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Abstract
Central tendency, linear regression, locally weighted regression, and quantile techniques were
investigated for normalization of peptide abundance measurements obtained from high-throughput
liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR
MS). Arbitrary abundances of peptides were obtained from three sample sets, including a standard
protein sample, two Deinococcus radiodurans samples taken from different growth phases, and two
mouse striatum samples from control and methamphetamine-stressed mice (strain C57BL/6). The
selected normalization techniques were evaluated in both the absence and presence of biological
variability by estimating extraneous variability prior to and following normalization. Prior to
normalization, replicate runs from each sample set were observed to be statistically different, while
following normalization replicate runs were no longer statistically different. Although all techniques
reduced systematic bias to some degree, assigned ranks among the techniques revealed that for most
LC-FTICR MS analyses linear regression normalization ranked either first or second. However, the
lack of a definitive trend among the techniques suggested the need for additional investigation into
adapting normalization approaches for label-free proteomics. Nevertheless, this study serves as an
important step for evaluating approaches that address systematic biases related to relative
quantification and label-free proteomics.
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INTRODUCTION
Confident identification of many thousands of peptides is feasible in single experiments using
liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-
FTICR MS) and the accurate mass and time (AMT) tag approach1 and has provided the basis
for higher throughput proteomics measurements where the relative abundances of peptides are
compared2. Changes in relative peptide abundances (and by inference, protein abundances)
can be viewed not only as a function of actual biological change, but also of bias and noise.
Bias, resulting from systematic errors in experimentation, sample preparation, and
instrumentation, is either independent of or dependent on the magnitude of the measured
parameter denoting abundance. Noise often results from random errors in experimentation,
sample preparation, and instrumentation. Both bias and noise lead to extraneous variability

Correspondence to: Mary S. Lipton.
‡Biological Separations and Mass Spectrometry K8-98
||Biological Monitoring/Modeling P7-56
§Computational Biology & Bioinformatics K7-90

NIH Public Access
Author Manuscript
J Proteome Res. Author manuscript; available in PMC 2007 September 24.

Published in final edited form as:
J Proteome Res. 2006 February ; 5(2): 277–286.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



among replicate samples and can affect the accuracy and precision of biological research
conclusions.

Isotopic labeling of peptides, either metabolically or chemically prior to mass spectrometric
analysis, has been applied to reduce the effects of extraneous variability 3–6. This practice has
parallels in genomic studies that utilize microarrays in which cDNAs from conditions to be
compared are labeled with different fluorophores. Both practices seek to nullify bias from
sample/array preparation, as well as from instrumentation used to detect and measure arbitrary
abundance. However, in cases where abundance data from multiple arrays or multiple LC-
FITCR-MS runs are generated, e.g., as for the comparison of multiple conditions to a common
condition, normalization of the data is still required to account for extraneous variability.
Another practice in microarray studies is to use a single fluorophore for both conditions and
multiple arrays (one array for each condition) to avoid bias associated with using two
fluorescent reporters 7. This practice has a parallel in proteomics where peptides are not
isotopically labeled prior to instrument analysis. In such a practice, data from one array or run
(or replicates) that represents the common baseline is used to create the relative abundance
comparisons 1

Because proteomics labeling techniques have limitations associated with cost, often smaller
proteome coverage due to labeling selectivity, applicability, and differences in labeling
efficiency, 8, 9, quantitative “label free” analyses are of growing interest 10. Such approaches
may become more useful with very low flow rate separations that would allow electrospray
ionization efficiency to be optimized and where response is projected to be more quantitative
in nature, which has been demonstrated for simple mixtures 11, 12. For more complex samples,
normalization could be used as means of reducing extraneous variability that results from less
than optimal ionization efficiencies. Other sources that could potentially introduce extraneous
variability include LC carryover and different sample injected masses. Ideally, whether labeled
or unlabelled samples are utilized the use of exogenous controls (spiking controls) would be
an appropriate option for addressing extraneous variability. While these controls are available
for microarray studies, a set of universally applicable proteomics controls is presently not
available.

Herein, we present the results from an evaluation of four normalization techniques—1) central
tendency (global normalization) 13, 2) linear regression 14, 3) local regression 15, and 4)
quantile 16—used to reduce extraneous variability in high-throughput proteomics. These
normalization techniques have been extensively applied to gene expression data obtained from
laser or optical scanners that measure fluorescent emission from single- or dual-fluorescently
labeled hybridized microarrays, where a variety of statistical methods are needed to deal with
assumptions related to systematic biases. The same underlying assumptions, which include
independent versus dependent systematic biases and the scale on which data should be included
in the normalization process (global versus local scale), have application to high-throughput
proteomics. Therefore, our evaluation of these techniques for relative quantification of non-
isotopically labeled peptides was performed with the expectation that these results would prove
useful for the development of more suitable normalization techniques for proteomics data.

