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Abstract
Clustering of gene expression data collected across time is receiving growing attention in the
biological literature since time-course experiments allow one to understand dynamic biological
processes and identify genes governed by the same processes. It is believed that genes demonstrating
similar expression profiles over time might give an informative insight into how underlying
biological mechanisms work. In this paper we propose a method based on Functional Data
Analysis (FNDA) to cluster time-dependent gene expression profiles. Consideration of clustering
problems using the FNDA setting provides ways to take time dependency into account by using basis
function expansion to describe the partially observed curves. We also discuss how to choose the
number of bases in the basis function expansion in FNDA. A synthetic cycle data and a real data are
used to demonstrate the proposed method and some comparisons between the proposed and existing
approaches using the adjusted Rand indices are made.
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1. Introduction
Microarray technologies in molecular biology make it possible to simultaneously measure the
expression levels of thousands of genes for a certain organism. They allow us to gain biological
insight at the genome scale and to study the behaviour of thousands of genes simultaneously,
under various conditions. Gene expression can be examined from two points of view, static
and dynamic. The gene expression in static microarray experiments is a snapshot at a single
time, whereas in time-course experiments the expression profiles of genes are repeatedly
measured over a time period. In particular, time-course microarray experiments are effective
not only in studying gene expression profile levels over a period of time but also in exploring

*Corresponding author: Tel.: +1 479 575 6319; Fax: +1 479 575 8630, E-mail address: jjsong@uark.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Comput Biol Chem. Author manuscript; available in PMC 2008 August 1.

Published in final edited form as:
Comput Biol Chem. 2007 August ; 31(4): 265–274.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



functions of genes and the interactions with their products. Since biological processes are
dynamic and complex systems, such characteristics are essential factors in understanding how
the underlying mechanisms regulate cellular processes and gene functions. Time-course
microarray experiments are the tools for understanding temporal patterns of gene expression
and detecting periodically expressed genes.

A number of statistical methods have been recently proposed to analyze time-course gene
expression data. Peddada et al. (2003) proposed the order-restricted inference method to cluster
and select genes in accordance with temporal or dose profiles arisen from microarray
experiments. However, the approach resulted in that the gene profiles with a monotonic pattern
but distinct accelerations in the profiles are identified as the same cluster. Johansson et al.
(2003) treated genes as variables and employed the method of partial least squares to identify
genes with periodic fluctuations in expression levels, coupled with the cell cycle in the budding
yeas1t. The measure used for gene selection was the magnitude of frequencies of sinusoidal
functions that fit the cyclically expressed data. Schliep et al. (2003) used Hidden Markov
Models (HMM) that take time dependency of time-course data into account, where a set of
clusters was obtained by the method of maximum likelihood. Luan and Li (2003) introduced
the mixed-effects model using B-splines to analyze time-course gene expression data and
carried out gene clustering in the framework of a mixture model. The clustering problem is
viewed as a mixture model problem by introducing the cluster indicator to be estimated and to
be treated as missing data in the estimation of the parameter associated with a mixture model
using the EM algorithm. They also compared the proposed method with the model-based
clustering method proposed by Fraley and Raftery (2002).

In this paper, we propose a unified approach for gene clustering and dimension reduction based
on Functional Data Analysis (FNDA) to group observed curves with respect to their shapes or
patterns by using the sample information in time-course microarray experiments.1 The
fundamental idea behind FNDA is that the atom, or unit of observation, is considered to be the
entire curve rather than just a set of observations (Ramsay and Silverman, 1997, 2002). Our
clustering is built upon a basis-space approach, which reduces the dimensionality of the data
and allows the time points to be non-equally spaced and to vary between subjects.

We apply this method to a time course microarray data set on the yeast cell cycle, and
demonstrate that our method is able to identify tight clusters of genes with expression profiles
focused on particular phases of the cell cycle.

