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Abstract
Metabolic Flux Analysis (MFA) has emerged as a tool of great significance for metabolic engineering
and mammalian physiology. An important limitation of MFA, as carried out via stable isotope
labeling and GC/MS and NMR measurements, is the large number of isotopomer or cumomer
equations that need to be solved, especially when multiple isotopic tracers are used for the labeling
of the system. This restriction reduces the ability of MFA to fully utilize the power of multiple isotopic
tracers in elucidating the physiology of realistic situations comprising complex bioreaction networks.
Here, we present a novel framework for the modeling of isotopic labeling systems that significantly
reduces the number of system variables without any loss of information. The elementary metabolite
unit (EMU) framework is based on a highly efficient decomposition method that identifies the
minimum amount of information needed to simulate isotopic labeling within a reaction network using
the knowledge of atomic transitions occurring in the network reactions. The functional units
generated by the decomposition algorithm, called elementary metabolite units, form the new basis
for generating system equations that describe the relationship between fluxes and stable isotope
measurements. Isotopomer abundances simulated using the EMU framework are identical to those
obtained using the isotopomer and cumomer methods, however, require significantly less
computation time. For a typical 13C-labeling system the total number of equations that needs to be
solved is reduced by one order-of-magnitude (100s EMUs vs. 1000s isotopomers). As such, the EMU
framework is most efficient for the analysis of labeling by multiple isotopic tracers. For example,
analysis of the gluconeogenesis pathway with 2H, 13C, and 18O tracers requires only 354 EMUs,
compared to more than 2 million isotopomers.
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1. INTRODUCTION
1.1 Metabolic flux analysis

Accurate flux determination is of great importance for the analysis of cell physiology in fields
ranging from metabolic engineering to the study of human metabolic disease (Brunengraber
et al., 1997;Hellerstein, 2003;Stephanopoulos, 1999). Initially, metabolic flux analysis (MFA)
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relied solely on balancing fluxes around metabolites within an assumed network stoichiometry.
However, stoichiometric constraints and external flux measurements often did not provide
enough information to estimate all fluxes of interest. A more powerful method for flux
determination in complex biological systems is based on the use of stable isotopes (Wiechert,
2001). Metabolic conversion of isotopically labeled substrates generates molecules with
distinct labeling patterns, i.e. isotope isomers (isotopomers), that can be detected by mass
spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy (Szyperski,
1995;Szyperski, 1998). Isotope measurements provide many additional independent
constraints for MFA. It has been shown that at metabolic and isotopic steady state the
isotopomer composition of metabolic intermediates is fully and uniquely determined by the
cell’s flux state and the administered isotopic label. Quantitative interpretation of isotopomer
data requires the use of mathematical models that describe the relationship between metabolic
fluxes and the observed isotopomer abundances (Antoniewicz et al., 2006). Similar to
metabolite balancing, balances can be set up around all isotopomers of a particular metabolite.
Schmidt et al. (Schmidt et al., 1997) described an elegant method for automatically generating
the complete set of isotopomer balances using a matrix based method. More recently, Wiechert
et al. (Wiechert et al., 1999) introduced the concept of cumulative isotopomers (cumomers)
and provided an efficient procedure for solving isotopomer models. In the forward calculation,
isotopomer models are used to simulate a unique profile of isotopomer measurements for given
steady-state fluxes. In MFA we are concerned with the more challenging inverse problem, i.e.
to determine the flux state of the cell from measurements of isotopomer distributions.
Analytical solutions to the inverse problem are only available for very simple systems. Thus,
in general, fluxes in complex biological systems are determined by iterative least-squares
fitting procedures, where at each iteration the forward problem is solved for an updated set of
fluxes.