In our study, normalization techniques were evaluated using data from three sets of samples
that represented important levels of proteome complexity. The first sample set consisted of
standard proteins. The second set consisted of two Deinococcus radiodurans samples, one
taken during the early-log growth phase and the other taken during the stationary growth phase.
The third set consisted of two striata samples, one taken from the brain of a control mouse and
the other taken from a methamphetamine-stressed mouse. Replicate relative peptide abundance
ratios obtained from each sample set were used to address normalization in both the absence
and presence of biological variability.
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EXPERIMENTAL SECTION
Sample preparation

Standard proteins—Fifteen commercially available proteins were combined (1 mg/ml in
8 M urea) to produce the standard sample of proteins described in Supplementary Table 1
online. This sample was incubated at 60° C for 1 hr in 8 M urea and 5 mM dithiothreitol (DTT)
to denature and reduce the proteins. An additional incubation was carried out in the dark for
1.5 hr at 60° C in the presence of 20 mM iodoacetamide to alkylate cysteine residues. The
sample volume was then increased 10-fold by addition of 100 mM NH4HCO3 (pH 8.4) and
proteins digested overnight at 37° C by modified porcine trypsin (Promega). Following
digestion, the sample was passed through a 1 ml SPE C18 column (Supelco) to remove salts.
Eluted peptides were adjusted with 25 mM NH4HCO3 (pH 8.4) to a final concentration of 0.1
μg/μl.

Deinococcus radiodurans—Cells grown in tryptone/glucose/yeast extract (TGY) medium
1 were harvested at ~ 16 hr (OD600 0.110) and ~46 hr (OD600 0.991) following inoculation.
These harvesting times corresponded to early log phase growth and stationary phase growth,
respectively. Harvested cells were concentrated by centrifugation, then immediately frozen in
liquid nitrogen. For sample preparation, portions of the frozen cultures were suspended in 100
mM NH4HCO3, (pH 7.8) washed once using this buffer, and lysed by bead beating for 3 min
using 0.2 mm zirconian beads. Proteins were separated from the lysed cells and digested into
peptides according to previously published protocols 1.

Brain tissue—The brain striata from both control mice and those in which a model of
Parkinson’s disease had been induced by methamphetamine (MA) use were dissected for
comparative analyses. The mouse Parkinson’s disease (PD) model was created by
administrating toxic doses of methamphetamine (MA) to inbred C57BL/6J mice. Adult
C57BL/6J male mice (10 wk, 25 – 31 g) received four i.p. injections of MA hydrochloride (10
mg kg−1 injection−1 using 1.5 mg ml−1 solution) at 2 hr intervals 17. Control animals received
vehicle alone. The mice were analyzed 7 days after either MA treatment or placebo. Brain
material was solubilized using 99% formic acid and heat and then neutralized with ammonium
hydroxide. Next, the acid-labile detergent RapiGest® (Waters) was added to 1% and the
reducing agents, tributylphosphine and tricarboxyethylphosphine, were added to 40mM. The
solution was digested with methyl-modified trypsin at a 1:20 ratio for 18 h at 37° C.

LC-FTICR MS analysis
Quadruplicate sub-samples taken from the standard proteins, early-log phase growth,
stationary phase growth, control mouse striata tissue, and MA-stressed mouse striata tissue
samples were consecutively analyzed 1 using a capillary LC system developed in house
coupled to a modified 9.4 tesla FTICR MS (Bruker Daltonics) 18. Separations on the LC system
were achieved with 5000 psi reversed-phase packed capillaries (150 μm i.d. ×360 μm o.d.;
Polymicro Technologies) using two mobile phase solvents: 0.2% acetic acid and 0.05% TFA
in water (A) and 0.1% TFA in 90% acetonitrile/10%water (B). Flow through the capillary
HPLC column was ~1.8 μl/min when equilibrated to 100% mobile phase A. Eluant from the
HPLC was infused into the mass spectrometer by an electrospray ionization (ESI) interface to
an electrodynamic ion funnel assembly coupled to a radio frequency (RF) quadrupole for
collisional ion focusing and highly efficient ion accumulation and transport to the cylindrical
ICR cell for analysis. Mass spectra were acquired with approximately 105 resolution and
analyzed using ICR-2LS software developed in our lab 2. Measured peptide abundances where
determined by integrating the areas under each peak of the spectra following deconvolution of
ion currency measured by the FTICR instrument 2. Only peaks with amplitudes larger than a
signal to noise ratio (S/N) of at least 5 were used in calculating peptide abundances. At this S/
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N the impact of background on calculated peptide abundances was estimated as not being
significant. Peptides common to all LC-FTICR MS runs for a given sample were used for
normalization.

Normalization techniques
Normalization techniques remove systematic bias incorporated into abundances of peptides
observed in the samples that can result from protein degradation, variation in sample loaded,
measurement errors, etc. Before normalization, data was transformed into the log scale. Even
though the relationship between peptide abundance and detector measurement is expected to
be linear, log transformation has several advantages similar to those highlighted for microarray
data 19. Using such a transform converts the distribution of ratios of abundance values of
peptides into a more symmetric, almost normal distribution. This allows the use of several
robust normalization techniques that have been developed for such data. Also, a log transform
reduces the leverage of a low number of highly abundant species on the regression analysis
used by these robust techniques.

