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Abstract

Glioblastoma multiformes (GBMs) express increased

aquaporin (AQP) 1 compared to normal brain. AQPs

may contribute to edema, cell motility, and shuttling

of H2O and H+ from intracellular to extracellular space.

We sought to gain insight into AQP1 function in GBM.

In cultured 9L gliosarcoma cells, AQP1 expression was

induced by dexamethasone, platelet-derived growth

factor, NaCl, hypoxia, D-glucose (but not L-glucose),

and fructose. Induction of AQP1 expression correlated

with the level of glycolysis, maximized by increasing

medium D-glucose or fructose and decreasing O2,

and was quantified by measuring lactate dehydroge-

nase (LDH) activity and medium lactate concentration.

Upregulation of the protease cathepsin B was also

observed in 9L cells cultured under glycolytic condi-

tions. Immunohistochemical staining of human GBM

specimens revealed increased coincident expression

of AQP1, LDH, and cathepsin B in glioma cells associ-

ated with blood vessels at the tumor periphery. GBMs

are known to exhibit aerobic glycolysis. Increased glu-

cose metabolism at the tumor periphery may provide

a scenario by which upregulation of AQP1, LDH, and

cathepsin B contributes to acidification of the extra-

cellular milieu and to invasive potential of glioma cells

in perivascular space. The specific upregulation and

metabolic consequences of increased AQP1 in gliomas

may provide a therapeutic target, both as a cell surface

marker and as a functional intervention.
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Introduction

Gliomas are the most common primary brain tumors in

adults. Glioblastoma multiformes (GBMs), the most malig-

nant of the gliomas, are highly aggressive and invasive

tumors. Among the phenotypic characteristics associated

with malignant GBMs are rapid growth, high glucose con-

sumption, intratumoral necrosis and hypoxia, abundant

microvascular proliferation, blood–brain barrier breakdown

and vasogenic brain edema, and perivascular infiltration of

glioma cells [1–3]. Changes in the vasculature of GBMs

have been the target of intense investigation because the

extensive changes that occur in the vasculature associated

with GBMs contribute to the progression, morbidity, and mor-

tality of this disease [4,5]. Tumor-associated blood vessels

display increased permeability and blood–brain barrier break-

down, resulting in brain tumor–associated edema. Proliferative

changes in these vessels also contribute to a predisposition to

intratumoral hemorrhage. In addition, vessels associated with

GBMs express altered adhesion molecules, contributing to the

invasive potential of glioma cells.

Aquaporins (AQPs) are a family of water-selective trans-

membrane transport channels that allow rapid movement of

H2O across normally hydrophobic cell membranes according to

osmotic gradients [6]. In normal brain, AQP1 and AQP4 are the

most studied and have received attention as possible contrib-

utors to brain edema [7–9]. AQP4, mainly located in astrocytic

endfeet around microvascular junctions, is thought to control

water movement at the blood–brain barrier and to be involved

in ischemia-induced cytotoxic brain edema [6,8–11]. Com-

pared to normal mice, AQP4 knockouts exhibited reduced brain

edema and neurologic improvement following ischemic brain

injury [12,13]. AQP1, absent for the most part from normal

brain, is expressed in choroid plexus epithelium and may be

important in the formation of cerebrospinal fluid [8,14]. In brain

tumors, AQP1 expression increases with the grade of malig-

nancy [15–17]. In some cases, this expression is associated

with tumor blood vessels, and this perivascular localization has

fueled speculation that increased AQP1 contributes to vaso-

genic brain edema [18,19]. However, the role that AQP1 may

play in these tumors is still speculative, and the mechanisms

by which AQP1 is upregulated in this setting are unknown.

In addition to vascular changes associated with GBMs,

these tumors also exhibit important metabolic changes com-

pared to normal brain tissue. Glioma cells can engage in high

rates of aerobic glycolysis, resulting in increased glucose
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consumption and production of lactic acid even under nor-

moxia [20–25]. The increase in lactic acid production and

subsequent acidification of extracellular space likely contrib-

ute to the invasive potential of cancer cells [26]. The ability of

cells to transport excess H+ from intracellular to extracellu-

lar space may also require movement of H2O in the same

direction [27,28], suggesting another potential function for

AQP1 in brain tumors. Analysis of the AQP1 gene promoter

revealed regions associated with increased growth (AP1 and

Sp1) and an E-box element [29]. The presence of the E-box

is particularly interesting in the study of gliomas because

this carbohydrate-responsive element (ChoRE) provides

a mechanism by which gene transcription is increased in

response to increased glucose consumption and metabolism

[30,31].

