsets at an early checkpoint during T

cell development

To address whether a partial or complete block in T cell
development could explain the hypocellularity observed in the
thymus of neonates deficient for PEBa, we analyzed in PKBo™*
and PKBo '~ mice the major thymocyte subsets. Using flow
cytometry, the main subsets of mutant mice displayed similar
relative frequencies when compared to age-matched wild-type
controls in both neonatal and adult mice (data not shown and
Figure S2A). We therefore excluded that a block in T cell
development would account for thymic hypocellularity in
PKBa~’~ neonates. However, a refined phenotypic analysis of
adult thymocytes revealed an accumulation at early developmental
stages, suggesting that, in addition to its effect on neonatal thymic
cellularity, the deletion of PKBu also affected T cell development.
Even though CD25 CD44" cell subset (designated DNI)
appeared to be reduced in PEKBa '~ mice (Figure 3A), when
analyzed for surface expression of c-kit, T cell precursors
(CD25~ CD44" c-kit") were only slightly affected (data not shown).
On the other hand, while CD25"CD44" (designated DN2) cell
subset was unchanged, a subpopulation of thymocytes that express
CD25 but lack CD44 at the cell surface (defined as DN3) was
increased in the adult PKBa~’~ thymus in comparison to wild-
type controls (Figure 3A). These DN3 thymocytes are at
a developmental stage immediately prior to the [-selection
checkpoint. DN3 thymocytes with a productively rearranged
TCRP locus and a successful expression of the pre-TCR complex
pass the f selection checkpoint, downregulate CD25, and develop
into thymocytes with a DN4 phenotype (CD25 CD44 ). In view
of an accumulation of DN3 cells in PKBo’~ mice, we
investigated whether it could be associated with a defect in TCRB
expression. We measured intracellular TCRf protein using flow
cytometry and found the expression of this receptor subunit in
DN3 thymocytes at comparable levels in both PKBa™’~ and
control mice (Figure 3B). Furthermore, PKBa** and PKBy /~
DN4 thymocytes expressed intracellularly the TCRf proteins
(Figure S2B). These results suggest that the PEBo. deletion does not
impair the rearrangement or the expression of the T7CRB chain
and that PKBua is not directly involved in the process of pre-TCR
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Figure 1. The deletion of PKBa leads to a reduced thymic size in mouse neonates. A: The weight of freshly dissected thymi was measured in

PKBo* and PKBo, ™/~

neonates (top panel) and expressed as ratio to body weight (bottom panel). The kidney was used as a control. Error bars

represent standard error of the mean; n=13. B: Western-blot analysis of 50 pig protein extracts from wild-type neonatal thymus using PKB isoform
specific antibodies (top panel). Western-blot analysis of 50 g protein extracts from PKBp~'~, PKBB*'*, PKBy’~, and PKBy™" neonatal thymi using
PKB isoform specific antibodies (bottom panel). Actin was used as a loading control. C: The weight of freshly dissected thymi was measured in
PKBB”*, PKBBf/f, PKBy*’*, and PKByf/f neonates (top panels) and expressed as ratio to body weight (bottom panels). The kidney was used as
a control. Error bars represent standard error of the mean. n=7 (n=number of mice analyzed per genotype).

doi:10.1371/journal.pone.0000992.9001

formation. However, the cell surface expression of the o chain of
the interleukin-2 receptor (CD25) was increased among DN3 cells
of PKBo.~’~ mice when compared to the equivalent subpopulation
of wild-type mice, suggesting a role of PKBu in cell signaling at this
stage of early thymocyte development (Figure 3C). Moreover,
a population of immature thymocytes expressing CD8, but still
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lacking the cell surface expression of both CD4 and CD3, and
displaying intracellular TCRf proteins, accumulated in the
thymus of PKBo./~ mutant mice (Figure 3D and 3E). These
thymocytes represent a stage immediately prior to that of DP cells
and are hence designated immature single CD8" thymocytes
(ISP8) [35]. However, no apparent differences in thymocyte
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Figure 2. The deletion of PKBa leads to a reduced number of thymocytes in neonatal mice. A: Thymocytes were isolated from neonatal PKBa**
and PKBa /™ littermates and their size compared by flow cytometry using the forward scatter (FSC) parameter. The histogram is representative of 3
litters. B: (left panel) Thymocytes were isolated and counted from PKBo*'* and PKBo. ™'~ neonatal mice. (right panel) Lymphocytes isolated from the
spleen of PKBo™* and PKBa.™’~ neonates were stained with anti-CD19 and anti-CD3 antibodies. The number of T cells (CD3*CD197) is shown. n=3.
Error bars represent standard error of the mean. C: TUNEL assay on neonatal thymus sections from PKBo”* and PKBo. ™/~ littermates. The graph
represents the quantification of TUNEL-positive cells from 5 fields on 3 sections. The result shown is representative of 3 independent experiments.
The bar shown on the pictures represents 200 um. Error bars represent standard error of the mean. D: Thymocytes were isolated from PKBx** and
PKBo. ™/~ neonates and stained with annexin V and propidium iodide (PIl). Histograms show results that are representative of 2 independent
experiments; n=3 (n=number of mice per genotype within the same experiment).