In addition to the log transformation, all normalization methodologies, with the exception of
the quantile approach, were carried out by plotting data in a ratio versus intensity plot (refs),
or also commonly described as an M versus A (minus versus average) plot (refs.). Where, the
ratio of peptide abundances is:

mi = log2 xi, j=1 − log2 xi, j=2 = log2 (xi, j=1 / xi, j=2), 1)

with xi,j as the arbitrary abundance obtained from summed peptide peak intensities measured
by capillary LC-FTICR MS for the given peptide, i, in sample j. The intensity portion of the
plot is calculated as:

ai = (log2 xi, j=1 + log2 xi, j=2) / 2 = log2 (xi, j=1 xi, j=2) / 2 2)

The ratio versus intensity ordinate system is a re-scaling and counterclockwise rotation of the
x versus y coordinate system, and allows for an easier observation of trends (both linear and
nonlinear) resulting from biases 19. This easier observation of trends is due to the dependency
of the ratio of abundances for a peptide d on the measured abundances, including bias, from
both samples rather than just one sample as in the case of an x versus y coordinate system.
After normalization, normalized values for xi, j=1

′  and xi, j=2
′  were found by de-convoluting

mi
′ and ai, using 16:

xi, j=1
′ = 2

(mi
′+2ai)/2

and xi, j=2
′ = 2

−(mi
′−2ai)/2

. 3)

Central tendency normalization—This normalization technique centers peptide
abundance ratios around a mean, median, or other fixed constant to adjust for the effects of
independent systematic bias and has often been defined as “global” or “total intensity”
normalization by those performing microarray analyses because it utilizes all intensities of
hybridized probes on the microarray 13, 20, 21. Yet, this normalization technique can
potentially utilize a subset of genes 20 or peptides that target known conserved proteins.
Therefore, in this study, we use the term “central tendency” instead of “global”. Proteomic
analysis requiring central tendency normalization may occur, for example, when different
peptide masses from different samples are injected into the LC system for comparative analysis.
This mass difference results in the measured abundances of peptides from each sample being
separated by a constant factor. In this study, all peptides with arbitrary abundances obtained
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from measured peptide peak intensities were utilized for normalization and normalized relative
abundance ratio mi

′ was calculated by subtracting the arithmetic mean of the population of
peptide abundance ratios from the abundance ratio for each peptide 14, 22:

mi
′ = mi − μ. 4)

Linear regression normalization—This normalization technique assumes that systematic
bias is linearly dependent on the magnitude of peptide abundances 14, 16. For example, sample
carry-over on an LC column can potentially result in inflation of measured abundances of
selected peptides that elute from the system due to overlapping peaks. 16, 19, 23. Linear
regression normalization was performed by applying least squares regression to the scatter
plot. The resulting first order regression equation was used to calculate each normalized peptide
ratio:

mi
′ = mi − mi

∗, 5)

where mi
∗ is the predicted peptide ratio calculated from the regression equation. The value of

a predicted peptide ratio represents the deviation from the abscissa to the regression line.
Therefore, a linear regression equation with a slope greater than zero indicates a proportionately
larger amount of bias as the magnitude of ai increases. As a result, a proportionately larger
deviation is subtracted from the un-normalized peptide ratio.

Local regression normalization—This technique assumes that systematic bias is non-
linearly dependent on the magnitude of peptide abundances 13, 14, 24. This non-linearity
potentially results from the effects of ion suppression on measured peptide abundances, or on
measured peptide abundances approaching detector saturation or background. To adjust for
this type of bias linear regression analysis was performed on localized subdivisions of the
peptide populations using the 2D data smoothing object and LOWESS algorithm 15 packaged
with SigmaPlot™ version 8.0 (SPSS Inc., Chicago, IL) to find the predicted value for each
peptide ratio. Normalized peptide ratios were calculated in the same manner as the linear
regression technique. The fraction of peptides for inclusion around the peptide ratio to be
normalized was set at 0.4. The value of this fraction increases in magnitude up to 1.0 with an
increasingly greater number of peptides included in the subdivision surrounding the peptide
ratio to be normalized. Our selection of 0.4 was based on the observation that values <0.4
resulted in plotted regression lines not being smooth, while values >0.4 resulted in plotted
regression lines being approximately linear.

Quantile normalization—This technique employs a nonparametric approach that was
originally designed for multiple high density arrays, such as those created by Affymetrix
GeneChip®, where measured intensities from a single fluorophore are normalized to a common
distribution 16. This approach is based on the premise that the distribution of peptide
abundances in different samples is expected to be similar and can be accounted for by adjusting
these distributions. In our study, arbitrary peptide abundances measured across multiple FTICR
runs were compared relative to a common base-line to create a set of replicates, which were
then normalized using the quantile approach. Normalization was performed by:

1. Assigning each sample replicate to a column and placing the abundance values for
peptides common to all replicates in the same row.

