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Abstract
A previously investigated basic model (System B) for the study of signaling morphogen gradient
formation that allows for reversible binding of morphogens (aka ligands) with signaling receptors,
degradation of bound morphogens and diffusion of unbound morphogens is extended to include the
effects of membrane-bound non-signaling molecules (or non-receptors for short) such as
proteoglycans that bind reversibly with the same morphogens and degrade them. Our main goal is
to delineate the effects of the presence of non-receptors on the existence and properties of the steady-
state concentration gradient of signaling ligand–receptor complexes. Stability of the steady-state
morphogen gradients is established and the time to reach steady-state behavior after the onset of
morphogen production will be analyzed. The theoretical findings offer explanations for observations
reported in several previous experiments on Drosophila wing imaginal discs.
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1. Introduction
Morphogens (aka ligands) are molecules that activate signal-transducing mechanisms to
generate cellular responses when they bind to (signaling) cell receptors. Concentration
gradients of morphogen–receptor complexes are known to be responsible for patterning
biological tissues during development. For a number of morphogen families, it is well
established that concentration gradients are formed by the transport of morphogens from a
localized site of production (see Kerszberg and Wolpert, 1998;Entchev et al., 2000;Strigini
and Cohen, 2000;Teleman and Cohen, 2000 and other references in Lander et al., 2002). This
can be seen from an in vivo visualization of the gradient of the morphogen decapentaplegic
(Dpp) in a Drosophila fruit fly wing imaginal disc shown in Fig. 1 of Entchev et al. (2000).
Figure 2 of the same reference shows the evolution of the bound morphogen gradient in the
wing imaginal disc, which ultimately specifies the locations of wing vein structures on the
anterior and posterior portions of the adult wing (Gurdon and Bourillot, 2001). Recent
mathematical modeling and quantitative analysis in Lander et al. (2002) and Lou et al.
(2004) show that diffusion as a mechanism for morphogen transport and formation of steady-
state morphogen concentration gradients is consistent with available experimental observations
(Entchev et al., 2000;Teleman and Cohen, 2000). Specific results include the establishment of
the existence of various steady-state morphogen concentration gradients and the
characterization of the shape of these gradients.

Formation of concentration gradients of different morphogen–receptor complexes is expected
to be affected by other known ligand activities including binding with molecular entities other
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than signaling receptors. Such non-signaling entities will be called non-receptors since they
bind with morphogens similar to receptors but the resulting complexes do not signal. From this
perspective, the presence of non-receptors reduces the amount of morphogen available for
binding with receptors and thereby inhibits cell signaling. In this paper, we extend the basic
model System B of Lander et al. (2002) to include the possibility of morphogens binding with
nondiffusive non-receptors such as cell surface proteoglycans. Such a model will be used to
investigate the inhibiting effects of non-receptors on the formation and properties of steady-
state morphogen gradients and the related transient decay time. Similar to System B, the more
general model considered herein is an extracellular model in that it does not explicitly represent
endocytosis (and cell surface molecules are treated as if they degrade directly); it also takes
the concentration of receptors and non-receptors to remain unchanged in time (which can hold
whenever synthesis and degradation of receptors and non-receptors are not affected by
morphogen binding or signaling). Investigation of more general models with fewer
simplifications (see Lander et al., 2002,2006 and references therein) have led to the same
mathematical boundary value problem (BVP) for the determination of the steady-state
gradients up to a different interpretation of the biological parameters. Hence, we can and will
work with extracellular models whenever possible to simplify our analysis and presentation.

Morphogens are known to bind both nondiffusible and diffusible non-receptors. Regarding
nondiffusible non-receptors, a variety of molecules, especially heparan sulfate proteoglycans
(HSPG), such as syndecans and glypicans, are known to be important in Drosophila imaginal
discs, influencing gradients formed by morphogens such as Dpp, Wingless (Wg), and
Hedgehog (Hh) (Lin, 2004). A brief treatment of the effects of nondiffusive non-receptors can
be found in Eldar et al. (2003), in which it was concluded that the steady-state shapes of
morphogen gradients are necessarily independent of non-receptors. However, in that study the
ability of non-receptors to mediate morphogen degradation was neglected (reflecting the
relatively common misconception that most HSPG are static components of the extracellular
matrix, not rapidly turning-over cell surface molecules).

In the present investigation of nondiffusible non-receptors, we explicitly account for non-
receptor-mediated morphogen degradation and characterize its dynamic and steady-state
effects on gradient formation. Existence, uniqueness, monotonicity and linear stability of a
steady-state gradient of signaling morphogen–receptors are proved. Theoretical results
obtained for steady-state gradients herein will provide an explanation in Section 5 of the
opposite effects from overexpression of different receptors in Drosophila wing imaginal discs
observed experimentally in Cadigan et al. (1998) and Lecuit and Cohen (1998). Morphogen
binding with diffusible non-receptors has also been studied. Findings include a possible
mechanism responsible for some unexpectedly sharp enhancement of Dpp–receptor gradient
at the dorsal midline prior to reaching a substantially lower and less accentuated steady-state
concentration (Eldar et al., 2002;Kao et al., 2003;Lou et al., 2005;Mizutani et al., 2005;Shimmi
et al., 2005). The findings strongly suggest that the binding of Dpp with the diffusible non-
receptor Sog is responsible for some unexpectedly sharp enhancement of Dpp–receptor
gradient at the dorsal midline of the biological organism prior to reaching a substantially lower
and less accentuated steady-state concentration.

Mathematical models of the binding of morphogens to signaling receptors have been shown
to produce biologically realistic morphogen gradients for tissue patterning. The gradients from
these models have also been shown to be asymptotically stable with respect to small
perturbations. The (usually sharp) lower bound of the decay rate is found to depend only on
the degradation rate constant, offering a way to measure the latter (Mizutani et al., 2005).
However, such gradients are not robust to substantial changes in the various parameters,
including the kinds of changes that would be induced by environmental fluctuations (e.g.
varying temperature). For some morphogen gradient systems, introduction of typical feedback
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control mechanisms surprisingly does not lead to robustness while the presence of cell-
membrane-bound non-receptors that compete for the relevant morphogens alone does so in a
significant region of the system parameter space (Nie et al., 2004;Lander et al., 2005c;Lei et
al., 2005). It is therefore important to acquire some understanding of, and insight to, the effects
of nondiffusive non-receptors to morphogen gradient formation as we do herein.