2. Methods
2.1 Functional data analysis

Functional data refer to data in which each observation is a partially observed function or curve
on some interval where these functions are often assumed to be smooth. What distinguishes
FNDA from other conventional statistics is the datum or data unit. Many statistical methods
treat numbers or vectors as the units of data. In FNDA, however, data units are functions or
curves defined on some interval, rather than focusing on the observed values at particular points
in the interval. The nature of functional data makes it necessary to consider function spaces
such as Hilbert spaces, and each functional observation is viewed as a realization generated by
a random mechanism in these spaces. The books by Ramsay and Silverman (1997, 2002) give
useful accounts of the basic considerations of FNDA.

1FNDA is an acronym for Functional Data Analysis instead of FDA because FDA traditionally stands for US Food and Drug
Administration.
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FNDA has a wide range of flexibility in the sense that the observation times are not required
to be equally spaced for the subjects, and furthermore, these times can vary from one subject
to another. Functional data do not necessarily assume that the values observed at different times
for a single subject are independent although it often assumes that data from different subjects
are independent.

Consider the situation where we observe sample curves which are partially observed on the
subset of the interval. Let {X (t),t ∈ T} be a second order stochastic process defined on T, e.g.,
X ∈ L2 [a,b]. The stochastic process is a collection {X (t),t ∈ T} defined on a common
probability space (Ω, F, P), where (Ω, F) is a measurable space and P is a measure on F with
P(Ω) = 1. In order to clarify the use of the index sets in stochastic processes, one needs to write
X (t) as a function X (ω,t) of two variables, where t is the time and ω ∈ Ω is the random element.
For fixed t ∈ T, the function X (·,t) is a measurable map from Ω into ℜ. For fixed ω ∈ Ω, the
function X (ω,·) becomes a sample path of the stochastic process. Denoted by μ(t)

for fixed t, where FX is the distribution function of a probability P on (Ω, F).

For fixed ω, a sample path X (ω,t) is an equivalent class of functions in the function space
L2. Since functions in the space can be expressed in terms of basis functions generating the
space, a separable Hilbert space, each function in the space can be written as a countable linear
combination of the basis functions. Let {φk } be a set of basis functions of L2, then we see that
for each X (ω,t) with fixed ω, there is a unique cT= (c1, c2,…) ∈ l2 such that

where l2 is a discrete analogue of L2 space. It should be emphasized that the stochastic process
is decomposed into two parts ck and φk (t), and the random mechanism only involves in the
coefficients ck = ck (ω) unless setting ω to be fixed.

Once the representation by basis functions is adopted, three types of computational issues need
to be addressed: (a) choosing an appropriate type of basis function, (b) determine the number
of basis functions, and (c) computing the best linear combination.

The choice of the number of basis functions clearly has implications in determining the
assumed underlying smoothness of the process and the degree of dimension reduction provided
by the basis representation. Ramsey and Silverman (1998) suggest that 20–30 basis functions
are in general enough to extract prominent features. In this paper, we propose a way to select
the number of basis functions analogous to determining the number of clusters using the
Bayesian Information Criterion (BIC) in model-based clustering illustrated below. In this
context, the number of basis functions with the maximum BIC score is selected for representing
functional data as basis functions.

Choosing a basis is a more controversial issue since no basis will be universally optimal for
all data sets. However there are advisable guidelines depending on specific occasions. For
example, if the paths are uniformly smooth with limited features and especially if the curves
appear to be periodic, then the Fourier basis seems to be a good choice. On the other hand, a
spline basis or a wavelet basis may be a better choice if there are a number of local features
which may be relevant for the statistical analysis. Note that for some basis functions, more
computationally efficient alternatives are available (e.g. FFT for Fourier and DWT for
wavelet). We may write
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(1)

where  is a set of basis functions and  is a set of the corresponding coefficients. In
reality, X (t) is only observed on a finite set of time interval, and suppose that we have xi(tj),
i =1,…,n, j =1,2,…,J, where the time points tj’s can be irregularly spaced. The least squares
approach is a standard method to determine the approximating basis expansion by minimizing
the sum of squares

(2)

where  and . The solution vector to the
minimization problem (2) is, for i = 1,…,n,

(3)

if Φ has full rank. The computation in ci requires to obtain the inverse matrix, which can be
challenged with higher dimension. However expensive computation can be lessened if ΦT Φ
is a “band matrix” with nonzero elements only close to the diagonal. A special case of band
matrices is a diagonal matrix. For instance, ΦT Φ is a diagonal matrix where the tj are equally
spaced and a set of orthonormal basis functions is used.