2. An index was assigned to each peptide abundance value in the column.

3. Each column was then sorted.
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4. After sorting all replicates by abundance value, the mean arbitrary abundance for each
row, was substituted for each abundance value in the row.

5. The normalized relative abundance for a given peptide was then found by restoring
the original order of the assigned indexes for each replicate.

When adapted to the relative quantification of peptides, this normalized abundance represents
the transformation m* = F−1(G(m)), where G represents the empirically estimated distribution
of each replicate and F is the mean of the quantile 16.

Evaluation of normalization techniques
A comparison matrix was created to evaluate the four normalization techniques and to observe
the effect of different baselines on normalization. Each column within the matrix represented
one of four sub-samples from one condition (early-log growth for D. radiodurans or control
striata tissue from laboratory mice) and each row represented one of four sub-samples from a
different condition (stationary phase growth for D. radiodurans or methamphetamine-stressed
striata tissue from laboratory mice). Each element within the matrix represented the comparison
of replicates relative peptide abundances created from the two conditions. To evaluate the
normalization techniques in the absence of biological variability, both columns and rows of
the comparison matrix contained sub-samples from the same condition.

Elements under a column (referred to as a block) were normalized using the sub-sample (i.e.,
LC-FTICR run) at the head of each block as the common baseline. An iterative process adapted
from the normalization of multiple replicate microarrays 16 was applied to the central tendency,
linear regression, and local regression normalization techniques, but was not required for
normalization with the quantile technique. The iterative process for this technique was
performed by subtracting the normalized mi* from the previous un-normalized mi. The original
un-adjusted peptide abundance ratio was then replaced by the normalized abundance ratio and
the iteration process continued until the difference between the mean of all abundance ratios
from the previous iteration and current iteration was ≤0.005.

To compare the four normalization approaches, extraneous variability was estimated by:
calculating the pooled estimate of variance (PEV) 25 of peptide abundance ratios as:

σp
2 =

(n1 − 1)σm1
2 + (n2 − 1)σm2

2 K

(n1 − 1) + (n2 − 1) K . 6)

Where, σmi
2 ,  is the variance across instrument runs for a given peptide and ni is the number

of runs. In the absence of biological variability, the log abundance ratios of peptides should
equate to zero. Hence, the variance across sub-samples for a peptide used to calculate PEV in
this case are based on a deviation from zero rather than the mean. The median coefficient of
variation (CV) was also calculated for the population peptide abundances, xi,j, to assess
reproducibility of instrument analyses prior to and following normalization. All estimators
used in this analysis have been previously applied to evaluate normalization approaches in
microarray studies and have application here, as well 14, 26.

RESULTS
Normalization in the absence of biological variability

Differences in LC-FTICR MS runs are is graphically depicted in Figure 1 for a block of
elements selected from each sample set, i.e., standard proteins, D. radiodurans, and mouse
striata tissue. Prior to normalization, little overlap was observed among the elements. Because
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we are comparing LC-FTICR analyses of non-isotopically labeled sub-samples we assume that
the lack of agreement due to extraneous variability was introduced in the analysis. A noted
lack of agreement was evident for the block elements created from the 4 runs representing the
standard proteins sample (Figure 1a). In the raw data not only are the elements almost
completely separated, but at lower intensities the ratios of relative abundance are shifted
upward as indicated by local regression results. This upward trend may have e.g. resulted from
the base-line abundances of these peptides subsiding in the lower region of the dynamic range
of the instrument, i.e., close to instrument background. For these elements and for the other
blocks of elements created from the replicate instrument analyses that corresponded to each
sample type, we found that normalization improved agreement, although the degree of
improvement varied depending on the normalization approach used.

Pooled estimates of variance (PEV) and median CV values are presented in Table 1 prior to
normalization and following normalization (separated by a dash). The approach that resulted
in the largest percent reduction (provided in parentheses) is also indicated (superscripted letter).
Evaluation in greater detail of the different sample blocks revealed which LC-FTICR MS run
(used to create the relative comparisons) was the largest contributor to extraneous variability.
For example, block 1 of the standard proteins sample (that consisted of Runs 2, 3, and 4, each
relative to Run 1) had the largest PEV compared to the other blocks, indicating that Run 1
contributed the most to extraneous variability, possibly due to small amounts of peptides carried
over from the previous run. (We observed that the first runs for the early-log phase and
stationary phase D. radiodurans growth samples were also the largest contributors to
extraneous variability.) However, for these two runs this observation was not unexpected since
these samples were analyzed roughly three months prior to the other runs, during which time
the LC column was also replaced.

A comparison among blocks within each sample, with the exception of the blocks
corresponding to the early-log phase sample, did not obviously reveal one normalization
approach that consistently resulted in the largest percent reduction of extraneous variability.
For example, quantile normalization resulted in the largest percent reductions for Blocks 1 and
4 of the standard proteins sample, while for Blocks 2 and 3, linear regression resulted in the
largest percent reduction (Table 1). This also demonstrated the impact of base-line selection
on the normalization process. A similar observation was made when using the median CV as
the estimator. For Blocks 1 and 4 of the standard proteins sample, linear regression resulted in
the largest improvement in reproducibility, while for Blocks 2 and 3, central tendency and
quantile normalization, respectively, out performed the other approaches.

