
The Gene Polymorphism of the Angiotensin I–Converting Enzyme
Correlates with Tumor Size and Patient Survival in Colorectal
Cancer Patients
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Hospital, Berlin, Germany; zDepartment of Medicine II, Klinikum rechts der Isar, Technische Universität, München,
Germany; §Clinical Chemistry, Otto-von-Guericke University, Magdeburg, Germany; bDepartment of General,
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Abstract

We studied the putative significance of angiotensin

I–converting enzyme (ACE) in colorectal cancer (CRC)

biology. Local expression of ACE was investigated by

quantitative reverse transcription–polymerase chain

reaction and by immunohistochemistry in CRCs and

adenomas. ACE insertion (I)/deletion (D) polymorphism

was studied in 141 CRC patients and 189 controls. ACE

mRNA was upregulated in CRCs compared to corre-

sponding nonlesional tissues (2.5-fold; P = .009). ACE

protein was more commonly expressed in adenomas

[17 (81%)] and cancer epithelial cells [22 (100%)] than in

corresponding non-neoplastic crypt and surface epi-

thelium [2 (10%) and 2 (9%), respectively]. Thirty-seven

CRC patients (26%) carried II genotype, 69 (49%) carried

ID genotype, and 35 (25%) carried DD genotype. The

distribution of the genotypes did not differ from that of

controls. Female CRC patients more commonly carried

the ID genotype and less frequently the II and DD ge-

notypes compared with male patients (P = .033). Men

heterozygous or homozygous for the D-allele had larger

tumors compared to carriers of the II genotype (P < .01).

Women homozygous for the D-allele lived longer than

carriers of the ID and II genotypes. Our study shows that

ACE is differentially expressed in CRCs and that gene

polymorphism is associated with gender-specific differ-

ences in primary tumor size and patient survival.
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Introduction

Angiotensin I–converting enzyme (ACE; CD143) is a type I

cell surface zinc metallopeptidase that is expressed by

many cell types of various organs and tissues, including vas-

cular endothelial cells, epithelial cells of the small intestine,

kidney tubular cells, mononuclear cells, and fibroblasts [1]. ACE

cleaves C-terminal dipeptides from oligopeptide substrates with

an unhindered C-terminus. It generates angiotensin II, the major

effector of the renin–angiotensin system, and cleaves angio-

tensin 1–9 into angiotensin 1–7. There is mounting evidence

that ACE participates locally in the pathology of carcinomas

[1,2]. ACE is differentially expressed in several malignancies [1]

and influences tumor cell proliferation, tumor cell migration,

angiogenesis, and metastatic behavior [2–4]. Inhibition of ACE

activity influences tumor growth and angiogenesis in vitro and

in vivo in animal models [5–10]. Epidemiological studies have

provided evidence that ACE inhibitors may decrease the risk and

mortality rate of cancer [11,12]. ACE inhibitors are currently

under consideration as ‘‘novel’’ antineoplastic treatment and

cancer prevention strategies [2,12]. A polymorphism in the

ACE gene, consisting of the insertion (I) or the deletion (D) of

a 287-bp DNA fragment in intron 16, accounts for 20% to 50% of

the variance in ACE expression or activity in blood and tissues

among individuals [13–15]. Recently, we have shown that ACE

is expressed locally in gastric cancer [16] and that I/D gene

polymorphism influences metastatic behavior [17]. Patients with

DD genotype had a greater number of lymph node metastases

and an advanced Union International Contre le Cancer (UICC)

tumor stage compared with carriers of ID or II genotype [17].

Furthermore, a retrospective study provided evidence that

long-term ACE medication decreases the risk of developing co-

lorectal cancer (CRC) [18]. Intrigued by these observations, we

aimed to further substantiate the putative significance of ACE

by investigating its local expression in colorectal adenomas
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and CRCs and by correlating its gene polymorphism with

CRC pathology.

Materials and Methods

Patient Populations and Samples

Samples from 141 CRC patients and 21 patients with

colorectal adenomas operated on between 2001 and 2006

were retrieved from the archive of the Department of Pa-

thology (Table 1). Tissue samples used in the present study

were obtained from patients who had undergone either

polypectomy or right/left–sided hemicolectomy, as well as

from 189 control patients without CRC, as described previ-

ously (Table 1) [17]. This study was carried out in accor-

dance with the guidelines of the Ethics Committee of the

University Hospital Berlin, and the patients gave their in-

formed consent before their inclusion in the study. Data were

encoded to ensure patient protection.