2. A one-dimensional formulation
In this paper, we focus on the extracellular space of the posterior compartment of a Drosophila
wing imaginal disc so that our results can be compared with the those for some of the end
source models considered in Lander et al. (2002,2005a) and Lou et al. (2004) and applied to
explain the experimental observations of Cadigan et al. (1998) and Lecuit and Cohen (1998).
In formulating a relevant mathematical model for the problem of interest, we simplified the
development of the wing imaginal disc to a one-dimensional reaction–diffusion problem in
which morphogen is introduced at the rate ν at one end, the border between the anterior and
posterior compartment of the disc, and absorbed at the other end, the edge of the posterior
compartment. Based on what we have learned from Lander et al. (2003) and Vergas (2006),
extensions to two- and three-dimensional models should be straightforward.

Let [L(X, T)] be the concentration of a diffusing ligand, such as Dpp or Wg, at time T and
distance X from the source end X = 0, with Xmax being the distance to the edge of the
compartment. As in Lander et al. (2002), we take the diffusion of the ligand to be governed by
Fick’s second law, ∂[L]/∂T = D∂2[L]/∂X2, D being the diffusion coefficient. We add to this
relation the formation and dissociation of morphogen–receptor complexes at the binding rate
− Kon[L](R0 − [LR]) and dissociation rate Koff[LR]. Here [LR] is the concentration of
morphogen–receptor complexes which degrade at the degradation rate Kdeg[LR]. In these
expressions, Kon, Koff and Kdeg are the binding rate constant, dissociation rate constant, and
degradation rate constant, respectively. The parameter R0 is the total fixed concentration of
receptors available. Though there is no explicit account for the synthesis, internalization
(through endocytosis) and degradation of receptor in this formulation, designated as System
B in Lander et al. (2002) and Lou et al. (2004), a fixed receptor concentration R0 corresponds
to a receptor synthesis rate matching its degradation rate with internalization implicit in
receptor-mediated degradation. The omission of an explicit account of receptor renewal and
internalization results in no loss of generality for the purpose of analysis; we have already
established in Lou et al. (2004) and Lander et al. (2006) that the BVP governing the steady-
state behavior of the more general Systems R and C which include receptor renewal and
internalization can be reduced the corresponding BVP for the simpler System B. With
appropriate interpretation of the biological parameters involved, the results from the simpler
model system also apply to more complex systems with receptor (and non-receptors) renewal
and internalization and without the restriction on the receptor synthesis rate being equal to the
degradation rate.

To investigate the effects of a fixed concentration N0 of a proteoglycan type non diffusive non-
receptors, we augment System B by a set of similar activities for the non-receptor sites resulting
in a concentration of morphogen–non-receptor complexes [LN(X, T)] with Jon, Joff, and Jdeg
being the corresponding binding rate constant, dissociation rate constant, and degradation rate
constant, respectively. For the present study, we work with the analogue of System B without
an explicit accounting of non-receptor renewal and internalization. Similar to System B, the
stipulation of a fixed non-receptor concentration N0 corresponds to a non-receptor synthesis
rate matching its degradation rate.

For the extension of System B above, we have the following nonlinear reaction–diffusion
system governing the evolution of the concentrations [L], [LR], and [LN]:
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∂ L
∂T = D ∂

2 L
∂X 2 − Kon L (R0 − LR ) + Koff LR

− Jon L (N0 − LN ) + Joff LN (0 < X < Xmax, T > 0),
(1)

∂ LR
∂T = Kon L (R0 − LR ) − (Koff + Kdeg) LR

(0 ≤ X ≤ Xmax, T > 0),
(2)

and

∂ LN
∂T = Jon L (N0 − LN ) − (Joff + Jdeg) LN

(0 ≤ X ≤ Xmax, T > 0).
(3)

With a morphogen synthesis rate ν(T) at the localized source X = 0 between the two wing disc
compartments, we have the following idealized end condition at the source end:

X = 0 : ∂ L
∂T = σD ∂ L

∂X − {Kon L (ρ2R0 − LR ) − Koff LR }
− {Jon L (ρz

2N0 − LN ) − Joff LN } + ν,
(4)

for all T > 0, where, for an aggregated source model (System A of Lander et al., 2005a), 1/σ =
Xmin is the width of the ligand synthesis zone. The parameters ρ2 R0 and ρz

2N0 are respectively
the uniform receptor and non-receptor concentration densities in the narrow receptor
production region between the two compartments. The edge of the posterior compartment of
the wing disc at the other end, X = Xmax, is taken to be absorbing; hence, we have

X = Xmax : L = 0 (T > 0). (5)

Until morphogens being generated at T = 0, the biological system was in quiescence so that
we have the homogeneous initial conditions

T = 0 : L = LR = LN = 0, (0 ≤ X ≤ , Xmax). (6)

The initial-boundary value problem (IBVP) defined by (1)–(6) will be designated as System
N henceforth. In the absence of non-receptor sites (so that N0 = Jon = Jdeg = Joff = 0), the limiting
case of σ = 0 (Xmin = ∞) reduces to System B upon setting ρ2 = 1.

To reduce the number of parameters in the problem, we introduce the normalized quantities

t = D
X0

2 T , x = X
X0

, a = L
R0

, b = LR
R0

, c = LN
N0

, Z =
N0
R0

, (7)

f 0 =
X0

2

D Koff, g0 =
X0

2

D Kdeg, h0 =
X0

2

D KonR0, ν0 =
X0

2

DR0
ν, (8)

f 1 =
X0

2

D Joff, g1 =
X0

2

D Jdeg, h1 =
X0

2

D JonN0, h̄ 1 =
h1
Z , (9)
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where X0 is some typical scale length which will be taken to be Xmax unless specifically
indicated otherwise. With these normalized quantities, we rewrite the IBVP for [L], [LR], and
[LN] in the following normalized form

∂a
∂t = ∂2a

∂x 2 − h0a(1 − b) + f 0b − h̄ 1Za(1 − c) + f 1Zc (0 < x < 1) (10)

∂b
∂t = h0a(1 − b) − ( f 0 + g0)b (0 ≤ x ≤ 1) (11)

∂c
∂t = h̄ 1a(1 − c) − ( f 1 + g1)c (0 ≤ x ≤ 1) (12)

with the boundary conditions

x = 0 : ∂a
∂t = σ0

∂a
∂x − h0a(ρ2 − b) − f 0b

− h̄ 1Za(ρz
2 − c) − f 1Zc + v0

(13)

x = 1 : a = 0 (14)

all for t > 0, and the homogeneous initial conditions

t = 0 : a = b = c = 0 (0 ≤ x ≤ 1). (15)

In (13), the parameter σ0 will be taken to be Xmax/Xmin herein to correspond to an aggregated
source model (Lander et al., 2005a,b).