As a means to reconcile the performance of the different normalization approaches each
normalization approach for a given block was ranked by percent reduction, with the lowest
rank assigned to the approach that exhibited the largest percent reduction. From these ranks, a
mean rank for each normalization approach was calculated. Mean ranks based on PEV are
presented in Table 2. For the standard proteins sample, normalization using linear regression
received the lowest ranking, indicating on average deviations of peptide ratios from zero
exhibited the largest reduction with this approach. This rank was significantly different than
the ranks assigned to the central tendency approach (p-value 0.049, agr; = 0.05), which ranked
third, and the local regression approach (p-value <0.001), which ranked fourth. Although the
quantile approach ranked 2 on average its associated standard deviation suggested that this
ranking could not be considered different among ranks for the other approaches. A similar
scenario was observed for the control striata tissue sample. For the early-log phase sample,
quantile normalization ranked highest among normalization approaches, and this ranking was
significantly different than the assigned ranks for the other approaches. Quantile normalization
also ranked highest among the approaches for the MA-stressed mouse striata tissue, although
this ranking was only significantly different from the ranking assigned to central tendency
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normalization. For the stationary phase sample type, the best performing normalization
methodology could not be identified.

Ranking in terms of largest percent reduction in median CV is presented in Table 2. For the
standard proteins sample, central tendency ranked better than the other approaches, indicating
that on average peptide abundances exhibited greater reproducibility following application of
this normalization approach. However, this rank was only statistically different compared to
the rank assigned to the local regression approach (p-value 0.013), which consistently ranked
worst (indicated by the standard deviation assigned to the average rank) for all blocks. A similar
result was observed for the early-log phase sample type. For the stationary phase and control
mouse striata tissue sample types, linear regression normalization ranked best, but the
significance of this rank varied among the other approaches within these sample types. Only
in the MA-stressed mouse striata tissue was the best ranking (assigned to local regression
normalization) and worst ranking (assigned to quantile normalization) significantly different
than the other ranks assigned to the normalization approaches.

To obtain a more general understanding of how the approaches compared, an overall rank was
calculated from summed ranks across sample types for each estimator used in the evaluation
(the last columns of Tables 2). The amount of uncertainty associated with each summed rank
was calculated by propagating the deviations from the mean ranks, i.e., the square root of the
summed deviations, with each deviation being raised to the second power before being
summed. A plot of these summed ranks along with their uncertainties is presented in Figure 2.
In terms of PEV (Figure 2A), summed ranks for linear regression normalization and quantile
normalization were similar, but distinctly better than the summed ranks for central tendency
and local regression normalization, which suggested that these two approaches performed
generally better at reducing extraneous measurement variability than the other approaches. In
terms of median CV (Figure 2B), summed ranks for linear regression and central tendency
normalization were similar, but distinctly better than the summed ranks for local regression
and quantile normalization. The observation that linear regression normalization ranked better
among the four approaches for both estimators suggested that this approach was an appropriate
starting point to address extraneous variability reduction in future proteomic studies.

Normalization in the presence of biological variability
The relative comparison of proteomes from multiple biological conditions adds to our
variability model the additional dimension of biological variability. Here, normalization seeks
to reduce biases and improve the conclusions from comparative analyses. We were interested
in observing how the selected normalization approaches compared in terms of reduction in
extraneous variability and improved reproducibility for replicates with this additional
dimension. For this, columns of the comparison matrix represented one of four LC-FTICR MS
runs (or sub-samples) taken from the stationary phase growth D. radiodurans sample, and rows
represented one of four LC-FTICR MS runs taken from the early-log phase growth D.
radiodurans sample. A similar comparison matrix was created for the control and MA-stressed
striata tissue samples. For both sample sets, run comparisons within each block were
normalized as above where biological variability was absent. Extraneous variability was
estimated again by calculating the pooled estimate of variance (PEV) of peptide abundance
ratios; however, the mean relative abundance ratio of each peptide common across elements
within a block instead of a theoretical abundance ratio was used to estimate variance. The use
of the mean relative peptide abundance ratio was chosen because the true relative abundance
ratio for each peptide was unknown. Reproducibility of de-convoluted peptide ratios was also
estimated by the median CV for the population of calculated peptide abundances common
across sub-samples as described above.
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Results prior to and following normalization for the growth phase and mouse striata
comparisons, in terms of PEV and median CV, are presented in Table 3. The normalization
approach that resulted in the largest improvement is indicated by the superscripts. Quantile
normalization resulted in the largest percent reduction in PEV for all blocks of replicates and
for both the D. radiodurans and mouse striata relative comparisons. Only one exception was
observed with the early-log versus stationary phase growth comparison. Here, linear regression
normalization for the replicates within Block 1 had a slightly greater percent reduction in PEV
(73% versus 71%). In terms of median CV, central tendency normalization consistently
resulted in the largest improvement in reproducibility of peptide abundances, also with the
exception of one block in each condition where the quantile approach did better. It was
interesting to observe, in contrast to the addition of biological variability, how in the absence
of biological variability the normalization approach which performed best per block was not
as consistent within a given sample type. Here, in the absence of biological variability, the
random error component (noise) of the extraneous variability model may play a larger role
than systematic bias.