Histology and Immunohistochemistry

For histology, tissue samples from all patients were fixed

in 10% neutralized formalin and embedded in paraffin. De-

paraffinized sections were stained using hematoxylin and

eosin. Tumor–Node–Metastasis stage was determined ac-

cording to UICC guidelines and was based on histologic con-

firmation [19]. For immunohistochemical studies, samples

from a series of 22 consecutive patients with CRC and 21

randomly chosen patients with colorectal adenomas were

used. Immunostaining was performed as described else-

where, using monoclonal antibodies directed against ACE

(clone CG2, 1:50; Dianova, Hamburg, Germany) [16]. Omis-

sion of primary antibodies served as negative control.

Quantitative Real-Time Reverse Transcription–Polymerase

Chain Reaction (RT-PCR)

To measure ACE mRNA expression levels, total RNA was

extracted from frozen tissues using Trizol reagent (Invitro-

gen, Karlsruhe, Germany), followed by the RNeasy Kit

(Qiagen, Hilden, Germany) for mRNA preparation, according

to the manufacturer’s instructions. cDNA was synthesized

from 1 mg of RNA using Omniscript Reverse Transcriptase

(Qiagen), and quantitative real-time RT-PCR was performed

using LightCycler (Roche Diagnostics, Mannheim, Germany).

A 20-ml reaction mixture consisted of 10 ml of Quantitect SYBR

Green MasterMix (Qiagen), 2 ml of cDNA, and 1 mM of specific

primers for ACE (forward: CTCAAGTACTTCCAGCCAGTC;

reverse: GCAGAATCTTGCTGGTCTCTG; product, 371 bp)

or b-actin (forward: CATGTACGTTGCTATCCAGGC; reverse:

CTCCTTAATGTCACGCACGAT; product, 250 bp). The initial

denaturation and activation of Taq polymerase at 95jC for

15 minutes were followed by 40 cycles with denaturation at

94jC for 15 seconds, annealing at 62jC for 20 seconds, and

elongation at 72jC for 20 seconds (ACE) or 15 seconds

(b-actin), followed by a melting curve analysis between

65jC and 95jC to verify the absence of primer artifacts. Only

samples without primer artifacts were included in the analy-

ses. Specific initial template mRNA amounts were calculated

as described above from a standard curve obtained by serial

dilution of known copy numbers of corresponding cloned

PCR fragments. cDNA contents were normalized for any

variability in RNA amounts or for integrity by calculating the

ACE/b-actin ratio.

Determination of ACE Genotype

Genomic DNA was purified from non-neoplastic tissue

specimens using the EZNA Tissue DNA Mini Kit (PEQLAB

Biotechnologie GmbH, Elangen, Germany). DNA was dis-

solved at 100 ng/ml in 10 mM Tris–HCl and 1 mM EDTA, pH

8.0. The ACE genotype of patients and healthy controls was

determined by PCR according to Yoshida et al. [20]. A typical

Table 1. Patient Characteristics.

I/D Genotype

Total II ID DD P

Controls

Patients [n (%)] 189 41 (22) 95 (49) 53 (28)

Age in years

[mean ± SD]

67.7 ± 6.1 69.2 ± 6.2 67.9 ± 6.4 65.8 ± 5.0 ns

Gender [n (%)]

Men 75 (40) 17 (23) 38 (51) 20 (27) ns

Women 114 (60) 24 (21) 57 (50) 33 (29)

Colon cancer patients

Patients [n (%)] 141 37 (26) 69 (49) 35 (25) ns

Age in years

[mean ± SD]

66.7 ± 12.4 66.1 ± 13.0 67.9 ± 10.7 65.2 ± 14.7 ns

Gender [n (%)]

Men 83 (59) 26 (31) 33 (40) 24 (29) .033

Women 58 (41) 11 (19) 36 (62) 11 (19)

Localization [n (%)]