Increasingly, the importance of AQPs in several physio-

logic processes is becoming appreciated [32]. Our goal was

to gain insight into the function of AQP1 in the brain tumor

setting, with particular attention to the possibility that AQP1

levels may vary according to the metabolic state of the cell.

We performed this by examining the regulation of AQP1 in

the 9L gliosarcoma cell line and by examining the patterns of

AQP1 expression in surgical specimens. The results suggest

that AQP1 and other proteins are upregulated in response

to increased glucose consumption and glycolysis in glioma

cells, and that AQP1 may play a role in malignant gliomas

that extends beyond the regulation of tumor-associated vaso-

genic brain edema.

Materials and Methods

Reagents

DMEM [both (+)-glucose and (�)-glucose], penicillin–

streptomycin, and fetal calf serum were obtained from Gibco

Invitrogen (Carlsbad, CA). Dexamethasone sodium phos-

phate, BSA, L-glucose, and b-D-(�)fructose were obtained

from Sigma-Aldrich Co. (St. Louis, MO). D-Glucose was

purchased from Mallinckrodt Chemical, Inc. (Phillipsburg,

NJ). Recombinant rat platelet-derived growth factor (PDGF-

BB) was purchased from R&D Systems, Inc. (Minneapolis,

MN). Rat brain, kidney, liver, and lung total RNA were ob-

tained from BD Biosciences (Mountain View, CA).

Cell Culture

The C6 glioma cell line was purchased from the American

Type Culture Collection (Manassas, VA). S635 rat glioma

cells were generously provided by Dr. Darell Bigner (Duke

University, Durham, NC) [33]. The development of the 9L rat

gliosarcoma cell line has been described [34]. Cells were

grown in DME supplemented with 10% fetal calf serum,

100 U/ml penicillin, and 100 mg/ml streptomycin. All cell lines

were incubated at 37jC in an atmosphere of 5% CO2. Cells

were routinely grown in standard DME, as described above.

In experiments examining the induction of AQP1 in 9L cells,

cultures (at f 75% confluency) were changed to serum-free

medium for 24 hours before the addition of an inducer. In

cultures exposed to varying concentrations of hexoses, cells

were changed to glucose-free and serum-free medium for

24 hours before the addition of a hexose. Where indicated,

cells were made hypoxic, as previously described [35]. Cells

were harvested after a 24-hour exposure to the inducer.

Reverse Transcription–Polymerase Chain Reaction

Total RNA from cells or tissues was isolated using Qia-

gen’s RNEasy kit (Valencia, CA). Three micrograms of total

RNA was reverse-transcribed using the First-Strand cDNA

Synthesis kit (Amersham Pharmacia Biotech, Piscataway,

NJ). Three microliters of this reaction was used for polymer-

ase chain reaction (PCR) using the Takara PCR kit according

to the manufacturer’s specifications (Takara, Otsu, Japan).

Glyceraldehyde-3-phosphate-dehydrogenase control pri-

mers (Clontech, Mountain View, CA) were used as house-

keeping genes. DNA was denatured for 1 minute at 95jC and

amplified using 35 cycles of 94jC for 30 seconds, 55jC for

30 seconds, and 72jC for 1 minute, with a final 10-minute

extension at 72jC. PCR products were resolved on a 1.2%

agarose gel containing ethidium bromide.

Western Blot Analysis

Western blot analysis was performed on cultured 9L cells.

Samples were homogenized in cell lysis buffer (5 mM DTT,

5 mg/ml aprotinin, 0.5 mM PMSF, and 5 mg/ml leupeptin in

10 mM Tris buffer) and centrifuged at 1000 rpm for 5 minutes

at 4jC. Soluble cell extracts were prepared by ultrasonica-

tion followed by centrifugation at 15,000 rpm for 15 minutes.

Protein concentration was determined by Bio-Rad protein

assay (Bio-Rad, Hercules, CA). The extracts were subjected

to SDS-PAGE under reducing conditions after boiling sam-

ples at 100jC for 5 minutes in a sample buffer + b-mercap-

toethanol. Forty micrograms of each sample was loaded

onto 12% Tris–glycine gels (Invitrogen) and run at 120 V

for 1.5 hours at room temperature. Proteins were transferred

to a nitrocellulose membrane (Invitrogen) for 3 hours at 4jC.