Ranks assigned to each normalization technique in terms of percent reduction in PEV are
provided in Table 4 to help evaluate the performance of all normalization approaches. Once
again, a lower rank value indicates greater percent reduction. Here, central tendency
normalization and linear regression normalization have similar rankings for both the growth
phase comparison and striata tissue suggesting that neither method performed significantly
different. On the other hand, local regression normalization ranked last for both condition
comparisons, with a high degree of statistical significance for the stressed versus control striata
tissue (p-values ranging from <0.001 to 0.002). This technique has performed well for
normalization of microarray data, and we speculated that the poorer performance of this
approach relative to the other normalization approaches may have been due to the number of
peptides included in the subdivision around the peptide ratio to be normalized. To test this
premise, normalization of the stressed versus control striata tissue was repeated using
increasingly larger fractions (>0.4) and increasingly smaller fractions (<0.4). At a fraction of
0.9, the percent reduction in PEV for all blocks was similar to central tendency and linear
regression normalization techniques (26% to 33% depending on the block). However, no
improvements in percent reduction (22% to 33% depending on the block) were observed as
the fraction was reduced to 0.2. This observation suggests that the systematic bias associated
with this peptide data is more likely linearly rather than non-linearly related to the magnitude
of measured abundances.

Table 4 also ranks each normalization approach in terms of percent reduction in the median
CV (lower rank value indicates greater percent reduction). Central tendency and linear
regression ranked significantly better than local regression and quantile normalization of data
obtained from samples with biological variability. In contrast to the assigned ranks for the PEV
estimator in which quantile normalization ranked first, this technique was ranked last for the
growth comparison and second to last for the mouse striata tissue comparison. This may be
understood, in part, by considering the procedure used for this normalization approach. For
example, it is desirable that upon sorting relative peptide abundances for each element in a
given block, peptides observed across each element should be positioned relatively close, i.e.
should have a small magnitude of distance between their assigned indexes. However, if one
element has a few relative peptide abundances that are extreme in terms of their magnitudes,
then the proximity of peptides after sorting can be biased by these extremes. Thus, when the
mean relative peptide abundance across each row of sorted elements is assigned and then the
elements re-sorted by the original assigned index, a larger CV can result than what was
originally present.
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Figure 3 compares the performance of the quantile approach, in terms of the median CV
estimator, with the other approaches for a given block of elements from the comparison matrix
representing the growth phase relative comparison. Prior to normalization, element 1 exhibited
significant deviation from the other elements plotted as quantiles. The box plot for this element
(Figure 3a inset) shows a number of relative peptide abundances with values considerably
larger than the other replicates. Interestingly, the arbitrary abundances of peptides relative to
the baseline used to create this element were measured roughly three months prior the arbitrary
abundances of peptides used as the common baseline, which helps to explain the poorer
performance of the quantile technique in this case Following quantile normalization, the
deviation of Replicate 1 from the other replicates is reduced (Figure 3b) representing an
improvement in median CV. In comparison, normalization using central tendency resulted in
a smaller deviation of elements plotted as quantiles in Figure 3c. Although the median CV was
reduced by ~40% following quantile normalization, this reduction was significantly less than
the percent reduction observed by central tendency normalization (~60%).

DISCUSSION
Ideally, the most appropriate normalization technique is selected after the causes of systematic
bias are identified and characterized according to observed trends across the dynamic range of
detection. However, this approach is seldom taken due to the challenge of identifying and
defining the wide range of possible contributions in both sample processing and analysis to
the overall bias. More commonly, different normalization techniques are compared, and the
technique that best minimizes extraneous variability is selected. The use of isotopically labeled
data can also prove useful in this comparison by evaluating the distributions of unlabeled
abundance ratios to labeled abundance ratios of replicates prior to and following normalization.
Unfortunately, isotopic labeled data for the experimental datasets used here was not available.
However, 14N/15N and unlabeled samples from Shewanella oneidensis oxic and sub-oxic cell
cultures has been published in connection to the demonstration of the AMT approach 27, 28.
We have included a distribution comparison of un-normalized and normalized replicates of
unlabeled and labeled abundance ratios as Supplementary Figure 1. In general, the
normalization evaluation presented here allows for the further adaptation of the selected
techniques or development of a new technique, as additional knowledge concerning extraneous
variability is obtained.