Colon 47 (33) 18 (38) 21 (45) 8 (17) ns

Sigma 26 (18) 5 (19) 13 (50) 8 (31)

Rectum 68 (48) 14 (21) 35 (52) 19 (28)

T-category [n (%)]

pT1 10 (7) 2 (20) 6 (60) 2 (20) ns

pT2 17 (12) 2 (12) 11 (65) 4 (24)

pT3 99 (70) 30 (30) 44 (44) 25 (25)

pT4 15 (11) 3 (20) 8 (53) 4 (27)

Tumor diameter (mm) [mean ± SD]

All 47.4 ± 23.0 42.4 ± 12.0 50.8 ± 29.1 46.03 ± 16.9 ns

Men 47.0 ± 19.5 40.2 ± 12.3 52.3 ± 23.9 47.1 ± 17.3 .058

Women 47.9 ± 27.5 47.6 ± 10.2 49.3 ± 33.5 43.7 ± 16.7 ns

Number of lymph nodes [mean ± SD]

Studied 15.9 ± 5.8 15.7 ± 4.6 16.1 ± 6.2 15.5 ± 6.4 ns

With metastases 2.5 ± 4.1 2.5 ± 3.3 2.0 ± 4.1 3.3 ± 4.9

Men 2.5 ± 3.7 2.9 ± 3.7 1.6 ± 2.9 3.3 ± 4.7

Women 2.4 ± 4.7 1.7 ± 2.1 2.3 ± 5.0 3.5 ± 5.7

N-category [n (%)]

pN0 69 (49) 16 (23) 38 (55) 15 (22) ns

pN1 37 (26) 10 (27) 19 (51) 8 (22)

pN2 35 (25) 11 (31) 12 (35) 12 (35)

M-category [n (%)]

pM0 113 (80) 31 (27) 56 (50) 26 (23) ns

pM1 28 (20) 6 (21) 13 (46) 9 (32)

UICC tumor stage [n (%)]

IA 20 (14) 3 (15) 12 (60) 5 (25) ns

IB 36 (25) 10 (28) 18 (50) 8 (22)

II 3 (2) 0 3 (100) 0

IIIA 4 (3) 0 3 (75) 1 (35)

IIIB 24 (17) 9 (38) 12 (50) 3 (13)

IIIC 26 (18) 9 (35) 8 (31) 9 (35)

IV 28 (20) 6 (21) 13 (46) 9 (32)

ns, statistically not significant.
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50-ml reaction mixture consisted of 25 ml of HotStarTaq

Master Mix (Qiagen), 100 ng of genomic DNA, 250 pmol of

each primer (ACE-US: 5V-CTggAgACCACTCCCATCCT-

TTCT; ACE-DS: 5V-gATgTggCCATCAC-ATTCgTCAgAT),

and 5% (vol/vol) DMSO. An initial 15-minute denaturation

at 95jC was followed by 40 cycles of 1 minute at 64jC,

1 minute at 72jC, and 0.6 minute at 94jC. Amplified ACE

gene fragments were separated on 1.6% agarose gels and

visualized by ethidium bromide staining. D-alleles or I-alleles

were identified by the presence of 190-bp or 490-bp frag-

ments, respectively. The ID genotype commonly shows a

double band at 490 bp and a single band at 190 bp [21]. An

independent PCR analysis was carried out for each sample.

Statistical Analysis

Statistical analysis was carried out with SPSS software,

Version 14.01 (Chicago, IL). Values are expressed as mean ±

standard deviation (SD). The independence of qualitative

outcomes was tested using Pearson’s chi-square test and

Fisher’s exact test, where appropriate. One-way analysis of

variance and t-test were used for the comparison of group

means. The dependency of patient survival on ACE geno-

type was evaluated using the Kaplan-Meier method and was

compared using log-rank test. P < .05 (two-tailed) was con-

sidered ‘‘significant.’’

Results

Expression of ACE in Nonlesional Colon Mucosa,

Adenomas, and Colorectal Carcinomas

The local expression of ACE in CRCs and corresponding

nonlesional tissues was studied at the mRNA and protein

levels. As shown in Figure 1, ACE mRNA was highly signif-

icantly upregulated in colon carcinomas compared to corre-

sponding nonlesional tissues (2.5-fold; P = .009).