The IBVP defined by (10)–(15) constitutes a new mathematical model for morphogen activities
in the presence of nondiffusive non-receptors such as cell membrane-bound Syndecans and
Glypicans (e.g., Dally and Dlp) in Drosophila (Jackson et al., 1997;Bellin et al., 2003;Fujise
et al., 2003;Lin, 2004). It will be used to study the effects of such non-receptor sites on the
amplitude, steepness and convexity of the various steady-state morphogen concentration
gradients, and the decay rate of transient behavior. For this purpose, we limit ourselves hereafter
to the case ρ 2 = ρz

2 = 1 to simplify the discussion.

3. Time-independent state (σ0=0)
We denote by ā(x), b̄(x), and c̄(x) the time-independent steady-state solution for a(x, t) and b
(x, t) and c(x, t) of (10)–(15), respectively. For this steady-state solution, we have ∂ā/∂t = ∂b̄/
∂t = ∂ c̄/∂t = 0 so that the governing partial differential equations and boundary conditions
become

ā″ − h0ā(1 − b̄) + f 0b̄ − h̄ 1Zā(1 − c̄) + f 1Zc̄ = 0 (0 < x < 1) (16)

h0ā(1 − b̄) − ( f 0 + g0)b̄ = 0, (0 ≤ x ≤ 1)

h̄ 1ā(1 − c̄) − ( f 1 + g1)c̄ = 0 (0 ≤ x ≤ 1) (17)

with

σ0ā′(0) − {h0ā(0) 1 − b̄(0) − f 0b̄(0)} − Z{h̄ 1ā(0) 1 − c̄(0)

− f 1c̄(0)} + ν0 = 0.
(18)
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ā(1) = 1, (19)

where a prime indicates differentiation with respect to x, i.e., ( )′ = d( )/dx.

We can use (17), written as

b̄(x) = ā(x)
ā(x) + α0

, α0 =
f 0 + g0

h0
=

Koff + Kdeg
KonR0

, (20)

c̄(x) = ā(x)
ā(x) + ᾱ1

, ᾱ1 =
f 1 + g1

h̄ 1
=

Joff + Jdeg
JonR0

, (21)

to eliminate b̄ and c̄ from all other relevant equations to obtain a BVP for ā alone:

ā″ =
g0ā

ā + α0
+

Zg1ā
ā + ᾱ1

, (22)

− σ0ā′(0) +
g0ā(0)

ā(0) + α0
+

Zg1ā(0)
ā(0) + ᾱ1

= ν0, ā(1) = 0. (23)

We consider here first the special case σ0 = 0, designated as System NB. For this case, the
boundary condition at x = 0 becomes a quadratic equation for ā(0):

g0 + Zg1 − ν0 ā2(0) + g0ᾱ1 + Zg1α0 − ν0(α0 + ᾱ1) ā(0)

− ν0α0ᾱ1 = 0.
(24)

This can be solved to obtain

ā(0) =
− κ ± κ2 + 4ν0α0ᾱ1(g0 + Zg1 − ν0)

2(g0 + Zg1 − ν0) (25)

with

κ = g0ᾱ1 + Zg1α0 − ν0(α0 + ᾱ1). (26)

The free ligand concentration at the source end for System NB ā(0) is completely specified as
in System B investigated in Lander et al. (2002,2003) and Lou et al. (2004). For System B, it
was required that g0 be greater than ν0 for the existence of a steady state. For any prescribed
set of values for g0, ᾱ1, g1, α0, and ν0, the expression (25) for ā(0) enables us to prove the
following necessary condition for the existence of a steady state for System NB:

Lemma 1. g0 + Zg1 >ν0 is a necessary condition for the existence of nonnegative steady-state
concentration gradients.

Proof: Re-write the expression (26) for κ as

κ = (g0 + Zg1 − ν0)(ᾱ1 + α0) − (Zg1ᾱ1 + g0α0).

It follows that κ < 0 and both roots for ā(0) would be negative if g0 + Zg1 <ν0.

With g0 + Zg1 > 0, we must take the positive square root in (25) to get
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ā(0) =
− κ + κ2 + 4ν0α0ᾱ1(g0 + Zg1 − ν0)

2(g0 + Zg1 − ν0) ≡ ā0 > 0 (27)

to avoid a negative ā0 and ensure a meaningful steady-state concentration of morphogens at
the source point.

In the absence of non-receptors, the necessary condition g0 + Zg1 > ν0 reduces to the known
condition g0 > ν0 found in Lander et al. (2002) and Lou et al. (2004). For the simpler case of
Z = 0, the various normalized steady-state morphogen concentrations depend on the following
three parameters: the dimensionless effective on rate ψ, the ligand synthesis-to-degradation
ratio β, and the ligand–receptor loss–gain ratio α0:

ψ ≡ μ2 =
g0
α0

=
Kdeg

Kdeg + Koff

xmax
2

D KonR0,

β ≡
ν0
g0

= ν
KdegR0

, α0 =
Kdeg + Koff

KonR0
.

(28)

The synthesis–degradation ratio β is a measure of the relative strength of the morphogen
production rate and the morphogens degradation rate. The dimensionless effective on rate ψ =
h0g0/(g0 + f0) characterizes essentially the relative strength of the effective morphogen–
receptor binding rate and morphogen diffusion rate (see (28)). The loss–gain ratio of
morphogen–receptor complexes α0 is a measure of the effective replacement of lost ligand–
receptor complexes through new binding. It is rather remarkable that for the limiting case of
σ0 = 0, the existence of the steady-state concentration gradients ā and b̄ in the absence of non-
receptors depends on the value of only one of these three parameters, namely β.

In the presence of a concentration of membrane-bound non-receptors, Lemma 1 shows that the
parameter relevant to the existence of steady-state gradients corresponding to β is

βa(Z) ≡
ν0

g0 + Zg1
= ν

KdegR0 + JdegN0
(29)

with βa(0) = β. Analogous to the Z = 0 case, we expect βa(Z) ≡ ν0/(g0 + Zg1) < 1 to be a sufficient
condition for the existence of steady-state morphogen gradients as well. It is straightforward
to prove the following existence, uniqueness, and monotonicity theorem by the method
previously indicated in Lou et al. (2004) (see also Lander et al., 2003).

Theorem 1. For g0 + Zg1 > ν0 so that βa(Z) < 1, there exist a unique triplet of non negative
(time-independent) steady-state gradients ā, b̄, and c̄, all strictly decreasing in [0, 1].