Of the four normalization techniques evaluated in this study, the quantile technique was the
most unique in that an iterative process was not required for normalization. Additionally, this
normalization technique does not force the means of replicate samples to converge upon a
predetermined value, as was observed in the case of the other three normalization techniques
(i.e., central tendency, linear regression, and local regression), where the mean of relative
peptide abundances were forced to converge to zero. When the quantile technique was applied
to our data, the mean of the common distribution following normalization fell within the range
of means for the compared runs. This observation has an important implication related to the
selection of a normalization technique and to the number of peptides common to all replicates
runs used in the normalization process. Since we opted to perform central tendency, linear
regression, and local regression normalization on a global scale, where measured abundances
of all common peptides are used, we assumed that the leverage of peptide ratios containing
biological variability on the mean relative abundance of the set of peptide ratios would not be
significant. Such an assumption is commonly made for mRNA expression analysis where
arrays are designed to target a large or complete set of open reading frames 21. In the case of
high-throughput proteomics large number of peptides can be detected, but peptides can fail to
be detected for many reasons (changes in the LC separation, the overshadowing of less
abundant peptides by highly abundant peptides in the same spectrum, variations in MS
performance, etc.) 3, 10. Hence, the mean relative abundance of replicate sets of peptide ratios
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may indeed lie above or below zero. In such a case, quantile normalization would be more
suitable for reducing variability among these replicate runs.

To test the validity of this assumption, peptides from a control set of proteins is required.
However, in the absence of such a control set, evaluation of conserved proteins may add insight
into the appropriateness of the applied normalization technique 29. A few of these proteins
were identified in the Deinococcus growth phase samples including glyceraldehyde-3-
phosphate dehydrogenase (G3PDH), DNA polymerase, and ribosomal proteins. However,
estimated protein ratios from the early-log and stationary phase growth samples ranged from
0.72 to 1.74, following quantile normalization. This was not surprising considering the
comparison was made between extreme phases of growth where variation in abundances of
conserved proteins, such as ribosomal proteins, and G3PDH, can occur. In the case of the
different mouse tissues, protein ratios of conserved proteins following quantile normalization
exhibited relatively no change. For example, average protein ratios of β- actins for the blocks
of elements ranged from 0.85 to 1.04, while for the α – and β – tubulins average protein ratios
ranged from 0.84 to 0.99 and 0.82 to 0.92, respectively. Future research into the validity of the
global scale assumption for use in normalization of LC-FTICR MS data from different
biological conditions is planned.

Observed trends among the four normalization techniques may also lie in the assumptions
related to the bias independence/dependence on the magnitude of measured abundances.
Central tendency normalization targets bias that is independent of the magnitude of measured
abundances 14. Linear regression normalization is suited for reducing bias that is linearly
dependent on the magnitude of measured abundances 7, 14, 22, while local regression
normalization is designed for bias that is non-linearly dependent 21. Linear regression
normalization, in the absence of biological variability, ranked ahead of central tendency and
local regression normalization in terms of PEV and ranked ahead of local regression
normalization in terms of median CV, but was roughly equal in ranking to central tendency
normalization. In the presence of biological variability, linear regression and central tendency
normalization also ranked similarly in terms of median CV to ranks assigned in the absence of
biological variability. This accounting, as well as the statistical analysis of assigned ranks
presented earlier, suggests that normalization using the linear regression technique is more
suitable for the proteomic data in this study than normalization using the local regression
technique. It also suggests that the degree of linearity dependent bias that requires adjustment
is small.

Although normalizing the data generally improved agreement between peptide ratios observed
across instrument runs, the applied approaches are independent of or “blind” to the protein
level. Hence, for example, evaluation of proteins targeted by multiple peptides in the D.
radiodurans growth phase comparison, revealed that agreement among ratios did not
significantly change. This was observed for the central tendency, linear regression, and local
regression approaches. However, for the quantile approach, we observed that on average 98%
of proteins with greater than 3 peptides showed improved agreement (data not shown). This
was somewhat unexpected and possibly fortuitous because quantile normalization adjusts the
width of the distribution of peptide ratios. In general, the observed difference in agreement on
a peptide and protein level raises the question of on what level should normalization be
performed? Because the instrument used in this evaluation makes measurements on the peptide
level we performed normalization on this level and assumed that systematic biases were
captured by the population of peptides. Ideally, for proteins targeted by multiple peptides, all
peptide ratios should fall on a horizontal parallel to the ordinate in the M versus A environment,
or on a line equidistant from the 45° in an X versus Y environment. The challenge in
normalizing on a peptide level where multiple peptides for a given protein are also considered
becomes knowing where the horizontal for a given protein should lie. Possibly the quantile
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approach is more suited to this challenge, or more sophisticate approaches that address this
challenge need development.