1.2 Limitations of isotopomer modeling method
Isotopomers are defined as isomers of a metabolite that differ only in the labeling state of their
individual atoms, for example, 13C vs. 12C in carbon-labeling studies, and 2H vs. 1H in
hydrogen-labeling studies. For a metabolite comprising N atoms that may be in one of two
(labeled or unlabeled) states, 2N isotopomers are possible. Consequently, the number of
isotopomers can increase dramatically when multiple tracers are applied. Consider for example
glucose (C6H12O6). There are only 64 (=26) carbon atom isotopomers of glucose and 4096
(=212) hydrogen atom isotopomers, but there are 2.6×105 (=26×212) isotopomers of glucose
carbon and hydrogen atoms, and 1.9×108 (=26×212×36) isotopomers of glucose carbon,
hydrogen and oxygen atoms. Note that oxygen may be present in one of three stable forms,
i.e. 16O, 17O, and 18O. Thus, a typical isotopomer model may contain thousands, or even
millions of isotopomers when multiple isotopic tracers are applied. The number of isotopomers
may be reduced somewhat by omitting unstable carboxyl and hydroxyl hydrogen atoms from
the model. These atoms exchange with the solvent at rates much faster than biochemical
reactions and are lost in chemical derivatization in preparation for GC/MS analysis. Thus, for
example, if we consider only the seven stable (i.e. carbon bound) hydrogen atoms of glucose,
then there are 128 (=27) hydrogen atom isotopomers, 8192 (=26×27) isotopomers of glucose
carbon and hydrogen atoms, and 6×106 (=26×27×36) isotopomers of glucose carbon, hydrogen
and oxygen atoms. Clearly, even with this simplification there are still too many variables to
allow efficient simulation of labeling distributions for multiple isotopic tracers. Note that the
cumomer method cannot solve this problem, because there are always as many cumomers as
isotopomers, i.e. there is a one-to-one relationship between cumomers and isotopomers
(Wiechert et al., 1999). As such, the realm of tracer experiments is currently limited to single
tracers. However, multiple isotopic tracers are more powerful in elucidating the physiology of
realistic situations comprising complex bioreaction networks. Therefore, the development of
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a methodology that extends the capability of MFA beyond the use of a single isotopic tracer
is the main goal of this contribution.

1.3 A novel framework for modeling isotopic tracer systems
Here, we present a novel framework for modeling isotopic tracer systems that significantly
reduces the number of system variables without any loss of information. The elementary
metabolite units (EMU) framework is a bottom-up modeling approach that is based on a highly
efficient decomposition algorithm that identifies the minimum amount of information needed
to simulate isotopic labeling within a reaction network. The functional units generated by the
decomposition algorithm, called elementary metabolite units (EMUs), form the new basis for
generating system equations that describe the relationship between fluxes and isotopomer
abundances. Isotopomer abundances simulated using the EMU framework are identical to
those obtained using the isotopomer and cumomer methods, however, require significantly
fewer variables. We will show that for a typical carbon-13 labeling system the total number of
variables and equations that needs to be solved is reduced by one order-of-magnitude (100s
EMUs vs. 1000s isotopomers/cumomers). As such, the EMU framework is most efficient for
the analysis of labeling by multiple isotopic tracers. We have applied the EMU method to study
the gluconeogenesis pathway probed with multiple isotopic tracers, which required only 354
EMUs compared to more than 2×106 isotopomers/cumomers.

2. THEORY
2.1 Elementary Metabolite Units (EMU)

We define an elementary metabolite unit of a compound to be a moiety comprising any distinct
subset of the compound’s atoms. Consider, for example, metabolite A consisting of 3 atoms.
An EMU is a subset of any number of these 3 atoms. The size of an EMU is the number of
atoms that are included in the EMU. There are 7 possible EMUs for metabolite A: 3 EMUs of
size 1 (A1, A2, A3), 3 EMUs of size 2 (A12, A13, A23), and 1 EMU of size 3 (A123), where the
subscript denotes the atoms that are included in the EMU (Figure 1). Note that atoms in an
EMU are not necessarily connected by chemical bonds, for example consider EMU A13. In
general, for a metabolite comprising N atoms 2N -1 EMUs are possible.

In this paper, we will illustrate that the EMU framework can be used for the simulation of
isotopic labeling within a reaction network using the minimum number of variables, all of
which are expressed in terms of EMUs. In most cases, only a very small fraction of all possible
EMUs is required to simulate the isotopic labeling. This approach is fundamentally different
from the isotopomer and cumomer methods, where the simulation model always uses the
complete set of all possible isotopomer/cumomers. In the next sections, we will first illustrate
the EMU approach for simulating MS measurements, and in section 2.8 we will show how
NMR measurements can be simulated using EMUs.