Proof: (sketched) With au(x) = ā0 and aℓ(x) = 0 being an upper and a lower solution of the BVP
for ā(x), respectively, a theorem of Sattinger (1972) assures us that ā(x) exists with 0 ≤ ā (x) ≤
ā 0.

Uniqueness is proved by integrating the BVP for the difference a(x) between two possible
solutions ā 1 and ā 2 to obtain

∫01(a ′)2dx + ∫01{ g0α0a2

(ā1 + α0)(ā2 + α0) +
Zg1ᾱ1a2

(ā1 + ᾱ1)(ā2 + ᾱ1) }dx = 0.

Since the integrands are all non negative, we must have a(x) = 0.
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For monotonicity, suppose that ā (x) has a maximum at x0; then ā ″(x0) ≤ 0. But the ODE for
ā (x) requires ā″(x0) ≥ 0. Hence, we must have ā″(x0) = 0 and therewith ā (x0) = 0 by the ODE.
But 0 ≤ ā (x) ≤ ā (x0) = 0 requires ā (x) = 0 which contradicts ā (0) = ā 0 > 0. That ā (x) does
not admit an interior minimum can also be proved similarly.

We see from the condition βa ≡ ν 0/(g0 + Zg1) < 1 that the presence of nondiffusive non-receptors
allows steady-state concentration gradients for a larger normalized morphogen synthesis rate
ν0. Hence, non-receptors help the formation of steady-state gradients in that the normalized
production rate of the morphogens no longer needs to be smaller than their normalized
degradation rate, provided there is a sufficiently large concentration of non-receptors. On the
other hand, for a fixed concentration of non-receptors, there will always be a threshold ligand
synthesis rate for the existence of a steady state. It is significant that the restriction on the
synthesis rate (for the existence of steady-state behavior) in the ad hoc point source model
Systems B is not removed by the introduction of nondiffusive non-receptors to that model.

4. Time-independent state (σ0≠ 0)
For the more typical case of σ0 > 0, the end condition at x = 0 no longer specifies the end value
ā(0). Correspondingly, there is no longer any requirement for g0 + Zg1 to be greater than ν0.
In fact, we have the following theorem which ensure the existence of a unique nonnegative
monotone decreasing steady-state concentration ā (x) with no restriction on the ligand synthesis
rate:

Theorem 2. For positive values of the parameters σ0, g0, α0, g1, ᾱ1, and ν0, there exists a
nonnegative regular solution ā (x) of the BVP (22) and (23). (The corresponding concentrations
b̄ (x) and c̄ (x) can then be calculated from (20) and (21), respectively.)

The proof this theorem is similar to that for Z = 0 case in Lander et al. (2005a) and will not be
given here. Instead we will obtain an approximate steady-state solution for low morphogen
synthesis rates.

For sufficiently low values of ν0, we expect h0 ā (x) ≪ g0 + f0 and h̄ 1 ā (x) ≪ g1 + f1. For
such cases, henceforth designated as the Low Ligand Synthesis Rate (LLSR) cases, a first
approximation ā 0(x) of ā (x) may be obtained by neglecting the ā (x) terms in the denominators
of (22) and (23) to get

ā0
″ = μs

2ā0, − σ0ā0′(0) + μs
2ā0(0) − ν0 = 0, ā0(1) = 0 (30)

with

μ2 = ψ =
g0
α0

, μz
2 = ψz =

g1
ᾱ1

Z, μs
2 = μ2 + μz

2. (31)

The exact solution of this linear BVP is

ā0(x) =
ν0

Δ0(μs, σ0) sinh (μs(1 − x))

≡
ν0 sinh (μs(1 − x))

μs
2 sinh (μs) + σ0μs cosh (μs)

∼ α0b̄(x)
(32)

with
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α0b̄(0) ∼ ā(0) ∼ ā0(0) =
ν0

μs
2 + σ0μs coth (μs)

, ≡ a0. (33)

Note that the corresponding solution for the special case σ0 = 0 (System NB) is

ā0(x) =
ν0 sinh (μs(1 − x))

μs
2 sinh (μs)

, ā0(0) =
v0
μs

2 . (34)

With (32), we now see that if the ad hoc point source model of System NB is to be an adequate
approximation of System N, it is necessary to have the binding rate sufficiently high so that
σ0 coth(μs )/μs ≪1.

More important information on the effects of a concentration of nondiffusive non-receptors
can be obtained from (32). Since μs

2 = μ 2 + μz
2 ≥ μ 2, the introduction of nondiffusive non-

receptors has the following effects on the amplitude, slope and convexity of the normalized
morphogen concentrations gradient ā (x) and b̄ (x).

Theorem 3. For sufficiently low morphogen synthesis rates (so that (32) is an adequate
approximation of ā(x)), the presence of nondiffusive non-receptors generally lowers the
normalized concentration level of both ā (x) and b̄ (x) at each point of the solution domain,
reduces the steepness of the negative slope, and increases the convexity of the
concentrations.

Proof: The conclusions are consequences of computing ∂ [ā0(x)]/∂Z, − ∂ [∂ ā0(x)/∂x]/∂Z, and
− ∂ [∂2 ā0(x)/∂x2]/∂Z and showing that they are all negative. But even with the explicit solution
(32), the task is not straightforward. Given ∂[ ]/∂Z = {∂[ ]/∂μs}{g1/(2μs ā1)}, we consider

∂ ā0
∂μs

=
ν0
Δ0 2 {μs

2 sinh (μsx) + σ0μs cosh (μsx) − φ(x)}

Where

φ(x) = Δ0x cosh (μs(1 − x)) + 2μs sinh (μs) + σ0 cosh (μs) sinh (μs(1 − x)

∂φ
∂x = − μs

2 sinh (μs) cosh (μs(1 − x)) − Δ0(μsx) sinh (μs(1 − x)).

Since ∂φ/∂x < 0, we have

∂ ā0
∂μs

<
ν0
Δ0 2 {μs

2 sinh (μsx) + σ0μs cosh (μsx) − φ(1)} ≤ 0

for 0 ≤ x ≤ 1. This show that ā0 is a decreasing function of Z. Next, we have

∂
∂μs

∂ ā0
∂x =

ν0
Δ0 2 {μs

3 cosh (μsx) + σ0μs
2 sinh (μsx)

+μs
2 sinh (μs) cosh (μs(1 − x)) + Δ0(μsx) sinh (μs(1 − x)}

which is positive for 0 ≤ x ≤ 1; hence the slope d ā0/dx becomes less negative with increasing
Z. Finally, the expression
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∂
∂μs

∂2ā0
∂x 2 =

ν0
Δ0 2 {μs

4 sinh (μsx) + σ0μs
3 cosh (μsx)

+σ0μs
2 cosh (μs) sinh (μs(1 − x)) − μsΔ0(μsx) cosh (μs(1 − x))}

which is nonnegative for 0 ≤ x ≤ 1 and strictly positive for 0 ≤ x < 1.