The membrane was rinsed with PBS containing 0.02%

Tween 20 (PBS-T) and then placed in a blocking solution

(Zymed, San Francisco, CA) overnight at 4jC. The affinity-

purified rabbit polyclonal anti–rat AQP1 antibody was diluted

to 1 mg/ml and added to a blocking solution, then incubated

with the membrane for 3 hours at room temperature. As a

protein loading control, the membrane was also incubated

with anti–b-actin antibody. After washing thrice in PBS-T, the

membrane was incubated in horseradish peroxidase–linked

donkey anti-rabbit IgG (Jackson ImmunoResearch, West

Grove, PA; 1:20,000) in a blocking solution for an hour at

room temperature. For b-actin, anti-mouse IgG (Amersham

Pharmacia, Piscataway, NJ) was used at a concentration of

0.05 mg/ml. The membrane was washed thrice in PBS-T,

incubated with SuperSignal reagents (Pierce, Rockford, IL)

for 5 minutes, and exposed to film (BioMax LIGHT; Eastman

Kodak, Rochester, NY). For cathepsin B Western blot anal-

ysis, rabbit anti–rat cathepsin B antibody (2 mg/ml) was used

as primary antibody.
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Lactate Assay

Lactate assay was performed on cultured 9L cells. Con-

ditioned medium was taken out of each well (six-well Cell

Culture Cluster; Corning, Inc., Corning, NY) in which 9L cells

(3.0 � 105) were cultured. Lactate reagent (Trinity Biotech,

St. Louis, MO) was reconstituted with deionized water. One

milliliter of 9L-conditioned medium was added into 1 ml of lac-

tate reagent solution, incubated for 10 minutes, and read at

540 nm. Lactate concentration was determined according to

the manufacturer’s directions.

Lactate Dehydrogenase Assay

Lactate dehydrogenase (LDH) assay was performed on

9L cells plated in six-well dishes (3.0 � 105). Cells were lysed

with cell lysis buffer with 0.1% Triton X-100, and soluble cell

extracts were prepared by ultrasonication followed by cen-

trifugation at 15,000 rpm for 15 minutes. LDH assay kit (L-type

LDH; Wako, Osaka, Japan) was used. Two microliters of cell

lysate solution was added into 160 ml of coenzyme solution

(10 mM Tris buffer, pH 9.5, containing 0.28 mM NADH) and

incubated for 3 minutes at 37jC. Forty microliters of pyruvate

solution (0.25 mM phosphate buffer, pH 7.0, containing

4.0 mM pyruvate acid) was added and incubated for 1 minute

at 37jC, then read at 340 nm. LDH activity was calculated

from the molar absorption coefficient of NADH. Protein con-

centration was determined by Bio-Rad protein assay.

Cathepsin B Enzyme Activity Assay

9L cells were plated at 2.5 � 105 cells/well in six-well

plates (6 wells/condition) and incubated for 24 hours. The

medium was changed to DME without glucose or serum.

Hexose (D-glucose, L-glucose, and fructose) was added in

doses of 0, 25, and 125 mM, and cells were incubated for an

additional 24 hours. Control assays were carried out using

10 mM cathepsin B inhibitor. Cathepsin B activity assay kit

(Bio Vision, Mountain View, CA) was used, and assays were

performed according to the manufacturer’s directions. Fluo-

rescence was read using a Fluoroskan Ascent Fluorimeter

(Labsystems, Franklin, MA) equipped with a 400-nm excita-

tion filter and a 505-nm emission filter. Protein assays were

performed using Bio-Rad protein assay.

Tissue Samples and Immunohistochemistry

Twenty-two human GBM specimens were obtained from

the Surgical Neurology Branch at the National Institutes of

Health in accordance with institutional guidelines. Speci-

mens were frozen in isopentane (precooled on dry ice),

coated with OCT compound, and frozen at �80jC until use.

For immunohistochemistry, tissues were sectioned at

8 mm thickness, and slides were warmed to 60jC for 15 min-

utes. Tissues were fixed in Histochoice (Amresco, Solon, OH)

with 0.1% Triton X-100 (Research Products International

Corp., Mount Prospect, IL) for 12 minutes. For detection of

immunostaining by DAB method, endogenous peroxidase

activity was quenched by immersion in 0.5% H2O2 in metha-

nol for 20 minutes. Slides were incubated in a blocking re-

agent (PBS, pH 7.4, containing 2% BSA and 5% normal goat

serum) for at least 3 hours before the application of primary

antibody. Slides were incubated overnight in primary antibody

in the blocking reagent at 4jC. On the following day, sections

were incubated in biotinylated IgG secondary antibody for

1 hour at room temperature. Detection of antibody was per-

formed using the Vectastain ABC reagent (1:50) and DAB

according to the manufacturer’s instructions (Vector Labora-

tories, Burlingame, CA). Sections were counterstained with

Meyer’s hematoxylin (Sigma-Aldrich Co.), dehydrated, cleared,

and covered by microscopic cover glass using Permount

(Fisher Scientific, Fair Lawn, NJ).