2.2 EMU reactions
First, we need to introduce the concept of an EMU reaction. Figure 2 shows three types of
biochemical reactions that we distinguish: a condensation reaction, a cleavage reaction, and a
unimolecular reaction. For each reaction type in Figure 2 we would like to determine the
minimum amount of information that is needed to determine the mass isotopomer distribution
(MID) of product C, i.e. EMU C123. For the condensation reaction, MID of C123 is fully
determined by MIDs of EMUs A12 and B1. For example, the M+0 abundance of C123 is equal
to the product of M+0 abundances of A12 and B1, i.e. C123,M+0=A12,M+0·B1,M+0. The full MID
of C123 is obtained from the convolution (or Cauchy product, denoted by ‘×’) of MIDs of
A12 and B1, i.e. C123=A12×B1 (Figure 2). For the cleavage and unimolecular reactions, the
MID of C123 is equal to the MID of A123. Note that for the cleavage reaction atoms of A that

Antoniewicz et al. Page 3

Metab Eng. Author manuscript; available in PMC 2007 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



are not transferred to C123 are not considered in the EMU reaction, i.e. their labeling doesn’t
affect the labeling state of C. Note also that EMU reactions are always size balanced, i.e. the
EMU product is formed either from EMUs of the same size, or by condensation of smaller
EMUs such that the total size of substrate EMUs equals the size of the EMU product. Thus,
there can only be two types of EMU reactions: condensation and unimolecular EMU reactions.
Table 1 shows the EMU reactions corresponding to the biochemical reactions in Figure 2.

2.3 Decomposing metabolic networks into EMU reactions
We will now describe an algorithm that systematically decomposes any biochemical reaction
network into EMU reactions using the knowledge of atomic transitions occurring in the
network reactions. These EMU reactions will then form the basis for generating model
equations for isotopic simulations (next section). Consider the example network shown in
Figure 3 that will be used to illustrate the theory behind EMU decomposition. In this network,
metabolite A is the sole substrate and metabolites E and F are two network products. The
intermediary metabolites B, C and D are assumed to be at metabolic and isotopic steady state.
The stoichiometry and atom transitions for the reactions are given in Table 2. The structural
input that is required for EMU decomposition is threefold:

1. The assumed reaction network stoichiometry

2. Atom transitions for all reactions in the network

3. List of metabolites/metabolite fragments that need to be simulated

In this example, we would like to set up the simplest possible model to simulate the MID of
metabolite F, i.e. EMU F123. The following algorithm systematically identifies all EMU
reactions that are needed for this simulation model. First, we identify in the network model all
EMU reactions that form EMU F123. In this case, F123 is formed only in reaction 6 from EMU
D123. We record this EMU reaction and the newly identified EMU(s) and repeat this process
for all new EMUs, starting with the largest EMU size, i.e. D123. Here, D123 is formed in two
reactions, i.e. in reaction 2 from B123, and in reaction 5 from B23+C1. Next, B123 is formed in
reactions 1 and 3 from A123 and D123, respectively. Note that A123 is a network substrate, i.e.
it is not produced by any reaction in the network, and D123 was already considered in the
previous step. Thus, we have identified all EMU reactions of size 3 that need to be considered.
Next, we proceed with EMUs of size 2 that were previously identified; here, B23 is formed in
reaction 1 and 3 from A23, and D23, respectively, etc. We complete this process for all new
EMUs of size 2 and 1, until the EMUs have been traced back to EMUs of network substrates
or EMUs that were already accounted for. Table 3 shows the complete EMU decomposition
for this system. In this case, 18 EMU reactions were identified connecting 14 EMUs. Of these
14 EMUs, 10 EMUs correspond to intermediary metabolites whose labeling is unknown, and
4 EMUs are fully defined by the choice of substrate labeling of metabolite A. It should be clear
that the described decomposition algorithm is exhaustive, unsupervised, and always identifies
the minimal set of EMU reactions that need to be considered in the simulation model.
Furthermore, this algorithm is easily implemented and is computationally efficient, i.e. the
decomposition completes within seconds even for the largest network model that we have
considered. The main advantage of the EMU decomposition is that metabolites are never
broken into smaller pieces than is strictly required to describe the labeling state of the selected
metabolites. In contrast, the isotopomer and cumomer frameworks always use all 2N