As we shall see in the next section, we can prove similar results for more general morphogen
synthesis rates for which linearization is inappropriate.

Remark 1. It is important to observe that the presence of non-receptor sites does not
automatically affect the free and bound morphogen gradients. In the absence of non-receptor-
mediated ligand degradation so that g1 = 0, we have μz

2 = Zg1 / ᾱ1 = 0 (even when Z ≠ 0)

and μs
2 = μ 2. In that case, both āa0(x) and b̄ 0(x) reduce to the corresponding expression

without non-receptors in Lou et al. (2004) and Lander et al. (2005a). As such, our results
provide an analytical confirmation of the same observation in Eldar et al. (2003) based on
numerical simulations. At the same time, they extend the work of Eldar et al. (2003) to the
more general case which allows for non-receptor-mediated ligand degradation.

While non-receptors always reduce the negative slope of gradients, many biologists are more
concerned about “slope relative to concentration” (or “relative slope” for brevity), s(x; Z) ≡ ā
′(x)/ā (x); how does s(x; Z) change with the introduction of non-receptors? For the LLSR case,
it is a straightforward calculation to show that ∂s/∂Z < 0 so that we have the following result.

Theorem 4. Whereas a higher concentration of nondiffusive non-receptors always reduces
negative slopes of gradients for the LLSR case, it always increases the relative slopes ā′(x)/ā
(x) and b̄′ (x)/b̄ (x), making them steeper downward.

How does the conclusion above change if the ligand synthesis rate is higher (so that we cannot
linearize the BVP for the steady-state solution)? We will attempt to answer this question in the
next section (but postpone a discussion of a more general model with receptor and non-receptor
renewal to a future report). Another task that requires attention is to see what the results for
normalized quantities obtained above tell us about experimentally observable quantities
(generally the unnormalized quantities such as [L], [LR] and [LN]) since the rescaling of these
quantities involves the parameter R0. We will also do this in the next section.

5. Effects of non-receptor-mediated degradation on steady-state gradients
For the general case of an unrestricted synthesis rate ν0, we will obtain the dependence of
amplitude and shape of the free morphogen gradient on the amount of non-receptors introduced
by first showing that ā(x) is a decreasing function of Z. Let y(x) = ∂ ā/∂Z and differentiate all
the relations in (22) and (23) with respect to Z to get

y ″ =
α0g0

(ā + α0)2
+

Z ᾱ1g1
(ā + ᾱ1)2

y +
g1ā

(ā + ᾱ1) , y(1) = 0, (35)

B y(0) ≡ − σ0y ′(0) +
α0g0y(0)

ā(0) + α0 2 +
Z ᾱ1g1y(0)

ā(0) + ᾱ1 2 +
g1ā(0)

ā(0) + ᾱ1
= 0. (36)

We can establish the following existence and uniqueness theorem for this linear BVP.

Lander et al. Page 10

Bull Math Biol. Author manuscript; available in PMC 2007 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Theorem 5. For any set of positive values of the parameters σ0, g0, α0, α ā1 and ν0, there exists
a unique nonpositive monotone increasing solution y(x) of the BVP (35) and (36).

Proof: Because of the form of the boundary condition (36), the monotonicity theorem of
Sattinger (1972) is not directly applicable. Consider the auxiliary BVP defined by (35) with y
(1) = 0 and y(0) = y0 for any y0 in [−yz, 0] where

yz =
ā(0) ā(0) + ᾱ1

Z ᾱ1
> 0.

Now, yu(x) = 0 is an upper solution for this auxiliary problem. With

Z ᾱ1g1yz
ā(x) + ᾱ1 2 =

g1ā(0) ā(0) + ᾱ1
ā(x) + ᾱ1 2 ≥

g1ā(0)
ā(x) + ᾱ1

≥
g1ā(x)

ā(x) + ᾱ1
,

Yℓ(x) = − yz is a lower solution of the same auxiliary BVP. Hence, a unique, non-positive,
monotone increasing solution y(x) of auxiliary BVP exists for any y0 (in the chosen range) with
− yz ≤ y(x) ≤ 0. Let s(y0) be the slope y′(0) of the auxiliary BVP for the particular y0; then we
have from (36) s(0) = 0 and s(y0) > 0 (since the solution of the auxiliary BVP is monotone
increasing for y0 in [− yz, 0]. Correspondingly, we have

B y(0) = 0 =
g1ā(0)

ā(0) + ᾱ1
> 0,

B y(0) = − yz ≤ − σ0s( − yz) −
α0g0yz

ā(0) + α0 2 < 0.

Continuous dependence of the solution y(x) on the parameter y0 implies that there is an
intermediate value ᾱ0, −yz < ᾱ0 < 0, for which B[ᾱ0] = 0. This proves the existence part of
the lemma. Uniqueness and monotonicity are proved by arguments similar to that for System
A in Lander et al. (2005a).

The following useful theorem extends the explicit results for the case of low morphogen
synthesis rates on the amplitude and shape of the concentration gradients.

Theorem 6. The presence of nondiffusive non-receptors generally lowers the amplitude and
reduces the downward slope of the concentration gradients ā (x) and b̄ (x) for all x < 1
(rendering it less steep) and generally increases the convexity of ā(x) in a region adjacent to
the morphogen source.

Proof: We have from Theorem 5 that y(x) = ∂ā/∂Z is negative in [0, 1). It follows that ā (x) is
a decreasing function of Z so that the presence of the non-receptors generally lowers the
magnitude of ā (x) throughout the wing disc interior. The effects of non-receptors on the
amplitude of b̄ (x) follows from the relation

∂ b̄
∂Z =

α0
ā(x) + α0 2

∂ ā
∂Z .

We also have from the same theorem that y(x) is monotone increasing so that

y ′(x) = ∂
∂x ( ∂ ā

∂Z ) = ∂
∂Z (ā′) > 0.
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In other words, the negative slope ā ′(x) is an increasing function of Z and hence becomes less
steep downward with the introduction of nondiffusive non-receptors. At the sink end, we have
y(1) = 0 and therewith

y ″(1) =
g1ā(1)

ā(1) + ᾱ1 2 = 0.