2.2 Functional principal component analysis
Principal component analysis (PCA) is an effective technique for understanding the structure
of data and reducing the dimensionality of massive data. Analogous to the classical multivariate
PCA, the essential goal of functional PCA (FPCA) is to obtain the first few orthogonal
functions, the so-called functional principal components (FPCs), that most efficiently describe
the variations in the data. In this section, we will describe PCA in the context of FNDA.

Let {X (t),t ∈ T} be a zero-mean stochastic process where T is some index set which is taken
to be a bounded or unbounded interval here. Assume that the sample paths belong to the usual
L2 space of measurable functions on T with inner product

Let v be the covariance function of the {X (t)}, i.e. v(s,t) = EX (s)EX (t). The covariance operator
V is defined to be

Suppose that V is a compact operator. Then V admits an eigenvalue decomposition (cf. Rynne
and Youngson, 2001), namely V has a sequence of eigenvalues ρi and eigenfunctions ξi, i =
1,2,…, satisfying
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In practice, we do not know the true function v but rather have a sample xi(t), 1 ≤ i ≤ N, where
for each i, xi(t) is observed on a discrete set of points Ti = {ti,1,…,ti,Ji} for some finite Ji. In
principle, v can be estimated from the data and the ρi and ξi can then be computed from the
estimated covariance operator. Here we adopt the basis function approach. From (1), (2), and
(3), the centered approximation of xi(t) is given by

where . Then the sample covariance function is

Hence the estimated covariance operator is

and if , then

which can be conveniently expressed as

where , Φ = [〈 φk , φm 〉], ϕ = (φ 1 ,..., φK)T, and b = b1,…,bK)T.

Hence the eigenvalue problem in the function space

can be expressed as

and can be solved as an eigenvalue problem in the finite dimensional space:

Thus, the jth principal component eigenvector bj of CΦ leads to an estimate ξ ̂j = ϕT bj of the
jth principal component eigenfunction of V.
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Following the above procedure, the jth principal component score of x̂i is defined to be αi,j =

〈x̂i,ξ ̂j〉 and we can write x̂i = x̂i,p + ri,p, where  and ri,p = x̂i − x̂i,p. Clustering methods
will be applied to the principal component score vectors αi =(αi,1,…,αi,p)T, 1 ≤ i ≤ N.

2.3 Model-based clustering
The previous sections elucidated how the basis expansion approaches are used to reconstruct
partially observed functional data into function forms and how FPCA is used to reduce the
dimensionality of the data by projecting them onto a finite-dimensional space spanned by a
few prominent empirical orthonormal basis functions. The vector ci for the ith functional datum
contains its coefficients which are a projection of the function onto the subspace spanned by
the set of K basis functions and it may be interpreted as summarized information of
characteristic which each function shows with respect to the basis functions. Thus it leads to
a reduction from an infinite dimensional space to a finite one, such as a K dimensional space.
Furthermore, FPCA results in more dimension reduction, and the vectors of the principal
component scores αi can be used for clustering the functions using standard clustering methods.

A number of clustering methods are available. Many are hierarchical clustering procedures,
for which the clusters are nested, such that one cluster may be fully contained within another
cluster, but clusters may not overlap. Various clustering methods differ with respect to the
manner in which distances between clusters are defined.