isotopomers per metabolite to simulate the system. In this example, the complete set of 36
isotopomers describe the system, with 28 unknown isotopomers and 8 substrate isotopomers.
Thus, in this example the number of system variables was reduced by more than 50% using
the EMU framework.
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2.4 Setting up EMU balances and simulating labeling distribution
The EMU reactions obtained from network decomposition form the new basis for generating
system equations. EMU reaction networks are much less connected than isotopomer systems,
and we can group EMU reactions into decoupled reaction networks based on: (i) the EMU size,
and (ii) network connectivity (see section 3.4 for an example). For the example network we
obtain three decoupled reaction networks of EMU size 1, 2, and 3, respectively (Figure 4).
Similar to metabolite and isotopomer balancing, we can set up balances around all EMUs. In
general, EMU balances can be written as a set of equations that are linear in the unknown EMU
variables:

A1,k(v) · X1,k = B1,k(v) · Y1,k(y1in) (1a)

A2,k(v) · X2,k = B2,k(v) · Y2,k(y2in, X1) (1b)

...

An,k(v) · Xn,k = Bn,k(v) · Yn,k(ynin, Xn−1, … , X1) (1c)

Matrices Xi,k and Yi,k represent to the unknown (balanced), and known EMU variables,
respectively, and yi

in are EMUs of network substrates. The first subscript denotes the EMU
size and the second the subnetwork number, i.e. in case there are multiple decoupled EMU
networks of the same EMU size. For brevity will omit the second subscript if there is only one
subnetwork of a certain EMU size. Each row in matrices Yi,k and Xi,k contains the MID for
the corresponding EMU. The EMU balances written in matrix form corresponding to the EMU
networks in Figure 4 are shown below.

− v4 v4 0 0 0

0 − v1 − v3 v3 0 0

0 v2 − v2 − v5 v5 0

0 0 0 − v1 − v3 v3
v5 0 0 v2 − v2 − v5

·

C1
B2
D2
B3
D3

=

0 0
− v1 0

0 0
0 − v1
0 0

·
A2
A3

(2a)

− v5 − v2 v2
v3 − v1 − v3

·
D23
B23

=
− v5 0

0 − v1
·

B3 × C1
A23

(2b)

− v6 v6 0

0 − v5 − v2 v2
0 v3 − v1 − v3

·

F123
D123
B123

=

0 0
− v5 0

0 − v1

·
B23 × C1

A123
(2c)

The product term B3×C1 in Eq. 2b represents the convolution of MIDs of B3 and C1 (see section
2.2). Matrices X2 and Y2 written out in full for the example network are shown below.

D23
B23

=
D23,M+0 D23,M+1 D23,M+2
B23,M+0 B23,M+1 B23,M+2

(3)

B3 × C1
A23

=
B3,M+0 · C1,M+0 (B3,M+0 · C1,M+1 + B3,M+1 · C1,M+0) B3,M+1 · C1,M+1

A23,M+0 A23,M+1 A23,M+2
(4)
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The size of matrix Ai depends on the number of balanced EMUs, and the size of matrix Bi
depends on the number of input EMUs in that EMU network. Thus, for n balanced and m input
EMUs, Ai is an n × n matrix and Bi is an n × m matrix. Note that matrices Ai and Bi are always
strictly linear functions of fluxes, i.e. dAi/dvj and dBi/dvj are constant for any metabolic system.
To simulate the isotopic labeling distribution for the selected metabolites, EMU balances are
solved sequentially starting with the smallest EMU size network. Since the matrix Y1 is known,
i.e. it is fully determined by EMUs of network substrate A, we can easily calculate X1 using
standard linear algebra techniques:

Xi = Ai−1 · Bi · Yi (5)

For subsequent EMU networks, matrices Yi may depend on previously determined EMUs of
smaller size. Thus, for larger EMU sizes we must first update matrix Yi and then calculate
Xi. After all EMUs have been computed we can simply read out the simulated MIDs for the
selected metabolites of interest from the rows of matrices Xi. For example, the MID of F123 is
found in the first row of matrix X3.