doi:10.1371/journal.pone.0000992.g002

proliferation, apoptosis, or size were detected when comparing compartment. Therefore, ablation of PKBo. expression in either
PEBo™"* and PKBay ™'~ specific thymocyte subsets (Figure S2C of these compartments could potentially account for the
and S2D and data not shown). Overall, our data reveal a critical impairment in the transition from DN to DP thymocytes. To
role for PKBu in the transition from a DN to DP phenotype with determine whether the observed phenotype was due to a lack of
a partial accumulation of DN3 and ISP8 thymocytes in mice PKBu in non-hematopoietic stromal and/or in blood-borne cells,
deficient for PRBo. expression. we next performed thymic grafting and fetal liver cell transfer

experiments, respectively. In the first instance, we assessed the
The accumulation of thymocyte subsets at the DN'to  ability of PABo™ "™ thymic stroma to support T cell development.

P . . For this purpose, embryonic day E15.5 thymi were isolated from
DP transition in early T cell development originates both PKBy’~ and wild-type embryos. The fetal lobes were

from the absence of PKBa in hematopoietic treated i vitro with deoxyguanosine for 6 days to deplete lymphoid
precursors cells, and then grafted under the kidney capsule of wild-type
The thymus is composed of a heterogeneous population of cells, recipient mice. Four weeks post transplantation, the number of
including thymocytes at various developmental stages and wild-type host-derived thymocytes developing within the PEKBo™'~
different stromal cells that are either hematopoietic, mesenchymal, grafted thymic stroma was significantly reduced when compared
or epithelial in origin. In thymocytes, PKBa was the main isoform to control tissue but regular thymocyte development was not
located downstream of PDK1 since PKBo.™’~ thymocytes showed affected (Figure 4B and 4C). In a second series of experiments, we
only minimally phosphorylated PKB levels at the PDKI1 de- evaluated the capacity of fetal liver derived-hematopoietic stem

pendent-Thr308 residue (Figure 4A). PKBo. expression was also cells (HSC) from wild-type and PKBo~’~ embryonic day E15.5
observed in thymic epithelial cells (JG and GAH, unpublished), donors (CD45.2) to recapitulate normal thymopoiesis in wild-type
which are the most abundant component of the stromal thymic stromal environment of lethally-irradiated congenic
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Figure 3. The lack of PKBa leads to an accumulation of DN3 and ISP8 early thymocyte subsets. Flow cytometric analysis of early thymocytes at the
transition from DN to DP. A: Density plots show thymocytes from PKBo* and PKBo. ™/~ mice that were stained with cell surface markers for
identification of lineage-negative thymocytes DN1 (CD25~CD44"), DN2 (CD25*CD44"), DN3 (CD25"CD44 "), and DN4 (CD25CD44 ™). B: Histograms
show the intracellular protein expression of TCRS (iTCRB) in DN3 thymocytes from PKBo”* and PKBa /™ mice. C: Histograms show the surface
expression of CD25 on lineage-negative PKBo™* and PKBo.’~ thymocytes. MFI: mean fluorescence intensity. D: Density plots and histograms show
thymocytes from PKBa™* and PKBo’~ mice that were labeled with cell surface markers for identification of ISP8 (CD4~CD8"CD3~) thymocytes. E:
Histograms show the intracellular protein expression of TCRS (iTCRp) in ISP8 thymocytes from PKBo”* and PKBa '~ mice. The results shown are
representative of 3 independent experiments on 4 to 6 week-old mice. n=4 (n=number of mice per genotype within the same experiment).