At the source end, we have

y ″(0) = { α0g0
ā(0) + α0 2 +

Z ᾱ1g1
ā(0) + ᾱ1 2 }y(0) +

g1ā(0)
ā(0) + ᾱ1

= σ0y ′(0) > 0. (37)

With y″(x; Z) = ∂[a″(x; Z)]/∂Z being continuous, the positive a″(x) increases with Z at least in
some neighborhood of x = 0 so that ā (x) becomes more convex there.

Note that even without an explicit solution outside the LLSR range, we manage to deduce the
same effect of the introduction of nondiffusive non-receptors on the magnitude and slope of
the concentration gradients as in the LLSR range for the entire (posterior) compartment. In the
case of the convexity of the concentration gradients, we succeeded only in deducing from (37)
that more non-receptor sites only makes the gradients more convex in a region adjacent to the
source end (while these same gradients remain flat at the sink end with or without non-
receptors). Without an explicit solution or additional information, the change of relative slope
with non-receptor concentration, ∂s/∂Z, is not known to be of one sign.

The effects of the addition of non-receptor sites obtained in this and the last section help to
explain why overexpression of morphogen receptors can have different (and sometimes
opposite) effects on different morphogen systems. When Dpp receptors thick veins (tkv) in
wing imaginal discs are overexpressed in vivo (Lecuit and Cohen, 1998), they produce effects
significantly different from (and nearly opposite to) those of overexpressing the Wingless (Wg)
receptor Drosophila frizzled 2 (Dfz2) Cadigan et al. (1998). More specifically, we have from
(Lecuit and Cohen, 1998) that “high levels of tkv generally sequester ligand and limit its
movement across the wing disc.” The corresponding ligand–receptor gradient become steeper
and more convex, tending to a boundary layer, while the amplitude remains pretty much
unchanged. On the other hand, we have from Cadigan et al. (1998) that “high levels of a Wg
receptor, Drosophila frizzled 2 (Dfz2), stabilize Wg, allowing it to reach cells far from its site
of synthesis.” To reconcile these different effects, we write the expressions (33) and (31) in
terms of the biological parameters to obtain

μs
2 = μ2 + μz

2 =
konR0

D / Xmax
2 +

jonN0
D / Xmax

2 , (38)

LR x=0 = R0b̄(0) =
R0ν0 /α0

μs
2 + σ0μs coth (μs)

≈
ν / kdeg

1 + ΓN0 / R0
, (39)

with

kon =
KonKdeg

Kdeg + Koff
, jon =

JonJdeg
Jdeg + Joff

, Γ =
jon
kon

. (40)
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The approximation in the expression (39) for [LR] at the source end is appropriate for
sufficiently large μs. For the Dpp receptor thick veins with μ 2 ≫ μz

2 (Lecuit and Cohen,

1998), overexpression of the receptor further increases μ2 and thereby μs
2, resulting in steeper

and a more convex [LR] gradient as observed experimentally in Lecuit and Cohen (1998). For
the Wg receptor Dfz2 with μ 2 ≪ μz

2 (Cadigan et al., 1998), overexpressing the receptor

(resulting in a larger value of R0 and μ2) does not change μs
2 significantly but does increase

the amplitude of [LR] throughout the wing disc (through a reduction of the denominator of the
expression for [LR]x=0). The concentration [LR] is higher at each location from the source end
to the edge of the wing imaginal disc and hence reach more receptors at different locations
downstream than does the wild type at the corresponding location as observed experimentally
in Cadigan et al. (1998). We know from experimental evidence summarized in the recent review
of Lin (2004) that at least one class of membrane bound nonsreceptor—the cell surface heparan
sulfate proteoglycan (including syndecans and glypicans)—clearly plays a major role in both
Wg and Dpp gradients, as well as in the gradients formed by other morphogens. The
mathematical results obtained above therefore offer an explanation on how the effects of such
non-receptors could account for important experimental observations in these systems,
including seemingly inconsistent ones such as those in Cadigan et al. (1998) and Lecuit and
Cohen (1998).

6. Linear stability for the time-independent steady states
Now that the existence of a unique set of time-independent steady-state morphopgen
concentration gradients has been established, we want to know if the gradients are stable. For
a linear stability analysis, we consider a small perturbation from the steady state in the form

a(x, t) = ā(x) + e−λt â(x), b(x, t) = b̄(x) + e−λtb̂(x),

c(x, t) = c̄(x) + e−λt ĉ(x)
(41)

where ā, b̄ and ā are the steady-state solutions and where the time-independent portion of the
perturbations, â, b̂ and ĉ, are negligibly small compared to the corresponding steady-state
solution. After linearization, we have the following eigenvalue problem for â and b̂:

− λb̂ = h0(1 − b̄)â − ( f 0 + g0 + h0ā)b̂ (42)

− λ ĉ = h̄ 1(1 − c̄)â − ( f 1 + g1 + h̄ 1ā)ĉ (43)

and

− λâ = â″ − h0(1 − b̄)â + ( f 0 + h0ā)b̂ − h̄ 1Z(1 − c̄)â + Z( f 1 + h̄ 1ā)ĉ (44)

with

− λâ(0) = σ0â′(0) − {h0 1 − b̄(0) + h̄ 1Z 1 − c̄(0) }â(0)

+ f 0 + h0ā(0) b̂(0) + Z f 1 + h̄ 1ā(0) ĉ(0),
(45)

â(1) = 0. (46)

The above system can be reduced to an eigenvalue problem for â alone. We begin by solving
(42) for b̂ in terms of â, making use of (20) to get:
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b̂ = −
h0 1 − b̄(x)

λ − h0ā(x) + g0 + f 0
â

= −
h0(g0 + f 0)

h0ā + f 0 + g0 λ − (h0ā + g0 + f 0) â.
(47)

Similarly, we can obtain the following expression for ĉ in terms of â:

ĉ = −
h̄ 1 1 − c̄(x)

λ − h̄ 1ā(x) + g1 + f 1
â

= −
h̄ 1(g1 + f 1)

h̄ 1ā + f 1 + g1 λ − (h̄ 1ā + g1 + f 1) â.
(48)

Next, we use (47) and (48) to eliminate b̂ and ĉ from (44) and (45) to get

â″+ λ − qz(x, λ) â = 0 (49)

σ0â′(0) + λ − qz(0; λ) â(0) = 0, â(1) = 0 (50)

where

qz(x, λ) =
h0(1 − b̄)(g0 − λ)
g0 + f 0 + h0ā − λ +

h̄ 1Z(1 − c̄)(g1 − λ)
g1 + f 1 + h̄ 1ā − λ

=
( f 0 + g0)(g0 − λ)

(α0 + ā) λc0(x) − λ +
Z( f 1 + g1)(g1 − λ)
(ᾱ1 + ā) λc1(x) − λ ,

(51)

with

λc0(x) = g0 + f 0 + h0ā(x), λc1(x) = g1 + f 1 + h̄ 1ā(x). (52)

Note that λck(x) > 0 are positive.