2.5 Calculating first order derivatives of simulated measurements
Flux estimation algorithms and algorithms used for calculating flux confidence intervals
require repeated calculation of first order derivatives, i.e. sensitivities of simulated
measurements with respect to fluxes (Antoniewicz et al., 2006). Here, we present analytical
expressions for the calculation of these sensitivities from EMU balances. In general, EMU
balances are expressed in the following matrix form:

Ai · Xi = Bi · Yi (6)

where matrices Ai and Bi are strictly linear functions of fluxes and matrices Xi and Yi are
nonlinear functions of fluxes. Implicit differentiation of Eq. 6 yields:

dAi
dv · Xi + Ai ·

dXi
dv =

dBi
dv · Yi + Bi ·

dYi
dv (7)

Note that matrices dAi/dvj and dBi/dvj are constant for a given metabolic system. After
rearrangement of Eq. 7 we obtain the following general expression for dXi/dv:

dXi
dv = Ai−1 · ( dBi

dv · Yi + Bi ·
dYi
dv −

dAi
dv · Xi) (8)

The above expression may be simplified for the smallest EMU size network, where all terms
in matrix Y are given by network substrates and thus are constant, i.e. dY/dv=0. For EMU
networks of larger EMU size, matrices Yi may depend on previously determined EMUs of
smaller size. In the example network Y2 was given by:

Y2 =
B3 × C1

A23
(9)

Where, B3 and C1 are EMUs of size 1 that are calculated from EMU size 1 balances. Application
of the product rule yields the following expression for the first order derivative of the
convolution of B3 and C1 (i.e. first row of Y2):

d
dv (B3 × C1) =

dB3
dv × C1 + B3 ×

dC1
dv (10)
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where matrices dC1/dv and dB3/dv are obtained from the previously determined matrix dX1/
dv. Note that the second row of Y2 contains A23 which is a network substrate EMU, i.e. it is
considered constant (dA23/dv=0). Thus, we obtain the following expression for dY2/dv:

dY2
dv =

dB3
dv × C1 + B3 ×

dC1
dv

0
(11)

where (dB3/dv)×C1 denotes the 2D-convolution of matrix (dB3/dv) and vector C1. Thus, first
order derivatives for any EMU size can be obtained sequentially from the EMU balances.
Figure 5 summarizes the general procedure for simulating labeling distributions and calculating
first order derivatives of simulated measurements with respect to fluxes using the EMU
framework.

2.6 Global stability and computation time of EMU simulations
For non-zero fluxes matrices Ai are compartmental matrices, and from compartmental matrix
theory we know that therefore matrices Ai are always invertible (Anderson, 1983). In other
words, the EMU approach will always compute a unique and stable solution for all EMUs. The
most time-consuming operation in solving EMU balances and calculating sensitivities is the
inversion of matrices Ai, or rather matrix factorization of Ai. In general, the computational
time for LU decomposition increases with the size of the matrix, i.e. the number of EMU nodes
for each subnetwork. We found empirically that for sparsely connected EMU networks, such
as the ones shown in Figure 4, the computation time increased linearly with the number of
EMUs, i.e. O(n). For more highly connected networks, for example, the EMU networks
corresponding to central carbon metabolism of E. coli (section 3.4), the computational time
increased to the third power of the number of EMUs, i.e. O(n3). Thus, it will often be worthwhile
to reduce the number of EMUs by eliminating EMU nodes that have a single influx. This will
be illustrated in detail in section 3.3.

2.7 Identifying equivalent EMUs of metabolites
There is a number of considerations regarding the chemical structure of metabolites that need
to be taken into account for EMU simulation models. Here, we will discuss in detail how to
account for chiral, prochiral and rotationally symmetric metabolites, and how biochemically
equivalent hydrogen, oxygen and other atoms should be modeled within the EMU framework.
These considerations are equally important for the construction of isotopomer models,
however, until now they have not received proper attention.