doi:10.1371/journal.pone.0000992.9003

(CD45.1) mice. Five weeks after reconstitution, the bone marrow
chimeras had similar overall numbers of thymocytes and
peripheral lymphocytes, irrespective whether they were derived
from PKBo '~ or wild-type fetal liver cells (Figure 4B). Flow
cytometric analyses further showed that PKBa~’~ HSC were able
to give rise to all thymocyte subsets (DN, DP, SP CD4*, and SP
CD8"), but again both DN3 and ISP§ cells accumulated to the
same extent as what had been observed in unmanipulated
PKBo’~ mice (Figure 4D). Taken together, these data indicate
that the accumulation of thymocytes during early T cell
development observed in PARBo-deficient mice is the specific
consequence of a lack of PKBa« in lymphoid cells.

The absence of PKBa in early thymocytes affects the
expression of genes known to be regulated in
thymocyte and T cell response processes, and in

interferon signaling

As the developmental changes at early stages of thymocyte
maturation appeared to be a cell-autonomous effect caused by the
loss of PRBo. expression, we next determined the gene expression
profile in DN3 and ISP8 cells using Affymetrix microarrays.
Expression data analysis of specific transcripts in wild-type DN3
and ISP8 sorted cells revealed that while PKBa was the main
isoform in both of these thymocyte populations, PKBf was
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expressed at a significantly lower level and PKBy was present in an
even lesser abundance (Figure 5A). These results suggest that PKBa
is the main isoform expressed in DN3 and ISP8 thymocytes.
Analyses of microarray data revealed that DN3 and ISP8
thymocytes were differently affected in their gene expression profiles
by the absence of PKBo with only 5 genes being differentially
expressed in both subpopulations (Tables 1 and 2). In the DN3
subset, the absence of PKBo resulted for example in a down-
regulation of the chemokine (C-C motif) receptor 9 (CCRY9), whose
expression is known to be induced upon pre-TCR signaling [36].
This result suggests that the absence of PKBo potentially affects pre-
TCR signaling in DN3. Moreover, the integrin alpha E epithelial-
associated (/tgae or CD103) gene, that is known to be expressed in DN
and whose product interacts with E-cadherin on thymic epithelial
cells, was downregulated in the absence of PKBa. Furthermore, 8
genes whose expression was modified in PEBo”’~ DNS3 are typically
induced by interferon and were systematically downregulated in cells
lacking PKBo. These genes constituted 50% of all the genes whose
expression was downregulated as a consequence of PKBo. ablation in
DN3 cells. In the ISP8 subset, several genes known to be induced in
their expression upon TCR activation or involved in T cell activation
were found to be downregulated in the absence of PKBo: the cell
membrane glycoprotein CD53 antigen, the lymphocyte antigen 6
complex locus A (Ly6a), the lymphocyte antigen 6 complex locus C
(Lybe), the T-cell specific GTPase (TGTP), or the MHC class 1I
antigen (H2-Aa). In contrast, transcripts for other gene products
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doi:10.1371/journal.pone.0000992.9004

known to act as negative regulators in TCR signaling, or in other DISCUSSION
athways involved in T cell activation, were upregulated in the . .
Ia)bsenceyof PKBe, including the suppressor of cyfoki]e signaling 3 The deletion of PKBa leads to a reduced size of the
(SOCS3), the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), thymus in mouse neonates, which is attributed to
or the immunoglobulin superfamily member Igsf3. Furthermore, hypocellularity
some genes whose expression was upregulated in PEBo’~ ISP8,
such as PTEN, Notch3, and one of its target genes Dix/, have
previously been shown to be involved in the transition from DN to
DP thymocytes [37,38]. Finally, 6 genes differentially expressed in
PEBo.”’~ ISP8 are interferon-inducible in their expression and were
systematically downregulated in cells lacking PKBo. These genes