Immunohistochemistry was performed on paraffin-

embedded tissue sections from 22 of 141 patients (see

below) with CRC and from 21 patients with colorectal ade-

nomas. We examined the expression of ACE in the nontu-

morous crypt and surface epithelium, endothelial cells, and

carcinomas. ACE was significantly more commonly ex-

pressed in CRC cells [22 (100%)] than in non-neoplastic

crypt and surface epithelium [2 (9%)]. Immunostaining was

usually moderate to strong, and was confined to the apical

membrane of tumor cells [19 (86%)] and/or the cytoplasm [21

(95%)] (Figure 2). ACE was already expressed by neoplastic

cells of colorectal adenomas [17 (81%)]. However, in adeno-

mas, expression was usually weak and mainly localized in

the cytoplasm [17 (81%)], and less commonly at the apical

membrane [9 (43%)]. ACE was found in endothelial cells of

the tumor vessels of all (100%) patients (Figure 2).

ACE Gene Polymorphism

ACE gene polymorphism was studied in 141 CRC pa-

tients and was compared with that of 189 individuals without

cancer (Figure 3). The control group had been published pre-

viously [17]. Table 1 summarizes the clinical characteristics.

The mean age of colon cancer patients (including 83 men and

58 women) was 66.7 ± 12.4 years, and the mean age of con-

trol patients (including 75 men and 114 women) was 67.7 ±

6.1 years. Although the control group included significantly

more women than the CRC group, gene polymorphism was

not associated with patient gender in the control population.

Thirty-seven (26%) of 141 patients with CRC had the II ge-

notype, 69 (49%) had the ID genotype, and 35 (25%) had the

DD genotype. The distribution of the ACE genotypes did not

differ significantly from the control group or from the distri-

bution predicted by the Hardy-Weinberg equilibrium (Table 1).

Univariate analyses showed that the ACE genotypes

were associated with patient gender in the CRC group.

Women more commonly carried the ID genotype and less

frequently the II and DD genotypes compared with men (P =

.033). Furthermore, in men, the mean metric tumor diameter

was higher in carriers of the ID and DD genotypes. However,

this did not reach statistical significance. Therefore, we

dichotomized male CRC patients into carriers homozygous

for the II-allele and carriers heterozygous or homozygous for

the D-allele (Table 2). This demonstrated that the D-allele

was associated with a significantly higher mean metric tumor

diameter than homozygosity for the II-allele (P < .01; Table 2).

No gender-dependent or gender-independent correlation

was found between tumor location (colon versus sigma

versus rectum), depth of local tumor invasion (T-category),

nodal spread (N-category), distant metastases (M-category),

UICC tumor stage, and ACE genotype.

Finally, we studied the influence of the ACE genotypes on

patient survival (Table 3). Follow-up data were available from

104 patients (65 men, 39 women). Overall patient survival

correlated, although not significantly, with the ACE I/D gene

polymorphism. Carriers homozygous for the I-allele lived

shorter (mean survival, 38.04 ± 4.75 months) than carriers

of the D-allele (46.37 ± 4.90 months; Figure 4, A–C). Inter-

estingly, this difference was mainly related to female gender.

Figure 1. Expression of ACE mRNA in colon carcinoma and nonlesional

tissues. ACE expression was measured by quantitative real-time RT-PCR

and normalized against �-actin. Box boundaries: 25th and 75th percentiles;

solid line: median; whiskers: lowest and highest nonoutlier values. **P < .01.

TU, tumor; NT, nontumorous mucosa.
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Women with the DD genotype had the best prognosis (61.02 ±

1.69 months) compared with women carrying the ID genotype

(43.53 ± 5.27 months) or women carrying the II genotype

(25.99 ± 5.64 months; Figure 4C). After the dichotomization of

the patient population into carriers homozygous for the II-allele

and carriers heterozygous (ID) or homozygous for the D-allele

(Figure 4, D–F ), the correlation between ACE polymorphism

and patient survival was still apparent for women (25.99 ±

5.64 vs 47.21 ± 4.53 months; Figure 4F ).