The eigenvalue problem (49)–(50) enables us to establish the following stability theorem for
the unique steady-state solution ā (x).

Theorem 7. All eigenvalues of the nonlinear eigenvalue problem (49) and (50) are positive
and the steady-state concentrations ā(x), b̄(x) and c̄ (x) are asymptotically stable by a linear
stability analysis.

The theorem is proved by modifying the argument used in Lander et al. (2005a) and will not
be given here.

7. The smallest eigenvalue for the LLSR case
While knowing the eigenvalues being positive is sufficient to ensure the linear stability of the
steady-state morphogen concentration gradients, it is important to determine the dependence
of the eigenvalues on the biological parameters to gain more insight to the effects of non-
receptors on the decay rate of transients. In particular, the magnitude of the smallest eigenvalue
would give us some idea of how quickly the system returns to the steady state after small
perturbations. As we do a great deal of computing for the time evolution of the concentration
of both free and bound morphogens from their initial conditions, the rate of decay obtained
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will also provide an estimate of the time it takes to reach steady state. More importantly, there
is currently only some rough estimates on the ranges of various rate constants for different
biological systems. Knowing how the decay rate depends on the biological parameters will
suggest ways for experimentalists to measure them more adequately. We will illustrate the
benefits of knowing this dependence by working out some explicit results for the smallest
eigenvalue in the LLSR case.

The smallest eigenvalue of (49) and (50), denoted by λs, generally can only be found by
numerical methods. Accurate numerical solutions for the nonlinear eigenvalue problem is
possible but tedious. For a sufficiently low ligand synthesis rate so that terms involving h0ā
(x) and h̄1 ā (x) in qz(x; λ) may be neglected (see Section 4), a first approximation (or leading
term perturbation solution) {λ(0), â(0)(x)} of the exact solution of (49) and (50) is determined
by the simpler eigenvalue problem:

â(0) ″+ η2â(0) = 0, (53)

{σ0 â(0) ′ − η2 â(0) }x=0 = 0, â0(1) = 0 (54)

where

η2 = λ (0) −
h0(λ (0) − g0)

λ (0) − g0 − f 0
−

h̄ 1Z(λ (0) − g1)

λ (0) − ( f 1 + g1)
. (55)

The solution of (53) and (54) is given by â(0)(x) = c0 sin(η(1 − x)) for an arbitrary constant
c0, with λ(0) being a solution of (55) where η is to be found from

σ0η = η2 tan (η). (56)

The solutions of this equation depends only on σ0 and no other parameter, particularly not on
Z. Though η = 0 satisfies (56), it is not a solution of the eigenvalue problem (53) and (54)
except for the limiting case σ0 = 0, since there is not a corresponding nontrivial eigenfunction.
(The σ0 = 0 case was analyzed in Lou et al. (2004) where λs

(0) was shown to be the smallest
root of (55) with η2 = 0.)

To find the smallest eigenvalue λs
(0) for (53) and (54) for a prescribed σ0 > 0, it would appear

that we should solve (55) for each of the countably infinite number of solutions {±ηk}, k = 1,
2, 3,..., of (56) (with ηk anti-symmetric about the origin, (k − 1)π < ηk < (k − 1

2 )π and each
increasing with σ0) and then compare magnitude of the infinite number of smallest roots for
different k. However, by differentiating both sides of the relation (55) with respect to η2, we
have immediately the following lemma on η2(λ(0)).

Lemma 2. η2 is a monotone increasing function of λ(0) and, conversely, λ(0) is a monotone
increasing function of η2.

It follows from the lemma above that the smallest eigenvalue λs
(0) of (53) and (54) is the

smallest of the three roots of
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η2(λ (0)) ≡ λ (0) −
h0(λ (0) − g0)

λ (0) − g0 − f 0
−

h̄ 1Z(λ (0) − g1)

λ (0) − f 1 − g1
= η1

2 < (π2 )2. (57)

Moreover, given σ0≫1 for Drosophila wing discs (see Lander et al., 2005b), the smallest
eigenvalue λs

(0) corresponds to η = η1≲ π/2 with η1→ π/2 from below as σ0 →∞. We summarize
these observations in the following theorem most relevant for Dpp in a Drosophila wing disc.

Theorem 8. For σ0 > 0, the smallest eigenvalue λs
(0) of (53) and (54) is the smallest of the

three roots of η 2(λ (0)) ≡ η1
2 where η1

2 is the smallest positive solution of (56) which depends
only on σ0 and tends to (π/2)2 monotonically as σ0 ∞.

The above result made it unnecessary to solve a countably infinite number of cubic equations
in order to find λs

(0). However, the solutions of (57) depends on h0, g0, f0, h̄1, g1, f0 and Z in a
rather complicated way. It is of considerable interest to see that some of the critical features of
λs

(0) and the corresponding decay rate of transients depend very simply on only a few of these
parameters. We will illustrate this briefly by obtaining an upper bound and a lower bound for
λs

(0) below and show how they help us explain some experimental observations in Bellin et al.
(2003) on the effect of non-receptors on the time to steady-state gradients.

Let gℓ≡ min{g0,g1} and gL ≡ max{g0,g1}With η2(λ(0) = 0) < 0 and η2 ↑ ∞ as λ(0) ↑gell; + fell;,
we have from Lemma 2 the following theoretical useful upper bound for λs

(0).

Lemma 3. 0 < λs
(0) < gℓ+ f ℓ.

For the biologically realistic range of gℓ ≤ η1
2 ≤ (π / 2)2 (with 0 < gell;<1 for Dpp in

Drosophila wing disc), we have η 2(λ (0) = gℓ) ≤ gℓ ≤ η1
2; from which follows gℓ ≤ λs

(0)

giving a lower bound for λs
(0). We summarize the useful observations above in the following

theorem.

Theorem 9. At low morphogen synthesis rates and min {g0, g1} ≤ η1
2 ≤ (π / 2)2, we have

λs ∼ λs
(0) with

min {g0, g1} < λs
(0) < min {g0 + f 0, g1 + f 1}.