The regulation of both cell number and volume contributes to the
establishment of organ size. A number of studies have implicated the
PI3K signaling pathway, and more specifically PKB, in determina-
tion of cell, organ, and body size. Tissue-specific activation of this
pathway, either by expressing active PI3K or PKB or by deleting
PTEN, results in an increased organ weight, a finding often
constituted 29% of all the genes whose expression was down- associated with enlarged cell volume [39—41]. In contrast, the
regulated in PKBo ™ ISP8 cells. ablation of a single PKB isoform causes a reduction in the size of the
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Figure 5. PKBa is the main isoform in DN3 and ISP8 thymocyte subsets. A: mRNA levels of PKBx, PKBf, and PKBy isoforms in DN3 and ISP8 thymocyte
subsets. The expression data obtained following microarray analysis were corrected for GC-bias within oligos, allowing gene expression signals to be
expressed on the same scale; this permits a semi-quantitative comparison of the expression of different genes. B: Proposed model of PKBo mediating PI3K
signaling at the transition from DN to DP thymocyte subsets. iTCRf; and TCR refer to intracellular and surface expression of TCRf, respectively.
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animal and/or specific organs. For instance, deletion of PRBo leads
to a 30% reduction of body weight [26,28,34], while ablation of
PEBy specifically causes a significant reduction in brain tissue due to
reduced cell number and size [29,32]. In this study, we report
a disproportionally reduced thymic size in PKBo. /™ neonates that
consistently show reduced thymic cellularity, the extent of which was
somewhat variable. This decrease was not due to an increase in
thymocyte apoptosis. Contrary to this latter result, a previous study
reported an increase in spontancous apoptosis among PEBo /™
thymic cells of adult mice [26] yet, this observation was not linked to
any reduced organ size. This apparent discrepancy between the two
studies may possibly arise from a variation in the age of the mice
analyzed and/or from differences in the genetic background; while
the genetic background of the PEBo.”’~ mice in our study was
statistically above 90% C57Bl/6, in the study reported by Chen et al.
it was an equal mix of C57Bl/6 and 129 R1.

The lymphoid component of the thymus is not self-renewing and
must be continually reseeded by fetal liver or adult bone marrow
derived thymic progenitor cells. As such, the decrease in thymocyte
numbers observed in PKBo’~ neonates could be lymphoid cell
autonomous and relate to a reduction in either the absolute number
or the efficiency of thymic progenitor cells. Alternatively, or
additionally, the thymic cellularity could be affected by a defective
thymic microenvironment in PEKBy '~ neonates. Indeed, PKBa-
deficient thymic grafts displayed a decrease in thymocyte number,
which was not associated with impaired T cell development. In
addition, in some of the PKBo '~ neonates, thymic sections
analyzed using hematoxylin and eosin staining as well as immuno-
histology displayed disorganized cortical/medullary epithelial cell
compartment (Figure S3). However, neither cellularity nor mor-
phology was abnormal in thymi of adult PKBa /™ mice nor in
PEBB™’~ and PKBy™’~ neonatal thymi. We speculate that the
hypocellularity observed in PKBa’~ neonatal thymi could be due to
a delay in thymic development, possibly and partly originating from
a defective microenvironment within the thymus at early stages.

The lack of PKBa in lymphoid cells leads to an
accumulation of thymocyte subsets at the DN to DP

transition in early T cell development
Alteration in specific components of the PI3K signaling pathway,
such as PDKI, leads to an impaired transition from DN to DP

@ PLoS ONE | www.plosone.org

thymocytes, suggesting an essential role of factors downstream of
PDKI1 in T cell development. PKB is the most important mediator
of the PI3K signaling and, from our data, PKBo is the main
functional PKB isoform positioned downstream of PDKI in
thymocytes. Our study highlights an accumulation of PEBo'~
DN3 and ISP8 thymocyte subsets. We attribute this accumulation
to a cell-autonomous lack of PKBoa within the T lymphoid
component of the thymus and concurrently exclude a contribution
by PRBo-deficient thymic stroma to this finding. While the
deletion of PKBa does not prevent further maturation to the SP
stages, our results indicate that PKBu is important in the transition
from DN to DP. This effect is not due to impaired TCRf chain
expression, even though we observed downregulated expression of
one of the numerous TCR-V segments (VB/3) in PKBa’~ DN3
thymocytes. Furthermore, the surface expression of the a chain of the
interleukin-2 receptor (CD25) was increased in the PKBo~ '~ DN3
subset. While with our current knowledge, we cannot relate this
observation to the phenotype observed, this increased CD25 surface
expression has also been reported in DN3 cells lacking PDK1 [17].
Our data suggest that the o isoform of PKB is an important effector
of PDK in the transition from DN to DP subsets, which constitutes
a critical step during T cell development. Interestingly, in view of the
reduced percentage of CD25~ CD44* kit~ thymocytes in PKBo™ "/~
thymi, PKBa could also affect a subpopulation of cells within the
thymus that is positive for CD44 surface expression but not (yet)
committed to the T cell lineage.