Discussion

CRC affects approximately 6% of the population and is the

second leading cause of cancer-related deaths in the United

States and Europe. In 2003, approximately 150,000 new

cases of CRC were diagnosed in the United States, and

57,100 individuals died from this disease. Until today, most

cases are detected in advanced stages, in which curative

treatment is not possible and chemotherapy remains the

only, but unsatisfying, option. Thus, improving early diagno-

sis and finding new treatment strategies still are of para-

mount importance in CRC [22–24].

Recently, we have shown that ACE is expressed locally in

gastric cancer [16] and that the I/D gene polymorphism of the

ACE gene influences tumor development [25] and metastatic

Figure 2. Expression of ACE in CRC. The distribution and expression pattern of ACE in non-neoplastic colon mucosa (A and B) and colorectal carcinomas (C and

D) was investigated by immunohistochemistry. ACE was found in (B and D) endothelial cells and (D) tumor epithelial cells. Hematoxylin and eosin (A and C);

monoclonal anti-ACE antibody (B and D); hematoxylin counterstain. Original magnification, �400.

Figure 3. Determination of ACE genotypes by PCR amplification. Amplified

ACE gene fragments were separated on 1.6% agarose gels and visualized by

ethidium bromide staining. D-alleles or I-alleles were identified by the pres-

ence of 190-bp or 490-bp fragments, respectively. bp, molecular-weight markers.
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behavior [17]. Furthermore, the retrospective study provided

evidence that long-term ACE medication decreases the risk

of developing CRC [18]. Intrigued by these findings, we

aimed to further substantiate the putative significance of

ACE in gastrointestinal cancer biology by investigating its

local expression in CRC and the correlation between ACE

gene polymorphism and CRC progression.

We believe that we are the first to show that CRCs

differentially express ACE in tumor cells at the mRNA and

protein levels, whereas non-neoplastic surface and crypt

epithelium rarely express any ACE. Interestingly, ACE was

primarily localized at the apical membrane and in the cyto-

plasm of tumor cells, and not at the basolateral surface. This

leads to the conjecture that ACE might be involved in au-

tocrine or paracrine tumor cell homeostasis rather than tu-

mor cell invasion (e.g., matrix degradation and remodeling).

ACE is a type I integral membrane protein with a catalytic site

exposed to the extracellular surface. Considerable amounts

of ACE are expressed by epithelial cells of the small intes-

tine, but also in the chief cells of the gastric foveolar epithe-

lium [16,26–29], where it may play a role in the metabolism

of gastrointestinal hormones and regulatory peptides [30,

31]. Being a relatively nonspecific enzyme, ACE cleaves a

number of synthetic and naturally occurring substrates.

Thus, differential upregulation of ACE in CRCs may poten-

tially influence tumor cell biology. In addition, ACE was also

strongly expressed in endothelial cells of tumor vessels, lead-

ing us to suggest that it may be additionally involved in the

neoangiogenesis of CRC.

To further substantiate the putative impact of ACE on

CRC biology, we then investigated the correlation of the ACE

I/D gene polymorphism with various tumor characteristics.