2.7.1 Chiral and prochiral metabolites—Tetrahedral carbon atoms with four different
ligands are called chiral, whereas the term prochiral applies to carbon atoms that hold two
stereoheterotopic groups (Moss, 1996). Many biological metabolites contain one or more chiral
and/or prochiral carbon atoms. It is well known that biochemical reactions are highly
stereospecific, i.e. enzymes differentiate between prochiral atoms and prochiral atom groups.
Therefore, it is important to keep track of individual prochiral atoms in a network model and
assign stereospecific atom transitions to all biochemical reactions. Consider for example the
enzymatic reaction catalyzed by aconitase that converts citrate to isocitrate (Figure 6). Three
of the six carbon atoms of citrate are prochiral, i.e. C2, C3 and C4. The enzyme aconitase
stereospecifically transfers the pro-R hydrogen from the pro-R arm (i.e. C1-C2) of citrate to
C3 of isocitrate, and produces only one of four possible stereoisomers of isocitrate, i.e. (2R,
3S)-isocitrate. Note also that the prochirality of C4 is not altered by aconitase. The absolute
stereochemistry for many bioreactions has been worked out in detail and can be found in
biochemistry textbooks and other general literature.
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2.7.2 Equivalent hydrogen and oxygen atoms—Biological molecules often contain
groups of atoms that are biochemically indistinguishable. If we assume that there is no
metabolic channeling, then this results in rapid equilibration of labeling at these positions.
Consider for example the chemical structure of pyruvate shown in Figure 7. The three hydrogen
atoms at C3 are biochemically equivalent, i.e. enzymes cannot distinguish between these atoms.
Furthermore, the two oxygen atoms at C1 are biochemically equivalent due to resonance
stabilization. Thus, not all of pyruvate’s EMUs are independent. For example, there are six
equivalent EMUs of pyruvate that contain three carbon atoms, two of the three hydrogen atoms
at C3, and one of two oxygen atom at C1. Figure 7 shows the six equivalent EMUs. We can
predict the number of equivalent EMUs for any EMU as follows:

No. of equivalent EMUs = ∏
foreachgroupof
equivalentatoms

(No. of equivalent atoms in the group
No. of these atoms in the EMU ) (12)

When setting up EMU balances, we need to account for the presence of equivalent EMUs. We
propose the following method. First, whenever a new EMU is generated during EMU network
decomposition, we identify all equivalent EMUs for that EMU. Then, for each equivalent EMU
we find the EMU reaction(s) that produce that EMU, and divide the contribution from each
reaction by the total number of equivalent EMUs. Note that this way we introduce only one
EMU variable for each group of equivalent EMUs. For example, consider the enzymatic
reaction catalyzed by malic enzyme that converts malate to pyruvate shown in Figure 8
(arbitrary numbering of atoms). The six equivalent EMUs of pyruvate from Figure 7 are
produced by the following six EMU reactions:

Mal13478 + H → Pyr134678 (13a)

Mal134789 → Pyr134679 (13b)

Mal13479 + H → Pyr134689 (13c)

Mal12478 + H → Pyr124678 (13d)

Mal124789 → Pyr124679 (13e)

Mal12479 + H → Pyr124689 (13f)

We can represent these 6 equivalent EMUs of pyruvate by a single EMU variable
{Pyr134678}, where the brackets denote the presence of multiple equivalent EMUs. Next, we
also identify that Mal13478 and Mal12478; Mal13479 and Mal12479; and Mal134789 and
Mal124789 are equivalent EMUs. Taken together, we obtain the following overall EMU reaction
for the production of {Pyr134678}:

{Pyr134678} = 1
3 {Mal13478} × H + 1

3 {Mal13479} × H + 1
3 {Mal134789} (14)

Thus, {Pyr134678} is formed from three EMUs of malate, i.e. {Mal13478}, {Mal13479}, and
{Mal134789}; two groups are of EMU size 5 that combine with H+, and one is of EMU size 6.
Note also that the two prochiral hydrogen atoms of malate that are initially biochemically
distinct become indistinguishable after malate is converted to pyruvate.

Rotationally symmetric metabolites A number of metabolites of central carbon metabolism
are rotationally symmetric, i.e. they are superposable on themselves by rotation. In isotopic
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labeling studies these molecules also cause scrambling of isotopic labeling. It is important to
note that there is a clear difference between molecules with a rotation axis and molecules with
a center of inversion (Moss, 1996). The two types of symmetry have different characteristics.
Only molecules with a rotation axis are superposable on themselves. Figure 9 shows the
structures of (2S,3R)-butane-1,2,3,4-tetraol (i.e. erythritol) which has a center of inversion,
and (2R,3R)-butane-1,2,3,4-tetraol which has a rotation axis. Carbon atoms C1 and C4, and
C2 and C3 of erythriol are chemically equivalent, i.e. they react identically in chemical
reactions and have the same chemical properties, however, in enzymatic reactions these groups
are biochemically distinct. In contrast, carbon atoms C1 and C4, and C2 and C3 of (2R,3R)-
butane-1,2,3,4-tetraol are both chemically and biochemically equivalent, i.e. they are not
distinguished by enzymes, and thus result in label scrambling.