While one could hypothesize that the distinct phenotypes
reported in PKBo, PEBP, and PEKBy mutant mice are due to
specific and distinct functions of the PKB isoforms, it could be
equally well argued that these differences are merely due to a loss
of an abundant isoform, which leads in a specific tissue to
a reduction of total PKB below a critical level. Based on our data
concerning differential expression levels of PKBax, PKBf, and
PKBy in early thymocyte subsets, we predict that a combined
deletion of PRBa and PRBP would lead to a more extensive block
during early T cell development compromising thymocyte
maturation further. Mice lacking both PEKBo and PRBf, however,
die at birth with multiple defects [31]. Moreover, while complete
deletion of PDKT in early thymocytes arrests their progression to
mature T cells, reduced PDK1 expression to 10% of normal levels
still allows T cell development [17]. Therefore, the residual PKB
activity present in PEBo~ '~ thymocytes might be sufficient to
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permit thymocytes to progress to mature T cells despite
accumulation of early thymocyte subsets at the DN to DP
transition. Alternatively and in view of the potential role attributed
to the serine/threonine kinase S6K downstream of PDK1 [42], we
suspect that PKB and S6K could compensate for each other
during thymocyte development. This contention is further
supported by the finding that single S6K mutant mice fail to
reveal a defect in T cell development [43,44].

The signal transduction pathways that control thymocytes are
often recapitulated in mature T cells. From our data, a number of
genes whose expression is modulated upon the loss of PRBo are
known to be involved in pre-TCR and/or TCR signaling and T
cell activation. The presented results hence suggest that the
deletion of PKBa. affects the pre-TCR signaling in early
thymocytes. Interestingly, several recent reports show a significant
role of the PI3K pathway in the pre-TCR controlled develop-
mental transition of DN to DP thymocytes. For instance, TCRf-
deficient mice activated by anti-CD3e to mimic pre-TCR signals
reveal a significant impairment of their DN to DP progression in
the absence of p85a (the major regulatory subunit of PI3K) [45].
Moreover, only immature thymocytes with a functional pre-TCR
display evidence for PDK1 activation  situ [42]. Finally, deletion
of PTEN in T cells or expression of a constitutively active mutant
of PKB can substitute for the pre-TCR signals required for
thymocyte maturation [38,46]. PTEN expression is upregulated in
ISP8 thymocytes lacking PKBoa. Besides pre-TCR, the Notch
pathway controls T cell development during the progression from
DN to DP subsets. More particularly, Notch3 is normally
expressed in DN thymocytes and downregulated across the DN
to DP transition [47]. Mice expressing the intracellular domain of
Notch3 in thymocytes are characterized by the accumulation of
DN3 cells and the increased expression of CD25 [48]. Strikingly,
in PKBo.~’~ ISP8 thymocytes, we observed upregulation of Notch3
expression together with Dix/, one of its target genes. Nonetheless,
it remains to be investigated whether the upregulated Notch3
expression in PEBo '~ ISP8 cells is functionally linked to the
accumulation of DN3 and ISP8 thymocytes and the increased
CD25 surface expression among DN3 thymocytes.

A number of genes whose expression is known to be inducible
by interferon were systematically downregulated in PKBa /~
DN3 and/or ISP8 cells. Interestingly, the PI3K signaling pathway
was shown to be activated by both interferon-o and interferon-y
and to control important regulatory transcriptional events [49].
For instance, PI3K-PKB pathway plays an important role in the
phosphorylation of STAT1 (the main transcriptional effector of
interferon-y) and in subsequent activation of gene expression in
response to interferon-y [50]. In addition, PI3K is able to mediate
responses to interferon by acting independently of STAT and
represents an alternative pathway to the well studied Jak-STAT
pathway [49]. Moreover, both interferon-a and interferon-y
induce a rapid phosphorylation of S6K, which subsequently
phosphorylates the S6 ribosomal protein [49]; this activation was
shown to be dependent on PI3K and the mammalian target of
rapamycin (mTOR). PKB is involved in the activation of S6K via
an indirect activation of mTOR. Significantly, PDAI-deficient
early thymocytes lack phosphorylated S6 [17]. The functional
roles of the PISK pathway in mediating interferon signals in
various cell types, especially thymocytes, remain undefined. Our
results indicate that molecules typically induced as a consequence
of interferon signaling are involved in the DN to DP transition
during T cell development in a PKBa-dependent manner.