For double immunofluorescence staining, tumor tissue was

fixed using Histochoice with 0.1% Triton X-100 for 12 min-

utes. Subsequently, the tissue was washed with PBS,

blocked in 5% normal serum matching the secondary anti-

body host, and incubated with primary antibodies overnight

at 4jC. Sections were incubated in a rhodamine-conjugated

secondary antibody (Jackson ImmunoResearch) for 1 hour

at 4jC. The second primary antibody was applied overnight

at 4jC after incubation with normal serum matching the host

of that secondary antibody. Sections were incubated in a

fluorescein isothiocyanate (FITC)–conjugated secondary

antibody (Jackson ImmunoResearch). After washing in

PBS, sections were mounted with Vectashield mounting me-

dium (Vector Laboratories), and coverslips were applied.

Antibodies and Immunohistochemistry Reagents

Vectastain ABC and DAB kits were purchased from Vector

Laboratories. The sources of primary antibodies (the final

concentration used for staining is listed in parentheses) are

as follows: rabbit–anti-rat AQP1 (1 mg/ml) was purchased

from Chemicon International, Inc. (Temecula, CA); mouse–

anti–human factor VIII (2 mg/ml) and mouse–anti–human

cathepsin B (0.5 mg/ml) were obtained from Serotec (Raleigh,

NC); goat–anti-LDH (5 mg/ml) came from Abcam (Cambridge,

MA); rabbit–anti–rat cathepsin B (2 mg/ml) was obtained

from Upstate Biotechnology (Lake Placid, NY); mouse anti–

b-actin (0.5 mg/ml) was purchased from Sigma-Aldrich Co.;

rabbit IgG was obtained from Zymed; mouse IgG came

from R&D Systems, Inc.; and goat IgG was obtained from

Caltag Laboratories (Burlingame, CA). The secondary anti-

bodies used were Rhodamine Red-X AffiniPure goat anti-

rabbit IgG, Rhodamine Red-X AffiniPure rabbit anti-goat

IgG, and horseradish peroxidase–conjugated donkey anti-

mouse IgG (Jackson ImmunoResearch). Biotinylated horse

anti-mouse (rat-adsorbed) IgG and FITC avidin were obtained

from Vector Laboratories.

Results

We examined the expression of AQPs using reverse tran-

scription (RT) PCR, and total RNA was isolated from three

rat brain tumor cell lines and normal brain (Table 1). AQP1

was strongly expressed in all three tumor cell lines; lesser

amounts of AQP6 and AQP8 were also detected in all three

lines. No other members of AQPs were detected. In normal

brain, AQP4 was expressed predominantly, with lower levels

of AQP1, AQP5, and AQP9.
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Numerous agents have been reported to regulate AQP1

expression in other cell types [36–42], but the extent to

which these regulate AQP1 expression in glioma cells is un-

known. Five potential regulators of AQP1 were tested in cul-

tured 9L cells, and all were observed to increase AQP1

mRNA expression in a dose-dependent manner (Figure 1).

Dexamethasone, previously reported to increase AQP1 in

the lung and peritoneum when administered systemically

[37,40], also increased expression in 9L cells. PDGF and

NaCl also increased AQP1 expression, as has been reported

in other cell types (see above). Of particular interest to the

study of gliomas is the effect of hypoxia on AQP1 induction.

Central necrosis and hypoxia are hallmarks of GBM, and

induction of AQP1 has been observed under this condition.

However, no hypoxia-responsive element has been identi-

fied in the AQP1 gene, suggesting that induction by hypoxia

may occur by an indirect mechanism. In the presence of suf-

ficient glucose, hypoxia also increases glycolysis, leading us

to test the effect of glucose itself on the expression of AQP1.

Under normoxic conditions, increasing glucose in the culture

medium increased AQP1 expression, suggesting that the

extent of glycolysis, rather than hypoxia per se, was the effector.

If the effect of glucose on AQP1 expression is related to

the extent of glycolysis rather than to a change in osmolarity

[36], then the effect should be dependent on the capacity of

the cell to metabolize hexose. In fact, both glucose and fruc-

tose induced AQP1, whereas nonmetabolized L-glucose did

not (Figure 2A). In addition, reducing the oxygen content of

the culture medium in the presence of ample glucose or fruc-

tose (conditions that force an increased level of glycolysis)

resulted in additional AQP1 induction. By contrast, L-glucose,

which is not metabolized, did not result in an increase in

AQP1 mRNA regardless of oxygen status. The lack of in-

duction by L-glucose alone suggests that changes in osmo-

larity are not responsible for AQP1 upregulation by hexoses

in this setting. The levels of AQP1 protein were also in-

creased under glycolytic culture conditions (Figure 2B).