These various clustering techniques have played a pivotal role in analysis of microarray gene
expression data, including hierarchical clustering (Eisen et al., 1998), K-means clustering
(Tavazoie et al., 1999), and self-organizing maps (Tamayo et al., 1999). However, many of
these heuristic clustering techniques have as drawback that they can not determine the number
of clusters which in general is unknown. Recently, a model-based clustering method was
proposed by Fraley and Raftery (2002) overcomes the above drawback of heuristic clustering
methods by estimating the number of clusters. The model-based clustering method assumes
the data are generated by a multivariate mixture normal distribution with appropriate means
and covariance matrix. We apply this method to clustering of the time-course gene expression
after FPCA.

Let y1,…,yn be independent multivariate observations. Each vector of observations is a
realization from a multivariate normal mixture density,

where φ(yi | μi,Vi) denotes a multivariate normal distribution with mean vector μi and

covariance matrix Vi, πk ’s are the mixing proportion or weights (πk ≥ 0 and ), and
θi is the vector of unknown parameters in kth component density in the mixture. MCLUST
(http://www.stat.washington.edu/mclust/) is available to perform this model-based clustering
based on the mixture model and allows various specifications of the covariance matrix which
determines geometric features of each component k.

In model-based clustering, the clustering problem is viewed as a model selection problem over
a variety of candidate models specified by different covariance matrices in a multivariate
normal mixture distribution and different number of clusters. The best clustering is achieved
by choosing the best model in terms of a model selection criterion. The Bayesian Information
Criterion (BIC) is often used as an approximation to the Bayes factor and is defined by
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where L(θ̂k, Mk) is the maximized likelihood for the model Mk at the maximum likelihood
estimate for θk, vk is the number of parameters to be estimated in the model Mk, and n is the
number of observations in the fitted model. The model with smaller BIC value is preferred.
Hence, in this paper, the criterion is implemented in not only determining the number of clusters
in model-based clustering but also choosing the number of basis functions in the functional
representation of raw data.

3. Results
3.1 Simulation studies

We used a synthetic cyclic data set used in Yeung et al. (2001) to demonstrate the proposed
method. To model the data set, let yij =δj + λj(αi + βiφ(i, j)) be the simulated data point in curve
i at time point j, where φ(i, j) = sin(2πj/8 − ωk + ε) controls the periodic behaviour. δj is an
experimental error, αi is the average of curve i, ε is the noise of curve synchronization, and
these are generated from the standard normal distribution. βi and λj control the amplitude of
curve i and time j respectively, and the two components are generated from a normal
distribution with mean 3 and standard deviation 0.5. Finally, ωk represents phase shift and is
generated from the uniform distribution [0,2π]. In the study with a synthetic data, we simulated
200 curves over the 18 time points equally spaced for each class and specified that the number
of classes is four (k=4), where i = 1,…,800 and j =1,…,18 (see Fig. 1). It is assumed that the
curves in the same class have similar peak time to account for similar periodic behaviour in
the same cluster. Each curve is scaled to between 0 and 1 by normalization.