During the preparation and the revision process of our
manuscript, two publications have reported that the combination
of a T cell-specific PKBo. deletion with a complete or a T cell-
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specific PEBP deletion leads to a more extensive block at the DN
to DP transition [51,52]. The additional ablation of PRBy further
compromises T cell maturation beyond the DN stages [51].
Moreover, one of these reports shows that PKBat is the most highly
expressed isoform in the DN1-4 and DP subsets [52], which is in
line with and expands our expression analysis for DN3 and ISP8
thymocytes. Interestingly, while the absence of PKBa alone did
not result in apparent changes in proliferation and apoptosis (our
study), ablation of both PKBo and PKB (i) interferes with the
differentiation of DN3 [51,52], which was attributed to apoptosis
partially due to decreased cellular growth and metabolism [52], (i)
mhibits the proliferation of DN4 cells [51], and (ii1) reduces the
survival of DP thymocytes [51]. Furthermore, combined ablation
of all three PKB isoforms inhibits the survival of all the DN
thymocytes [51]. Finally, these two publications could show that
pre-TCR signals activate PKB [51,52], which supports one of the
conclusions from our microarray analysis. Together with our
study, these results further highlight the crucial role of PKB during
early T cell development and the fact that PKBf and, to a lesser
extent, PKBy isoforms compensate for PKBa« in this process.

Conclusion

In conclusion our data show that PKBoa, one of the three PKB
isoforms, plays a crucial role in thymic development and
represents a key effector of the PI3K signaling pathway in early
thymocyte development. Our results further indicate that PKBa
not only mediates signals downstream of the pre-TCR but also
regulates the expression of genes typically controlled by interferon
signaling during a critical transition in T cell development. We
suggest that PKBo could account, at least in part, for the block in
early T cell development reported in mice deficient for
components of the PI3K pathway upstream of PKB. Our results
are summarized in Figure 5B. The critical question now is to
identify the PKB targets that function at this checkpoint in
a phosphorylation-dependent fashion.

MATERIALS AND METHODS

Mice

Mice were group-housed with 12 hour-dark/light cycles and free
access to food and water, in accordance to the Swiss Animal
Protection Ordinance. All procedures were conducted with approval
of the appropriate authorities. PKBy '~ PKBp~’~, and PKBy '~
mice were generated in our laboratory and previously described
[32,34,53]. B6 Ly5.1 and Fox8 rosa26 mouse lines were obtained
from The Jackson Laboratory (Bar Harbor, ME, USA).

Western-Blot analysis

Tissues were homogenized in lysis buffer (50 mM Tris-HCI pH
7.5, 150 mM NaCl, 1% Nonidet P-40, 1 mM benzamidine,
1 mM phenylmethylsulfonyl fluoride, and 2 UM microcystin-LR
(Alexis Corporation, San Diego, CA, USA), 1 mM sodium
pyrophosphate, 10 mM NaF and 0.1 mM sodium orthopervana-
date) and debris removed by two centrifugation steps at 16 000 g
for 10 minutes at 4°C. Protein concentration was determined
using the Bradford assay (Bio-Rad Laboratories, Hercules, CA,
USA) with BSA as standard. Fifty pg of protein extracts were
separated by 10% SDS-PAGE and transferred onto PVDF
membrane (Millipore, Billerica, MA, USA) by electroblotting.
Membranes were blocked with 5% BSA in TBST (50 mM Tris-
HCI pH 7.5, 150 mM NaCl, and 0.1% Tween 20), incubated for
16 hours at 4°C with the primary antibody and 1 hour at room
temperature with horseradish peroxidase-conjugated anti-rabbit or
anti-mouse secondary antibodies, and analyzed using enhanced

October 2007 | Issue 10 | €992



chemiluminescence reagents (Amersham Biosciences, Piscataway,
NJ, USA). PKB isoform-specific antibodies obtained by immuniz-
ing rabbits with isoform-specific peptides have already been
reported [34]. Antibodies against phospho Thr308-PKB (the
PDKI site) and pan-actin were purchased from Cell Signalling
Technologies (Danvers, MA, USA) and NeoMarkers (Fremont,
CA, USA), respectively.