The increased AQP1 expression observed in the pres-

ence of metabolized hexoses combined with hypoxia sug-

gested that the extent of glucose consumption/glycolysis

was driving the expression of AQP1. Therefore, we exam-

ined the levels of medium lactate, a measure of the extent

of glycolysis, in 9L cells cultured under these conditions (Fig-

ure 3A). The extent of glycolysis correlated well with in-

duction of AQP1, suggesting specific upregulation of AQP1

under glycolytic conditions. Such upregulation has been re-

ported for genes that have an E-box/ChoRE in their promoter

[30,31]. Because the AQP1 promoter contains this element,

we examined the regulation of two other genes containing

the same responsive element LDH [20,23], which catalyzes

the final step of glycolysis, and cathepsin B [43,44], a pro-

teolytic enzyme involved in glioma invasion. Under the same

conditions described in Figure 3A, LDH activity (Figure 3B),

and cathepsin B activity and protein level (Figure 3, C and D)

Table 1. Expression of AQPs in Rat Glioma Lines and Tissues By RT-PCR.

AQP Family

Cell/Tissue 0 1 2 3 4 5 6 7 8 9

9L � ++ � � � � + � + �
S635 � +++ � � � � + � + �
C6 � ++ � � � � + � + �
Brain � + � � ++ + � � � +

Kidney +++ ++ +++ + +++ ++

Lung +

Liver + ++ +++

Primer Sequence Size (bp) Reference

AQP-0 F: acg gct caa gag tgt ttc tga 189 [63]

R: tcc cca cag tct ctt tct tca t

AQP-1 F: ctg tgg tgg ctg agt tcc tg 344 [64]

R: att tcg gcc aag tga gtt ctc

AQP-2 F: atg tgg gaa ctc aga tcc ata gcc ttc tcc 816 [64]

R: tca ggc ctt gct gcc gcg agg cag gct

AQP-3 F: gag atg ctc cac atc cgc tac 485 [64]

R: cac aca ata agg gct gct gtg

AQP-4 F: ctc tgc ttt gga ctc agc att g 570 [64]

R: ttc ctt tag gcg acg ttt gag

AQP-5 F: gcc aca tca atc cag cca tt 383 [64]

R: aaa gat cgg gct ggg ttg at

AQP-6 F: ctg ctt gta tgg tgt ccc tgg tgt 262 [65]

R: ggc ctt gga aaa cta act gga tgg

AQP-7 F: atg gcc ggt tct gtg ctg 810 [66]

R: tct caa gaa ccc tgt ggt gg

AQP-8 F: aag acc atg ctg cta att cc 275 [63]

R: tcc aca atg aca gag aaa cc

AQP-9 F: atg cct tct gag aag gac gg 888 [67]

R: cta cat gat gac act gag ct

RT-PCR was performed as described in the Materials and Methods section. As

positive controls, total RNA from rat kidney, lung, and liver were used. The size

of PCR products for different AQP forms matched the predicted size. The rela-

tive intensity of protein bands is indicated as follows: (�) negative, (+) detect-

able, (++) strong, and (+++) very strong. In glioma cells lines, AQP1 was the

predominant form, with lesser amounts of AQP6 and AQP8 also detectable.

Figure 1. Regulation of AQP1 expression in 9L cells. 9L gliosarcoma cells

were cultured as described in the Materials and Methods section. Total RNA

was harvested from cells exposed to the indicated condition for 24 hours. The

concentration of the agent added to the culture medium is indicated above the

appropriate lane. The amounts added equal the final concentration in the

medium, except for NaCl. NaCl was added to the medium already containing

a normal concentration of 110 mM. Standard DME was used, except for

experiments examining the effect of glucose, in which case glucose was

added to glucose-free medium to achieve the indicated final concentration.

Levels of AQP1 transcripts were determined by RT-PCR using primers

specific for rat AQP1. Glyceraldehyde-3-phosphate-dehydrogenase was

used as a housekeeping gene. All of these conditions induced the expression

of AQP1 in these cells. Experiments were duplicated in independent cultures.

Dex, dexamethasone.
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were also increased. The similar upregulation of AQP1, LDH,

and cathepsin B suggests that increased glycolysis alters

the expression of these genes in a coordinated fashion.

To relate these results to the clinical setting, we examined

the expression of these three proteins immunohistochemi-

cally in human GBM surgical specimens. We evaluated

AQP1 expression in 22 cases of GBM by immunohistochem-

istry. All of the GBM specimens stained positively for AQP1.

Two general patterns of staining were observed (Figure 4).