Since the simulated data are designed to have periodical patterns, Fourier basis function was
used to convert discretely simulated data into functional form (See Methods). One of important
issues in the representation of functional data by basis functions is to determine the number of
basis functions (See Methods). We used the Bayesian Information Criterion (BIC) score to
evaluate candidate models with different number of basis functions, and the optimal number
is chosen from the best model in terms of BIC score. Fig. 2 shows that the model with 12 bases
had the highest BIC within the given range of the number of bases, and the discretely sampled
simulated data were represented using 12 Fourier bases. To further reduce the dimensionality
of the converted data, we applied then FPCA to the data. The number of FPCs was determined
by the variation in the functional data. The first two FPCs which account for around 98%
variation in the data are selected for the following analysis. Then, we apply model-based
clustering method to the vectors of selected FPC scores. Fig. 3 shows BIC scores over several
models with different covariance matrix structure. The model with VVV covariance matrix is
chosen with four clusters equal to the true number of classes, where VVV represents ellipsoidal,
varying volume, shape and orientation. The resulting clusters are shown in Fig. 4. The bold
line is the average of curves in each cluster. To validate the proposed method, the agreement
between clustering results and true classes is measured using the adjust Rand index (Lawrence
and Arabie, 1985). Ten synthetic data sets are generated and applied to FNDA clustering and
two common heuristic clustering, K-means and hierarchical clustering. The average indices
are plotted in Fig. 5. Two models in model-based clustering, the equal volume spherical (EI)
and the equal volume and shape diagonal models (EE), are considered because of
computational issues. The indices of all FNDA clustering methods are maximized at four
clusters. However, two heuristic clustering techniques result in the maximum at three clusters
and five clusters, respectively.
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3.2 Application to the Yeast cell cycle data
The proposed method was also applied to the time-course gene expression data from Spellman
et al. (1998) yeast cell cycle microarray experiment. Using cDNA arrays in the experiment,
the expression levels of 6178 yeast cycle genes were simultaneously measured. The expression
levels for these genes were repeatedly measured every 7 minutes for 119 minutes, yielding a
total of 18 time points. These comprise more than two full cell cycles. Out of the 6178 genes,
Spellman et al. (1998) identified 800 genes as cell cycle-regulated genes. Among these 800
genes, 612 genes had no missing expression observations over the 18 time points and these
genes were analyzed using the proposed method in this study. Spellman et al. (1998) grouped
800 genes into cell cycle phases (M/G1, G1, S, G2 and M) based on the time of peak expression
of each gene.

We also applied the FNDA-based clustering method to these data. We considered two different
basis functions - B-splines and Fourier. In each case, we computed the basis coefficients, and
model-based clustering is performed on the PC scores after FPCA.

Fig. 6 and 7 show BIC scores for two types of basis functions, Fourier and B-spline, across the
different number of basis functions. The models with 55 and 71 bases are selected for the two
different basis functions, respectively. Hereafter the coefficients generated from the basis
expansion are directly used for the further analysis. In FPCA, the first nine principal
components which account for over 90% variation in the data are selected for both types of
basis functions. For sensitivity of the clustering results to the different number of PCs, it is
found that the number of PCs is constant to nine over the different number of basis functions
for both types of basis functions. Then, we apply a model-based clustering method to the vectors
of selected FPC scores.

Our main interest is to cluster the genes based on the shapes or patterns, especially according
to the five different cell-cycle phases. For Fourier basis function approach, VVI model at 4
clusters are selected in Fig. 8. “VVI” indicates that diagonal, varying volume, and varying
shape covariance matrix is used in the multivariate normal mixture model. The clustering
results based on the model selected are depicted in Fig. 9 and summarized in Table 1. Cluster
2 includes genes expressed in G1, S, and S/G2 phases. Genes in cluster 3 are expressed in M/
G1 and G1 phases. Cluster 4 contains genes expressed in S/G2 and G2/M phases. Cluster 1
seems to be a set of heterogeneous genes. Using the B-spline basis, the best model is VVI
model with 6 clusters in Fig. 10, and the resulting clusters are drawn in Fig. 11. Most genes in
cluster 2 are expressed in G1 phase. Cluster 3 contains genes expressed in M/G1 and G1 phases.
Most genes in cluster 4 and 5 are expressed in two phases, (G1,S) and (S/G2,G2/M),
respectively. Similar to cluster 1 in Fourier basis approach, cluster 1 and 5 in B-spline basis
approach appear to be sets of heterogeneous genes. To compare the clustering results to these
of Spellman et al. (1998), the adjust Rand indices of two heuristic methods and three different
models using model-based FNDA approaches are also computed and plotted in Fig. 12. VVI
model using Fourier basis achieves the maximum at five clusters. It is interesting that VVI
model using B-spline basis reaches the maximum at four clusters. EEI models over two basis
functions produce relatively lower agreement with clustering results in Spellman et al.
(1998).