The most important examples of rotationally symmetric molecules in central metabolism are
fumarate, succinate, and D-mannitol. Figure 10 shows the structure of fumarate (with arbitrary
numbering of atoms). It should be clear that fumarate has a rotation axis, i.e. after rotating 180°
fumarate superposes on itself. Furthermore, the two oxygen atoms at the first carbon and the
two oxygen atoms at the last carbon atom are biochemically equivalent due to resonance
stabilization. These characteristics of fumarate need to be considered when we identify
equivalent EMUs of fumarate. It should also be clear that the number of equivalent EMUs may
increase due to rotational symmetry. EMUs of rotationally symmetric molecules may have
twice as many equivalent EMUs as nonsymmetric molecules, assuming a rotational symmetry
of 180 degrees. The multiplier will increase if the angle is less, e.g. in benzene where the
rotational symmetry is 60 degrees the multiplier would be 6 (=360/6)

No. of equivalent EMUs ≤ 2 × ∏
foreachgroupof
equivalentatoms

(No. of equivalent atoms in the group
No. of these atoms in the EMU ) (15)

Figure 10 shows, for example, the four equivalent EMUs of fumarate Fum12467. Note also, for
example, that fumarate EMU F1468 has no equivalent EMUs, because its rotational equivalent
is F1468 itself. Hence, when we enumerate equivalent EMUs it is very important that we
separate the effects of rotational symmetry, which is a global characteristic of a molecule, from
the effects of equivalent hydrogen and oxygen atoms, which are local characteristics. To better
illustrate this, consider hydrogen atoms #5 and #7 of fumarate in Figure 10. These atoms cannot
be treated as equivalent atoms, because that would incorrectly identify Fum12465 as being
equivalent to Fum12467. Taking these considerations into account, Figure 11 shows the
complete algorithm for decomposing metabolic networks into EMU reaction networks.

2.8 Simulating NMR measurements using EMUs
Thus far, we have shown how MS measurements can be simulated using the EMU approach.
We will now illustrate the method for simulating NMR measurements, in particular we will
show how fractional enrichments and NMR fine spectra can be simulated.

2.8.1 Simulation of fractional enrichments—Fractional enrichments are a measure of
the fractional abundance of 13C-atoms at specific carbon positions in a molecule. For example,
Wiechert et al. (Wiechert et al., 1997) measured fractional enrichments of 25 carbon atoms of
amino acids. In the EMU framework fractional enrichments are modeled by EMUs of size 1,
i.e. containing a single carbon atom. Thus, to simulate fractional enrichments we can simply
solve EMU balances of size 1. Network decomposition is accomplished with the same
algorithm as was described before (section 2.3). In the EMU balances (Eq. 1), Xi and Yi can
now be represented by vectors that contain the fractional labeling of carbon atoms. Note that
the EMU method for simulating fractional enrichments is very similar to the atom mapping
matrix method that was originally proposed by Zupke and Stephanopoulos (Zupke and
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Stephanopoulos, 1994), and the weight-1 cumomer method as proposed by Wiechert et al.
(Wiechert et al., 1999).

2.8.2 Simulation of NMR fine spectra—Data obtained from 2D [13C,1H] COSY spectra,
also known as NMR fine spectra, provide information on the relative amount of 13C-13C
and 13C-12C carbons at specific carbon positions, where the observed carbon atom is
always 13C-labeled and the adjacent carbon atoms are either labeled or unlabeled (Szyperski,
1995). For a secondary carbon atom, NMR fine spectra can be expressed as ratios of four
isotopomer fractions, i.e. A010, A011, A110, and A111:

singlet
doublet 3
doublet 1

doublet doublet

=

A010
A011
A110
A111

· (A010 + A011 + A110 + A111)−1 (16)

We can obtain these four isotopomer fractions from cumomer fractions Ax1x, Ax11, A11x, and
A111, as was shown previously by van Winden et al. (van Winden et al., 2002). According to
the definition by Wiechert et al. (Wiechert et al., 1999), Ax1x denotes the weight-1 cumomer
fraction for which the second atom is 13C-labeled and the other two atoms are labeled or
unlabeled, i.e. x = ‘0 or 1’. Alternatively, we have derived that the same isotopomer fractions
can also be obtained from the following four EMUs: A2, A23, A12, and A123. We can easily
show that cumomer fraction Ax1x is equal to the M+1 abundance of EMU A2, i.e. the fraction
of fully labeled EMU A2; weight-2 cumomer fractions A11x and Ax11 are equal to the M+2
abundances of EMUs A23 and A12, respectively (i.e. fully labeled EMUs); and weight-3
cumomer fraction A111 is equal to the M+3 abundance of EMU A123 (i.e. fully labeled EMUs).