The polymorphism in the ACE gene accounts for 20% to 50%

of the variance in ACE expression or activity in blood and

tissues among individuals and influences its pathophysiolog-

ical function in diseases such as hypertension [32], athero-

sclerotic cardiovascular complications [33], and diabetic

nephropathy [34]. The distribution of different ACE gene

alleles in our entire CRC population did not differ from the

distribution in the general population, indicating that the over-

all risk of developing CRC is not linked to a specific ACE

genotype and, hence, enzyme expression or activity. How-

ever, the distribution of individual genotypes among men and

women was significantly different, suggesting that the ACE

genotype may have a gender-specific impact on CRC cancer

risk or progression. This is in line with a recent study pub-

lished by Reyes-Engel et al. [35], who found significant ACE

genotype–dependent differences in the serum levels of

angiotensin I and angiotensin 1–7. The gender-dependent

influence of ACE on tumor biology was further substantiated

by correlating tumor size with the ACE genotypes. Men

carrying the D-allele had significantly larger tumors than

men homozygous for the I-allele. A similar observation was

made in premenopausal women with breast cancer. Female

carriers of the D-allele had significantly larger breast can-

cers than carriers of the I-allele [36]. The absolute size of a

primary tumor depends on tumor cell proliferation and neo-

angiogenesis. Both may be influenced by ACE because

tumor cells and tumor vessels express ACE. Interestingly,

we did not find a correlation between ACE genotype and

tumor size in our female patients, who (different from the

study on breast cancer published by Yaren et al. [36]) were

primarily postmenopausal in our series. However, a correla-

tion was found when ACE gene polymorphism was correlated

with patient survival, and, here, women with the DD genotype

had the best prognosis. These seemingly contradictory obser-

vations may be related to the hormonal modulation of ACE

activity. In postmenopausal women, the DD genotype is as-

sociated with endothelial dysfunction, which may also influ-

ence CRC vasculature and tumor growth [37,38]. This might

further explain why the DD genotype is underrepresented in

our female patients compared with male CRC patients. In post-

menopausal women, the DD genotype seems to protect from

the tumor progression of CRC.

Although ACE gene polymorphism was not linked to the

T-category, N-category, or M-category, it correlated with pa-

tient survival, indicating that ACE may be involved in disease

progression. However, due the small number—particularly

of women—in our series, we were unable to demonstrate

statistical significance. Therefore, future validation studies

should focus on the female patient population.

Different from observations made previously in gastric

cancer patients, we were unable to find any correlation

between the ACE genotypes and nodal spread in CRC. This

probably stems from the overall lower number of lymph node

metastases observed in CRC. The CRC patients in our

present series had a considerably lower number of lymph

node metastases (mean, 2.5 ± 4.1; median, 1.0) than the

gastric cancer patients (mean, 6.9 ± 9.0; median, 4.0)

studied previously [17].

Table 2. Mean Metric Tumor Size of CRC in Men and Women Dichotomized

into Carriers with and without the D-Allele.

Gender I/D Genotype n (%) Mean ± SD (mm) P

Men II 26 (31) 40.2 ± 12.2 < .01

ID + DD 57 (69) 50.1 ± 21.4

Women II 11 (19) 47.6 ± 10.2 ns

ID + DD 47 (81) 47.9 ± 30.3

Table 3. Mean Survival of Patients with CRC, By ACE Genotype.

Gender n (%) I/D Genotype Survival (Months)

[Mean ± SD]

P

Whole study population 29 (28) II 38.04 ± 4.75 .508

48 (46) ID 45.29 ± 3.94

27 (26) DD 46.37 ± 4.90

75 (72) ID + DD 46.13 ± 3.13 .250*

Men 22 (34) II 40.06 ± 5.54 .704

22 (34) ID 47.95 ± 5.63

21 (32) DD 42.53 ± 5.86

43 (66) ID + DD 45.96 ± 4.20 .587*

Women 7 (18) II 25.99 ± 5.64 .141

26 (67) ID 43.53 ± 5.27

6 (21) DD 61.02 ± 1.69

32 (82) ID + DD 47.21 ± 4.53 .141*

*II versus ID + DD.

720 ACE and Colorectal Cancer Röcken et al.
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Our observations may also provide putative explanations

to the findings of a retrospective study where ACE medica-

tion was associated with a significantly reduced risk of

developing CRC [18]. It is now widely accepted that CRCs

frequently arise from preneoplastic lesions (i.e., adeno-

mas)—through activation of oncogenes (k-ras) and inactiva-

tion of tumor-suppressor genes (APC, p53, and DCC)—and

DNA mismatch repair genes [39]. Therefore, we finally stud-

ied the expression of ACE in colorectal adenomas. ACE was

expressed in colorectal adenomas showing expression pat-

terns similar to those in CRC. Thus, based on our observa-

tions and the findings made in a retrospective study, we

hypothesize that ACE contributes to the progression of colo-

rectal adenomas to CRC by influencing local tumor growth

Figure 4. Kaplan-Meier survival curves for the ACE I/D gene polymorphism in CRC patients. Patient survival is shown for the whole study population in (A) and (D),

for men in (B) and (E), and for women in (C) and (F) across all genotypes (A–C), or for the dichotomization of the patient population into carriers homozygous for

the II-allele and carriers heterozygous (ID) or homozygous for the D-allele (D–F). Gender difference was noted. Women with the DD genotype lived longer than

women with the ID or II genotype. The x-axis denotes survival time (months), and the y-axis denotes survival probability.
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and neoangiogenesis. ACE inhibitors might interfere with this

effect, and further studies into this topic are warranted.
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giotensin I – converting enzyme gene insertion/deletion polymorphism

is linked to early gastric cancer. Cancer Epidemiol Biomark Prev 14,

2987 – 2989.