In some samples, there was an overall increase in AQP1

staining throughout the tumor, with no particular association

to a specific structure (Figure 4, A and C). Also observed

was a more clustered pattern (Figure 4, B and D) related to

perivascular distribution. This is more clearly evident around

larger microvessels (Figure 4E) and is most notable at the

tumor periphery (Figure 4F). Areas of normal brain adjacent

to the tumor did not stain (Figure 4F). We observed no in-

crease in the perinecrotic staining of AQP1 (not shown).

Immunohistochemical detection of LDH and cathepsin B

(Figure 4, G and H) in GBM specimens also revealed a peri-

vascular staining pattern for these enzymes.

To further assess the cellular localization of these pro-

teins, double immunofluorescent staining with factor VIII was

performed, and similar staining patterns were confirmed.

Double staining for AQP1 and factor VIII indicates that

AQP1 expression is associated with perivascular glioma cells

and not with endothelial cells (Figure 5, A and B). Double

staining with LDH and factor VIII also demonstrates perivas-

cular upregulation of LDH in glioma cells, but some LDH is

also present in endothelial cells (Figure 5C). Staining for

cathepsin B also reveals a perivascular pattern of expression

in glioma cells, but cathepsin B is also clearly present in

endothelial cells associated with the tumor (Figure 5D).

Discussion

The results of this study indicate that AQP1 is upregulated by

increased glucose consumption and glycolysis in glioma

cells, both in vitro and in vivo. The induction of AQP1 by

glycolysis most likely occurs through the E-box/ChoRE tran-

scriptional element in the AQP1 gene promoter [30,31]. This

increase in gene transcription results from a buildup of gly-

colytic intermediates. Particularly striking is the intense peri-

vascular staining pattern of AQP1 in the tumor periphery of

GBM surgical specimens. The coordinated upregulation of

LDH in these specimens indicates that increased glycolysis

also occurs in this perivascular area. Although glycolysis is

often associated with hypoxic conditions, gliomas are well

Figure 2. Effect of glycolytic conditions on AQP1 induction. (A) The effect of different hexoses on AQP1 expression as determined by RT-PCR. 9L cells were

cultured for 24 hours at the indicated final concentration of hexose (no hexose, 25 mM, or 125 mM), and total RNA was isolated: D-glucose (D-Glu), fructose (Fruc),

or L-glucose (L-Glu). During this 24 hours of hexose exposure, cells were maintained under either normoxic (N) or hypoxic (H) conditions, as described in the

Materials and Methods section. The greatest increase in AQP1 transcripts was observed with the combination of metabolized sugar and hypoxia. (B) The effect of

different hexoses on AQP1 expression, as determined by Western blot analysis. 9L cells were cultured as described above, and cells were harvested for Western

blot analysis as described in the Materials and Methods section. AQP1 protein levels increased in the presence of increasing glucose under normoxic conditions

(top panel). Consistent with the PCR results above, hypoxia alone did not markedly increase AQP1, but in the presence of readily metabolized hexoses (D-glucose

and fructose), protein levels were dramatically increased. Nonmetabolized L-glucose had no effect. Protein loading was assessed by probing for �-actin.

Experiments were duplicated in independent cultures.
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known for exhibiting high rates of aerobic glycolysis, resulting

in increased lactic acid production even in the presence of

normal levels of oxygen [21,22,25]. For cells engaging in

aerobic glycolysis, the highest rate of glycolysis may occur

where the highest levels of substrate are available [45]. The

well-perfused perivascular space at the periphery of the tu-

mor would have the greatest access to circulating nutrients

and potentially to the highest level of glycolysis. Although

hypoxic areas in tumors would switch metabolism to anaer-

obic glycolysis, nutrient depletion in that same area might

prevent a buildup of glycolytic intermediates.

In addition to AQP1, upregulation of LDH and cathepsin

B can also be explained by the E-box/ChoRE transcriptional

element present in their promoters [20,23,43,44]. Although

coordinate upregulation of these three proteins supports

the hypothesis that glycolysis is an inducer of these genes

in gliomas, it is not proof of it. Myc, often upregulated in

tumor cells, can directly stimulate the transcription of E-box–

Figure 3. Effect of glycolytic culture conditions on medium lactate, cellular LDH, and cathepsin B. (A–C) X-axes are the same for the three graphs and indicate the

conditions under which 9L cells were cultured for 24 hours before harvest. Hexose (D-glucose, fructose, or L-glucose) was present at a concentration of 0 (open

bars), 25 mM (gray bars), or 125 mM (black bars), and was maintained under either normoxic (N) or hypoxic (H) conditions. Medium lactate (A), LDH (B), and

cathepsin B (C) activities were determined as described in the Materials and Methods section. All three parameters increased in the presence of metabolized

hexoses (D-glucose and fructose). Data are presented as mean ± standard deviation. (A and B) n = 8; (C) n = 6. Statistical significance (*P < .01; **P < .05) was

determined using Student’s t test. The data sets being compared are indicated by brackets above the bars. (D) Analysis of cathepsin B (Cat B) protein by Western

blot analysis. Culture conditions are as described in the Materials and Methods section and are indicated above and below the appropriate lanes. The intensity of

protein bands is similar to the results obtained from measuring cathepsin B activity. These experiments were performed twice with different samples.