4. Discussion
We have proposed a clustering method based on FNDA to group time-course gene expression
profiles. FNDA allows us to account for time dependency in gene expression data monitored
over a time period unequally spaced. Before clustering, FPCA can be a tool to reduce the
dimensionality of the data. A model-based clustering provides a solution to determine the
number of clusters.
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The proposed method is applied to real data from yeast cell cycle microarray experiment and
a synthetic data set with two sets of basis functions, Fourier and B-spline. In the study of the
simulated data, we found the proposed method using Fourier basis function correctly cluster
the all sampled curves into the true classes. For real yeast cell cycle data, Table 1 and 2 show
that the clustering using Fourier basis functions groups gene expression profiles in real data
more clearly than using B-spline basis function, which is reasonable because the profiles appear
to be periodic over two cell cycles. In additional, it is shown in BIC analysis that Fourier basis
approach outperforms B-spline approach. In depth discussion of new clusters interpretation is
beyond the scope of current study.

Monitoring the behaviour of gene expression over certain time period plays an important role
in exploring and investigating regulation of gene expression during cell cycle. Clustering
methods have been used for comparative analysis of gene expression data collected over time,
which group co-regulated genes that have similar periodic pattern or levels of expression. The
FNDA approach to clustering problems allows us to take time dependency into account by
adopting basis function expansions to describe the partially observed curves. It results in taking
account of the dynamic nature of time-course gene expression profiles. The other advantage
of FNDA approach is that the time points where the observations are evaluated are not
necessarily required to be equally spaced, and also they may vary from one subject to another.
In additional, in combination with FPCA before clustering, it can improve the quality of
clustering through reducing dimensionality of data.

The merit of basis function methods in FNDA is that the basis function expansions can be used
to reflect the intrinsic time trends in time-course experiments on clustering procedures. There
are three computational issues to be addressed in basis function approach (See Methods). We
proposed a means to determine the number of basis functions in the context of model selection
using BIC score.

FPCA was used to reduce dimensionality before clustering analysis. Yeung and Ruzzo
(2001) attempted to study the effectiveness of PCA in extracting clustering structure and
addressed that using PCs instead of raw data in clustering analysis does not necessarily improve
quality of clustering. In their paper, empirical studies present the first few PCs do not always
help to capture clustering structure. It indicates that most explaining sets of PCs are not
necessary representing clustering structure of raw data. Hence, it should be a promising future
study to find the set of PCs to provide the highest quality of clustering when PCA is used before
clustering analysis.

Using a probabilistic model, a normal mixture model, in a model-based clustering resolved
one of the difficult problems in clustering analysis to determine the number of clusters.
However, this method still has missing value problem to be resolved in order to extract
clustering structure from more data. In microarray experiments, many missing values are
generated after preprocessing. It is known that missing rate of gene expressions can be up to
50% (Vogl et al., 2005) and quality of clustering can be improved using imputed missing
values. However, the proposed methodology in this study naturally takes account of this
problem by adopting FNDA approach.

The adjusted Rand index is implemented for validation of resulting clustering in the synthetic
data and for comparison to the result of Spellman et al. (1998) in the Yeast cell cycle data.
Experimental validation, however, is not readily available, since genes identified from each
yeast cell-cycle regulation system were not based on entire expression profile over time. It
might make more sense to identify important genes of each cell cycle by determining their
peak expression time since that is when they are most active. Over-time expression profiles,
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on the other hand, might provide different aspect of important genes, for example, finding
unknown genes by co-expressed known genes or secondary cell-cycle regulation function.