[26] Kobayashi R, Sun XY, and Walsh JH (1991). Angiotensin-converting

enzyme in the rabbit stomach wall. Identification in the membrane frac-

tion by affinity purification. Gastroenterology 100, 25– 32.

[27] Laliberte F, Laliberte MF, Nonotte I, Bali JP, and Chevillard C (1991).

Angiotensin I converting enzyme in gastric mucosa of the rabbit: local-

ization by autoradiography, immunofluorescence, and immunoelectron

microscopy. J Histochem Cytochem 39, 1519 – 1529.

[28] Nonotte I, Laliberte MF, Duperray C, Hollande F, Bali JP, Laliberte F,

and Chevillard C (1993). Expression of angiotensin I converting en-

zyme mRNA in rabbit gastric epithelial cells. Mol Cell Endocrinol 92,

167 – 174.

[29] Nonotte I, Laliberte MF, Remy-Heintz N, Laliberte F, and Chevillard C

(1995). Expression of angiotensin I – converting enzyme in the human

gastric HGT-1 cell line. Regul Pept 59, 379– 387.

[30] Lendeckel U, Kähne T, Riemann D, Neubert K, Arndt M, and Reinhold D

(2000). Review: the role of membrane peptidases in immune functions.

Adv Exp Med Biol 477, 1– 24.

[31] Turner AJ, Hooper NM, and Kenny AJ (1987). Metabolism of neuropep-

tides. In Mammalian Ectoenzymes. Elsevier, Amsterdam, pp. 211–248.

[32] Abbud ZA, Wilson AC, Cosgrove NM, and Kostis JB (1998). Angiotensin-

converting enzyme gene polymorphism in systemic hypertension. Am J

Cardiol 81, 244–246.

[33] Bedir A, Arik N, Adam B, Kilinc K, Gumus T, and Guner E (1999).

Angiotensin converting enzyme gene polymorphism and activity in

Turkish patients with essential hypertension. Am J Hypertens 12,

1038 –1043.

[34] Boright AP, Paterson AD, Mirea L, Bull SB, Mowjoodi A, Scherer SW,

and Zinman B (2005). Genetic variation at the ACE gene is associated

with persistent microalbuminuria and severe nephropathy in type 1 dia-

betes: the DCCT/EDIC Genetics Study. Diabetes 54, 1238– 1244.

[35] Reyes-Engel A, Morcillo L, Aranda FJ, Ruiz M, Gaitan MJ, Mayor-Olea

A, Aranda P, and Ferrario CM (2006). Influence of gender and genetic

variability on plasma angiotensin peptides. JRAAS J Renin–Angiotensin–

Aldosterone Syst 7, 92–97.

[36] Yaren A, Turgut S, Kursunluoglu R, Oztop I, Turgut G, Kelten C, and

Erdem E (2006). Association between the polymorphism of the angio-

tensin-converting enzyme gene and tumor size of breast cancer in pre-

menopausal patients. Tohoku J Exp Med 210, 109 –116.

[37] Methot J, Hamelin BA, Arsenault M, Bogaty P, Plante S, and Poirier P

(2006). The ACE-DD genotype is associated with endothelial dysfunc-

tion in postmenopausal women. Menopause 13, 959 – 966.

[38] Wassmann K, Ghiassi A, Wassmann S, Bohm M, and Nickenig G

(2006). AT1 receptor antagonism improves endothelial dysfunction in

postmenopausal women. Maturitas 53, 176 –183.

[39] Thorstensen L, Lind GE, Lovig T, Diep CB, Meling GI, Rognum TO, and

Lothe RA (2005). Genetic and epigenetic changes of components af-

fecting the WNT pathway in colorectal carcinomas stratified by micro-

satellite instability. Neoplasia 7, 99– 108.

722 ACE and Colorectal Cancer Röcken et al.
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