Figure 4. Immunohistochemical analysis of AQP1, LDH, and cathepsin B in human glioblastoma. Sections were stained with the indicated primary antibody and

appropriate secondary as described in the Materials and Methods section and detected by DAB method. Staining for AQP1 (A–F) revealed specific patterns of

expression. In some areas of the tumor, AQP1 staining appeared fairly homogenous within the tumor section (A). AQP1 staining also revealed a more clustered

appearance (B). (C and D) A higher magnification of (A) and (B), respectively, demonstrates a clustered appearance often associated with microvessels. Intense

perivascular staining around larger vessels is also observed (E). Sections containing the interface between normal brain (NB) and tumor (T) demonstrate the

absence of AQP in the normal brain and upregulation in the tumor periphery, particularly around vessels (F). Staining for LDH (G) and cathepsin B (H) also shows

intense vascular-associated patterns of expression. Negative controls were performed using nonimmune IgG from the same species as the primary antibody, and

staining was not observed. Sections were counterstained with hematoxylin. Bar = 100 �m. (A), (B), (E) – (H) are of the same magnification. (C) and (D) are of the

same magnification.
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containing genes [20]. The perivascular staining pattern also

suggests that increased levels of extravasated serum and

growth factors might stimulate the transcription of these

genes through other promoters such as AP1 and Sp1 [23,

29,44]. Although the interplay of factors contributing to the

coincident induction of AQP1, LDH, and cathepsin B in GBMs

is not fully understood, the observation is notable.

What might be the importance (in brain tumors) of an

increase in glycolysis (indicated by increased LDH) and

upregulation of AQP1 in this perivascular space at the

periphery of brain tumors? Increased AQP1 might contribute

to maintaining the viability of these highly metabolic glioma

cells. Glycolysis results in intracellular lactic acidosis, but the

intracellular pH of tumors remains slightly alkaline [46]. Low

intracellular pH is detrimental, so cells respond by shuttling

H+ from the intracellular to the extracellular compartment.

However, this movement of H+ probably also requires move-

ment of H2O in the same direction (Figure 6). Along with

carbonic anhydrases (CAs), which are known to be ex-

pressed by glioma cells [47], AQPs may be required to

relieve intracellular lactic acidosis and subsequent cellular

swelling that might otherwise occur even under normoxia.

Figure 5. Localization of AQP1, LDH, cathepsin B, and factor VIII in human glioblastoma. Double immunofluorescent staining was performed. Images were

overlaid using Adobe Photoshop. In all cases, factor VIII appears green (FITC). (A and B) The distribution of AQP1 (red) and factor VIII demonstrates AQP1

expression in perivascular tumor cells, but not in endothelial cells. (C) LDH (red) and factor VIII also demonstrate LDH staining in perivascular glioma cells. Some

endothelial cells also stain for LDH, as indicated in yellow. (D) Cathepsin B (red) and factor VIII staining displays strong perivascular staining for cathepsin B in

glioma cells. In this case, cathepsin B staining was also observed in endothelial cells, as indicated in yellow. (E and F) Hematoxylin –eosin sections of glioblastoma

specimens demonstrate the presence of tumor cells surrounding vessels. Bar = 100 �m.
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CA II catalyzes the reaction of H+ and HCO3
�, producing

H2O and CO2 whose products probably must move to the

extracellular compartment to prevent acidosis and cytotoxic

edema [27,28]. Although clearly speculative, an increase in

AQP1 may be important to maintaining the viability of the

tumor cell itself and may contribute to the acidification of the

extracellular compartment (Figure 6).

Furthermore, the capacity to maintain an acidic environ-

ment has ramifications for the invasive potential of GBMs.