TUNEL assay

Mouse thymi were fixed in formalin (10% v/v) for 16 hours at
4°C. After dehydration in ethanol, samples were embedded in
paraffin, cut into 5 um-thick sections, and treated with 20 pg/ml
proteinase K for 10 minutes at 37°C. Endogenous peroxidase was
inactivated with 3% H,Os in methanol for 30 minutes at room
temperature. The sections were incubated in terminal deoxynu-
cleotidyl transferase (T'dT) buffer for 15 minutes at room
temperature and TdT and biotinylated dUTP for 1 hour at
37°C. Washing with 1X SSC (0.15 M NaCl, 0.015 M sodium
citrate) was used to stop the reaction. The Vectastain ABC kit
(Vector Laboratories, Burlingame, CA, USA) was used for color
development as described by the manufacturer. For quantification,
5 fields in each of 3 sections were counted for TUNEL-positive
cells.

Flow cytometric analysis and FACS sorting

Two million lymphocytes in suspension were stained at 4°C: for
20 minutes in FACS buffer (PBS and 2% FCS) with fluorescein
isothiocyanate (FITC)-, phycoerythrin (PE)-, Cy5-, and/or biotin-
conjugated antibodies to cell surface molecules. Biotinylated
antibodies were visualized with streptavidin-Cyb. For labeling of
thymocyte precursors, cells were stained with FITC-CD25, PE-
CD44, and biotin-CD4, CD8, TCRp, TCRyé, CD19, B220,
CD11b, CDllc, Gr-1, and NKI1.1. Cy5-negative precursor cells,
corresponding to lineage-negative cells, were analyzed for
expression of CD25 and CD44. Cells were stained with FITC-
CD3, PE-CD4, and Cy5-CD8 to label later stages. For labeling of
peripheral lymphocytes, cells were isolated from the spleen,
depleted of red blood cells, and stained with PECy7-CD19 and
Cy5-CD3. For intracellular staining, lymphocytes labeled with cell
surface markers were incubated for 16 hours at 4°C in fixation
buffer (BD Biosciences, San Jose, CA, USA) and processed in
permeabilization buffer (BD Biosciences). For the analysis of
thymocyte apoptosis, 10° cells were stained at 4°C for 20 minutes
in annexin binding buffer (Vybrant apoptosis assay kit #3,
Molecular Probes, Eugene, OR, USA) with FITC-annexin V and
propidium iodide (PI) according to the manufacturer’s instruc-
tions. For flow cytometric analysis, labeled thymocytes were
washed with FACS buffer, permeabilization buffer (when in-
tracellular staining), or annexin binding buffer (when annexin V-
PI staining) and analyzed on a FACSCalibur (Becton Dickinson,
Franklin Lakes, NJ, USA). Data were processed with Cell Quest
Pro (BD Biosciences). For FACS sorting, labeled thymocytes were
washed with FACS buffer, filtered on a 40 im-nylon membrane,
and sorted on the flow sorter MoFlo (DakoCytomation, Baar,
Switzerland).

Bone marrow transplant and thymic grafting

experiments

For bone marrow transplant experiments, fetal liver from PEBo
and PKBa '~ EI15.5 embryos (CD45.2) were dissected and
disrupted to single cell suspension by passages through a G25-
syringe. The resultant suspension was layered over Ficoll and spun
down for 25 minutes at 2 000 g. After removing the bufty coat, the

+/+
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fetal liver cells were washed, counted, and resuspended at 5x 10°
cells/ml. Bone marrow chimeras were generated by intravenous
injection of 10° fetal liver cells into lethally irradiated (2 x550 Rad)
4 week-old congenic recipient mice (CD45.1) on a C57Bl/6
background (B6 Ly5.1). The donor derived-lymphocyte popula-
tions were analyzed by flow cytometry 5 weeks post transplant.
For grafting experiments, fetal thymic lobes from PEBo™"* and
PEBo '~ El15.5 embryos were dissected and depleted of
thymocytes by 6 day-treatment with 1.35 mM deoxyguanosine.
Donor thymic stroma were then subrenally engrafted into 4 week-
old Fox8 rosa26 recipient mice. The grafts were analyzed by flow
cytometry 4 weeks post grafting.