While suggestive, the present findings do not provide direct evidence that a linearly dependent
bias was the predominate effect on the observed extraneous variability e.g. of replicate data
sets. Specific error(s) responsible for bias could include slight differences in masses from the
sub-samples loaded onto the LC column, different degrees of contamination among samples
collected under different conditions, LC carryover, etc. In addition, while the current evaluation
was conducted using state of the art LC-FTICR instrumentation, there is no indication that
these approaches could not find application and adaptation to other comparable high-
throughput instrumentation platforms such as TOF MS or LTQ-FT MS. In general, these
normalization approaches could benefit data analysis from platforms that produce sufficient
ion statistics, resolution, and mass measurement accuracy. Indeed, normalization approaches
comparable to central tendency normalization using global scale assumptions and conserved
proteins have been applied to TOF MS data across multiple samples 30, 31, and we are
evaluating central tendency and linear regression approaches applied to LTQ-FT MS data. At
present, relative quantification of peptides in a high throughput manner without isotopic
labeling is promising, can be improved through the use of normalization methods, and will
further improve as the sources of error and identified and reduced, and the most appropriate
normalization technique(s) applied.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of triplicate sets of relative peptide abundances in the absence of biological
variability prior to and following normalization with the local regression technique. Scatter
plots represent peptide ratios (ordinate) versus their mean abundances (abscissa) for (a) 111
common peptides from the standard proteins sample, block 3, (b) 1032 common peptides from
the stationary phase growth sample of D. radiodurans, block 2, and (c) 1605 common peptides
from the methamphetamine induced mouse striata tissue sample, block 3. Solid lines represent
potential non-linearly dependent systematic bias estimated from application of the locally
weighted regression and smoothing scatter plots (LOWESS) function.
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Figure 2.
Comparison of summed ranks for central tendency, linear regression, local regression, and
quantile normalization approaches applied to LC-FTICR MS runs without biological
variability. (a) Ranks by percent reduction in extraneous variability estimated as PEV. Note
that the lower the value of the summed rank, the greater the percent reduction in this estimate
of extraneous variability. Linear regression and quantile normalization performed similarly
and received better rankings than central tendency and local regression normalization. (b)
Ranks by percent reduction in extraneous variability estimated by the median CV. Here, central
tendency and linear regression normalization performed similarly, and better than local
regression and quantile normalization.
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Figure 3.
Quantile plots with box plots (inset) comparing elements (replicates) of relative peptide
abundances for early-log phase growth of Deinococcus radiodurans relative to stationary phase
growth. (a) Prior to normalization. (b) Following quantile normalization. (c) Following central
tendency normalization. While quantile normalization resulted in the largest percent reduction
in extraneous variability estimated using PEV, it ranked behind central tendency normalization
in terms of extraneous variability estimated using the median CV of peptides common to all
elements.
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Table 3
Pooled estimate of variance (PEV) and median coefficient of variation (CV) used to estimate extraneous varibility
in the presence of biological variability. Data are presented as: prior to normalization of blocks of replicates -
following normalization of blocks of replicates of relative peptide abundances; (% reductions); and superscript
letters correspond to the normalization approach resulting in the largest percent reduction.

Early-log versus Stationary Stressed versus Control Tissue

Block PEV CV PEV CV

1 1477 –398 (73%)a 0.82 - 0.49 (39%)d 101 – 68 (33%)d 0.078 - 0.063 (19%)b
2 1477- 339 (77%)d 0.82 - 0.30 (62%)b 101 – 67 (34%)d 0.078 - 0.064 (17%)d
3 1477 – 373 (74%)d 0.82 - 0.25 (69%)b 101 – 63 (38%)d 0.078 - 0.063 (19%)b
4 1477 – 352 (76%)d 0.82 - 0.30 (63%)b 101 – 67 (33%)d 0.078 - 0.063 (19%)b

a
Linear regression normalization

b
Central tendency normalization

c
Local regression normalization

d
Quantile normalization
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Table 4
Ranks assigned to approaches used in normalizing blocks of replicates containing relative peptide abundances
in the presence of biological variability. Ranks were assigned on the percent reduction in the pooled estimate of
variability (PEV) and median coefficient of variability (CV). The lower the value of the rank the greater the
percent reduction. Values in parentheses represent the standard deviation of ranks

Pooled Estimate of Variance (PEV)
Early-log versus Stationary Stressed versus Controlled Tissue

Block CT LinReg LocReg Quan CT LinReg LocReg Quan

1 3 1 2 4 3 2 4 1
2 3 2 4 1 2 3 4 1
3 2 3 4 1 3 2 4 1
4 2 3 4 1 3 2 4 1

Mean 2.5 (±0.5) 2.25 (± 0.9) 3.5 (±1.0) 1.75 (±1.5) 2.75 (±0.5) 2.25 (±0.5) 4.0 (±0.0) 1.0 (±0.0)
Median Coefficient of Variation (CV)

Early-log vs Stationary Meth vs Norm
Block CT LinReg LocReg Quan CT LinReg LocReg Quan

1 3 2 4 1 1 2 4 3
2 1 2 3 4 2 3 4 1
3 1 2 3 4 1 2 4 3
4 1 2 3 4 1 2 4 3

Mean 1.5 (±1.0) 2.0 (±0.0) 3.25 (±0.5) 3.25 (±1.5) 1.25 (±0.5) 2.25 (±0.5) 4.0 (±0.0) 2.5 (±1.0)
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