Glioma cells have long been observed to migrate throughout

the brain, often following a perivascular path [48]. The up-

regulation of cathepsin B in the perivascular area has pre-

viously been reported, and its expression in tumor cells along

blood vessels, as well as in tumor endothelial cells, corre-

lates well with the aggressiveness and invasive potential of

GBMs [49–52]. An acidic environment increases cathepsin

B release from the cell [53]. If AQP1 contributes to the

glycolysis-dependent acidification of the extracellular envi-

ronment, then the coordinate upregulation of AQP1 and

cathepsin B in the perivascular area at the tumor periphery

would provide an optimal environment for the invasion of

glioma cells [26]. In fact, the contribution of AQP1 to invasive

potential has been described in other experimental systems

[54,55]. In addition, the glycolysis-dependent increase in lyso-

somal cathepsin B, together with the possible increase in lyso-

somal membrane permeabilization occurring in metabolically

stressed cells, might contribute to tumor cell death if those

same cells experienced an intracellular release of cathepsin B

[56]. However, the relief of intracellular acidosis by AQP1 in-

duction, together with lysosomal membrane stabilization by

Hsp70 expressed in glioblastomas, might be another route

for promoting the survival and subsequent invasion of peri-

vascular glioma cells subjected to glycolytic stress [57,58].

Although our study focused on the effects of glycolytic

conditions on AQP1 expression, the possibility that gluco-

corticoids might increase the expression of AQP1 has also

been raised. This is of interest in the study of brain tumors

because of the widespread clinical use of dexamethasone

for the management of brain tumor–associated vasogenic

edema. A glucocorticoid response element has been noted

in the mouse AQP1 gene, and administration of systemic ste-

roid to rats increases AQP1 expression in the lung [37,39]. A

Figure 6. Speculation on the possible relationship of glycolysis, AQP1, and cathepsin B. Glioma cells take up glucose from the circulation as source of energy and

preferentially engage the glycolytic pathway to produce lactic acid. The increase in glycolytic intermediates may result in upregulation of AQP1, LDH, and cathepsin B

through the E-box/ChoRE. Production of lactic acid from glycolysis results in intracellular acidosis and excess H+. As described [27,28], intracellular CA II catalyzes the

formation of H2O and CO2 from H+ and bicarbonate. The excess H2O generated from this reaction leaves tumor cells through increased AQP1 in the tumor cell

membrane and prevents cytotoxic edema. CO2 may or may not also leave the cells through AQP1 [62]. Membrane-bound extracellular CA IX and XII may regenerate

H+ from extracellular H2O and CO2, thereby ‘‘shuttling’’ H+ from the inside to the outside of the cell and decreasing extracellular acidic pH. Maintaining an acidic envi-

ronment in the perivascular space would encourage secretion of cathepsin B and would contribute to the ability of glioma cells to invade the brain along the perivascular

space. Upregulation of AQP1 and stimulation of glucose uptake might also occur due to the presence of extravasated serum growth factors such as PDGF.

AQP1 in Gliomas Hayashi et al. 785

Neoplasia . Vol. 9, No. 9, 2007



possible interest in studying AQP1 in the context of rodent

models of brain tumor–associated edema led us to examine

the regulation of AQP1 in the rat 9L gliosarcoma line [35].

Although dexamethasone increased AQP1 mRNA in 9L cells

(this study), we did not observe AQP1 upregulation by dexa-

methasone in human glioma cells, although upregulation

under glycolytic conditions was observed (Y.H., preliminary

results). In fact, a glucocorticoid response element has not

been reported in the human AQP1 gene [29]. This suggests

that there may be a species difference with regard to AQP1

induction by steroids, and the extent to which upregulation of

AQP1 by a direct effect of dexamethasone occurs in human

GBMs is unclear.

In summary, the regulatory and expression patterns of

AQP1 observed in this study suggest that the microenviron-

ment and metabolic state of glioma cells are major determi-

nants of the level of AQP1 expression. Increased AQP1,

along with CAs, may provide a mechanism for relieving the

intracellular acidosis and edema that would otherwise occur

in highly glycolytic cells. The resulting acidification of extra-

cellular space and coordinate upregulation of proteases,

such as cathepsin B, particularly along vessels, may provide

optimal conditions for glioma cell migration and invasion. In

the treatment of brain tumors, the primary tumor focus, in-

cluding the area of central necrosis, is usually removed sur-

gically. However, invasion along blood vessels has already

occurred, and it is these initially undetectable invasive cells

that eventually appear as clinically significant recurrence [59].

Interestingly, AQP4 is also upregulated in GBM [60,61] but

exhibits increased staining more diffusely at the center of

the tumor, compared to the intensely perivascular staining

observed for AQP1 in this study. The rather selective up-

regulation of AQP1 in gliomas may provide a therapeutic

target both as a cell surface marker and for functional in-

tervention. Inhibition of AQP1 expression (by siRNA, for

example) or AQP1 function (with a blocking antibody or a

small inhibitory molecule) may result in increased intracel-

lular acidosis and cytotoxicity—and hence reduced invasive

potential—of perivascular glioma cells.
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