For gL>gℓ;+ fell;, we have also η2(λ(0) = gL) < gL. However, gL is not a sharper lower bound
for λs

(0) since the lesser quantity gℓ + fℓ is already an upper bound. Note that the upper and
lower bound obtained above do not depend on h0, h̄1, σ0 and Z. It follows that the half life of
transients must be shorter than the greater of ln(2)/Kdeg and ln(2)/Jdeg but must be longer than
the greater of ln(2)/(Kdeg + Koff) and ln(2)/(Jdeg + Joff). For Drosophila, the off rate constants
are typically much smaller than the corresponding degradation rate constants. Hence, these
upper and lower bounds sharply delimit the time to a steady signaling gradient. With some
extensive analysis, the same conclusion can be extended beyond the LLSR range and thereby
offer a way of estimating the degradation rate constants (Mizutani et al., 2005).
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When g1 ≫ g0 (Jdeg ≫ Kdeg), the presence of non-receptors is seen from Theorem 9 to have
insignificant effect on the rate of transient decay. However, for g0 ≫ g1 (Kdeg ≫ Jdeg), the
addition of non-receptors would slow down the decay rate significantly. Hence, only a
lengthening (and not shortening) of the time to a steady-state gradient is associated with the
presence of non-receptors. It is interesting that in real biological gradient systems, Dpp in a
Drosophila early embryo that is known to operate very fast (with gradient formation time of
about 30 min) happens to lack nondiffusive non-receptors (Bellin et al., 2003;Mizutani et al.,
2005), whereas the Dpp gradient in the Drosophila wing disc that has a much slower dynamics
(with a time to gradient of several hours) operates in the presence of a substantial level of HSPG
(Teleman and Cohen, 2000;Fujise et al., 2003). With Kdeg ≫ Jdeg generally for Dpp in
Drosophila, our mathematical results predict that a very fast gradient should lack (or have a
low concentration of) nondiffusive non-receptors whereas the slower dynamics should operates
in the presence of a substantial level of these non-receptors. Both predictions are consistent
with the little evidence we have on gradient dynamics of Drosophila cited previously.

8. Concluding remarks
In this paper, we initiated the first analytical study (not just numerical simulations such as
Eldar et al., 2003) of the effects of membrane-bound non-receptor-mediated degradation on
morphogen gradient formation and cell signaling. Considerable experimental evidence,
recently reviewed in Lin (2004), shows that non-receptors have an important role in the
formation and robustness of morphogen gradients and therefore deserve greater theoretical
scrutiny. At the most basic level, non-receptors compete with receptors for binding with, and
degradation of available morphogens; their presence is expected to reduce the steady-state
concentration of signaling morphogen–receptor complexes throughout the wing disc interior.
Analysis of the basic model, System N, for Dpp in a wing imaginal disc with non-receptors,
formulated and analyzed herein, confirms this expected consequence. Results obtained also
show that the introduction of non-receptors generally increases the convexity of the steady-
state concentration gradients, at least in a region adjacent to the source end. For LLSR cases
where the governing ODE and boundary conditions for the steady concentration of free
morphogens ā(x) can be linearized, asymptotic results show also that the addition of non-
receptor sites reduces the negative slope of the gradients (making it less steep) and increases
their convexity throughout the wing disc interior. However, it has the opposite effects of further
steepening the relative slopes ā′(x)/ā(x) and b̄′(x)/b̄(x) which are of more interest to biologists.

The structure of the BVP governing the steady-state gradients and the explicit asymptotic
solution for low synthesis rates show that the effects of a fixed concentration of non-receptor
sites are generally negligible when the effective binding rate of non-receptors, g1/α1, is
sufficiently small compared to that of the receptors, g0/α0, but is significant when g1/α1 is
relatively large. This result provides an explanation for why in vivo receptor overexpression
can have opposite effects in different morphogen systems. It can now be explained why
overexpression of the Dpp receptor tkv in wing discs (Lecuit and Cohen, 1998) could result in
nearly opposite observed effects from an overexpression of the Wg receptor Dfz2 (Cadigan et
al., 1998).

The results obtained in this paper on steady-state morphogen gradients in the presence of a
single class of membrane-bound non-receptor can be extended to several species of such non-
receptors. For two non-receptor species with the corresponding normalized degradation rates
gk, normalized effective loss–gain ratio ᾱk, and the ratio of non-receptor-to-receptor
concentration ratios Zk, the boundary value problem for the steady-state free Dpp concentration
may be reduced to
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ā″ =
g0ā

ā + α0
+

Z1g1ā
ā + ᾱ1

+
Z2g2ā
ā + ᾱ2

, (58)

with

− σ0ā′(0) +
g0ā(0)

ā(0) + α0
+

Z1g1ā(0)
ā(0) + ᾱ1

+
Z2g2ā(0)
ā(0) + ᾱ2

= ν0, ā(1) = 0. (59)

More realistic two- and three-dimensional models that would allow for diffusion in the ventral-
dorsal direction and the apical-basal direction can also be developed and analyzed as we did
in Lander et al. (2003) and Vergas (2006). We will not pursue a discussion of these extensions
since there are other more fundamental issues (e.g., stability) that need to be addressed.

As we may expect from our previous work on morphogen gradients (Lou et al., 2004;Lander
et al., 2005a), steady-state morphogen gradients with non-receptors can also be shown to be
asymptotically stable with respect to small perturbations. A more interesting theoretical finding
on gradient dynamics pertains to the effects of non-receptors on the time to steady-state
behavior. Introduction of nondiffusive non-receptors generally does not speed up and often
substantially slows down the time to gradient formation for our model, offering the presence
of HSPG non-receptors as a likely cause for the slower dynamics of Dpp gradient in Drosophila
wing disc (Teleman and Cohen, 2000;Fujise et al., 2003) and, less directly, their absence for
the fast dynamics of Dpp gradient in the early Drosophila embryo (Bellin et al., 2003;Mizutani
et al., 2005). When applicable, the simple relation between decay rate of transients and
degradation rate constants of receptors and nondiffusive non-receptors offers a way of
estimating the latter as done in Mizutani et al. (2005).

As pointed out in Section 1 of this paper, the main thrust for our interest in non-receptors is
their possible role in the robustness of morphogen gradients during development to changes
in system parameters including those induced by environmental fluctuations. We know from
Lander et al. (2005c);Lei et al. (2005) that non-receptors constitute a significant mechanism
for robustness. It is therefore important to acquire sufficient theoretical understanding of their
effects on gradient formation which we have attempted to do in this paper.
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