This study is also promising in ecological studies that are fairly common to reveal
environmental process dynamics. For example, Oak Ridge Field Research Center of Natural
and Accelerated Bioremediation Research (NABIR) have collected and analyzed groundwater
samples to monitor dynamics of uranium degradation related microbial communities and
functions (http://www.esd.ornl.gov/nabirfrc/index.html). New type of customized oligo-
microarray of microbially-mediated environmental functions is in place to collect information
at the level of functional gene, and at this point sophisticated, effective and appropriate tools
to extract inference out of huge amount of data is still on demand.
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Fig. 1.
800 simulated curves over the 18 time points equally spaced. Each curve is from one of four
classes and each class has 200 curves.
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Fig. 2.
The BIC scores from model-based clustering for the synthetic cycle data using Fourier basis
function to determine the optimal number of bases. 12 bases are selected.
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Fig. 3.
The BIC scores in Model-based clustering for the synthetic cycle data using 12 Fourier bases
to determine the number of clusters. Model VVV with four clusters is selected. 1=EII: spherical,
equal volume, 2=VII: spherical, unequal volume, 3=EEI: diagonal, equal volume, equal shape
4=VVI: diagonal, varying volume, varying shape, 5=EEE: ellipsoidal, equal volume, shape,
and orientation 6=VVV: ellipsoidal, varying volume, shape, and orientation.
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Fig. 4.
Model-Based clustering for the synthetic cycle data using Fourier basis function. Bold line in
each class is estimated mean curve.
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Fig. 5.
The average adjusted Rand indices of ten synthetic cycle data over several clustering
techniques. FNDA-F-EE: model-based clustering with diagonal, equal volume, equal shape
covariance matrix using Fourier basis, FNDA-F-EI: model-based clustering with spherical,
equal volume covariance matrix using Fourier basis, FNDA-B-EE: model-based clustering
with diagonal, equal volume, equal shape covariance matrix using B-spline basis, FNDA-B-
EI: model-based clustering with spherical, equal volume covariance matrix using B-spline
basis.
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Fig. 6.
The BIC scores from model-based clustering for the Yeast cell cycle data using Fourier basis
function in order to determine the optimal number of bases. 55 bases are selected.

Song et al. Page 16

Comput Biol Chem. Author manuscript; available in PMC 2008 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
The BIC scores from model-based clustering for the Yeast cell cycle data using B-spline basis
function in order to determine the optimal number of bases. 71 bases are selected.
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Fig. 8.
The BIC scores in model-based clustering for the Yeast cell cycle data using 55 Fourier bases
in order to determine the number of clusters. Model VVI with four clusters is selected, where
“VVI” represents that diagonal, varying volume, and varying shape covariance matrix is used
in model-based clustering. 1=EII: spherical, equal volume, 2=VII: spherical, unequal volume,
3=EEI: diagonal, equal volume, equal shape 4=VVI: diagonal, varying volume, varying shape,
5=EEE: ellipsoidal, equal volume, shape, and orientation 6=VVV: ellipsoidal, varying volume,
shape, and orientation.
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Fig. 9.
Model-Based clustering for the Yeast cell cycle data using Fourier basis function. Bold line in
each class is estimated mean curve.
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Fig. 10.
The BIC scores in model-based clustering for the Yeast cell cycle data using 71 B-spline bases
in order to determine the number of clusters. Model VVI with six clusters is selected, where
“VVI” represents that diagonal, varying volume, and varying shape covariance matrix is used
in model-based clustering. 1=EII: spherical, equal volume, 2=VII: spherical, unequal volume,
3=EEI: diagonal, equal volume, equal shape 4=VVI: diagonal, varying volume, varying shape,
5=EEE: ellipsoidal, equal volume, shape, and orientation 6=VVV: ellipsoidal, varying volume,
shape, and orientation.
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Fig. 11.
Model-Based clustering for the Yeast cell cycle data using B-spline basis function. Bold line
in each class is estimated mean curve.
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Fig. 12.
The average adjusted Rand indices of the Yeast cell cycle data over several clustering
techniques.. FNDA-F-EE: model-based clustering with diagonal, equal volume, equal shape
covariance matrix using Fourier basis, FNDA-F-EI: model-based clustering with spherical,
equal volume covariance matrix using Fourier basis, FNDA-F-VI: model-based clustering with
diagonal, varying volume, and varying shape covariance matrix using Fourier basis, FNDA-
B-EE: model-based clustering with diagonal, equal volume, equal shape covariance matrix
using B-spline basis, FNDA-B-EI: model-based clustering with spherical, equal volume
covariance matrix using B-spline basis, FNDA-B-VI: model-based clustering with diagonal,
varying volume, and varying shape covariance matrix using B-spline basis.
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