RNA extraction and microarray experiment

DN3 and ISP8 thymocyte subsets were sorted by FACS from 4
PKBo.”"~ /wild-type littermate pairs. The same number of DN3 or
ISP8 cells was sorted (7 000 to 25 000 cells) within a PKBo '~/
wild-type pair. Total RNA was extracted using PicoPure™ RNA
isolation kit (Arcturus, Sunnyvale, CA, USA) according to
manufacturer’s instructions. RNA quality was controlled using
the 2100 Bioanalyser (Agilent Technologies, Santa Clara, CA,
USA). Total RNA was amplified and labeled using the Affymetrix
2-cycle 3’ labeling kit according to manufacturer’s instructions.
After fragmentation, 10 ig cRNA was hybridised to mouse
genome 430 2.0 GeneChips (Affymetrix, Santa Clara, CA,
USA). After scanning the Genechips in an Affymetrix 2500
scanner, transcript expression values were estimated using the GC-
RMA function provided by Refiner 3.1 (Genedata, Basel,
Switzerland) and statistical analysis was performed using Analyst
3.1 (Genedata). Genedata’s implementation of GC-RMA includes
the generation of an Affymetrix detection P-value. A gene was
considered to be reliably detected if it had a detection P-
value=0.04 (Affymetrix default, marginal calls ignored) in at least
2/3 of the biological replicates of a condition. A power analysis of
our experimental design showed we could expect to have a power
of 0.8 to distinguish samples differing by 1.5-fold with a normalised
standard deviation less than 0.461 and it could resolve differences
of 2-fold (power of 0.8) when the normalised standard deviation
was less than 0.613. We selected genes that were significantly
(paired t-test P=<0.05) modified by =1.5-fold between PKBo /~
and the corresponding control in at least three of the four pairs.
Only genes with expression data above 20 in at least one of the
conditions within a pair and in at least 3 pairs are displayed. The
microarray data have been deposited in the Gene Expression
Omnibus of NCBI (accession number: GSE7875).

Statistical analysis

Data are provided as arithmetic meanz*standard error of the
mean and tested for significance using one-way analysis of
variance (ANOVA). Only results with a P value of =0.05 (*) were
considered statistically significant.

Note
Materials and Methods related to Figures in Supporting In-
formation can be found in “Materials and Methods S1”.

SUPPORTING INFORMATION

Figure S1 'The deletion of PRBa does not affect T cell number in
adult mice. A: The weight of freshly dissected thymi was measured
in PKBo™"* and PEBo~ '~ adult mice and expressed as ratio to
body weight. B: Thymocytes were isolated from PEBo™" and

PKBa ™'~ adult mice and counted; cell number was expressed as
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ratio to body weight. n=3 (n=number of mice analyzed per
genotype). Error bars represent standard error of the mean.
Found at: doi:10.1371/journal.pone.0000992.s001 (0.87 MB TTF)

Figure 82 FACS analysis of different thymocyte subsets. A:
Density plots show the main thymocyte subsets from PKBa™"* and
PKBo.”’~ mice: DN (CD4~ CD8"), DP (CD4'CD8"), SP CD4*
(CD4*CD87), and SP CD8" (CD4~ CD8™. The results shown are
representative of three independent experiments on 4 to 6 week-
old mice. B: Histograms show the intracellular protein expression
of TCRf (fTCRP) in DN4 thymocytes from PEKBa*’* and
PEBo’~ mice. C-D: Histograms show BrdU incorporation (C)
or annexin V staining (D) in specific thymocyte subsets from
PEBo* and PKBo™/ ™ mice.

Found at: doi:10.1371/journal.pone.0000992.s002 (5.85 MB TTF)

Figure 83 The deletion of PKBo. tends to lead to disorganized
thymic structures in neonates. A-B: Hematoxylin and eosin
staining of 5 Wm-thick sections from formalin-fixed paraffin-
embedded mouse thymi from (A) PKBo™* and PKBo '~
littermates at neonatal and adult ages and (B) PEBP*™*,
PEBP~’~, PKBy"", and PKBy~’~ neonatal littermates. The bar
shown on the pictures represents 200 um. C: Immunohistochem-
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