A010
A110
A011
A111

=

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

−1

·

Ax1x
Ax11
A11x
A111

=

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

−1

·

A2
A23
A12

A123

(17)

Thus, we can simulate NMR fine spectra either by solving weight-1, 2, and 3 cumomer balances
(van Winden et al., 2002), or alternatively by solving EMU balances for the EMUs A2, A23,
A12, and A123. For convenience, Xi and Yi can be represented as vectors (not matrices) that
contain the fractional abundances of the fully labeled EMUs. It should be clear that the number
of EMUs generated for the EMUs of size 1, 2, and 3 will always be smaller, or equal to the
number of weight-1, 2, and 3 cumomers. Therefore, it is always more efficient to simulate
NMR fine spectra using the EMU framework.

The EMU framework can be extended even further to capture NMR fine spectra for tertiary
carbon atoms, and long-range 13C-13C couplings. In that case, the following eight EMUs need
to be simulated: A2, A12, A23, A24, A123, A234, A124, and A1234. After simulation of these
EMUs, we can convert the calculated fractional abundances of fully labeled EMUs to
isotopomer fractions using Eq. 18, and then to NMR signal intensities using Eq. 19.
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A0100
A0101
A0110
A0111
A1100
A1101
A1110
A1111

=

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

−1

·

A2
A24
A23

A234
A12

A124
A123

A1234

(18)

singlet
doublet 4
doublet 3

double doublet 34
doublet 1

double doublet 14
double doublet 13
quadruple doublet

=

A0100
A0101
A0110
A0111
A1100
A1101
A1110
A1111

· (A0100 + A0101 + A0110 + A0111 + A1100 + A1101 + A1110 + A1111)−1 (19)

Note that in Eqs. 18 and 19 we have assumed that the observed carbon atom is C2.

3. PRACTICAL APPLICATIONS
3.1 Simple network model

In this example we will compare the EMU framework for simulating mass isotopomer
distributions to the isotopomer and cumomer frameworks. Consider the simple network model
that was introduced in section 2.3 (Figure 3). The assumed steady-state fluxes and labeling of
substrate A are shown in Figure 3. The solution to the EMU balances from Eq. 2 are shown
below.

Solution of EMU balances for reaction network of EMU size 1

C1
B2
D2
B3
D3

=

− 20 20 0 0 0
0 − 150 50 0 0
0 110 − 130 20 0
0 0 0 − 150 50

20 0 0 110 − 130

−1

·

0 0
− 100 0

0 0
0 − 100
0 0

· 0 1
1 0 =

0.0667 0.9333
0.0667 0.9333
0.2000 0.8000
0.9333 0.0667
0.8000 0.2000

Solution of EMU balances for reaction network of EMU size 2

D23
B23

= − 130 110
50 − 150

−1 · − 20 0
0 − 100 · 0.0622 0.8756 0.0622

0 1 0 = 0.0133 0.9733 0.0133
0.0044 0.9911 0.0044

Solution of EMU balances for reaction network of EMU size 3
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F123
D123
B123

=
− 80 80 0

0 − 130 110
0 50 − 150

−1
·

0 0
− 20 0

0 − 100
· 0.0003 0.0702 0.9253 0.0041

0 1 0 0

=
0.0001 0.8008 0.1983 0.0009
0.0001 0.8008 0.1983 0.0009
0.0000 0.9336 0.0661 0.0003

Thus, we find that the simulated MID of F is 0.0 mol% (M+0), 80.1 mol% (M+1), 19.8 mol%
(M+2), and 0.1 mol% (M+3). These simulated abundances are identical to those obtained using
the isotopomer and cumomer methods. The main difference between the methods is the number
of equations that was solved to simulate the labeling of metabolite F. For the isotopomer
method, 28 nonlinear isotopomer balances were solved using Newton’s iterative method. With
the cumomer method, 4 linear problems of size 4, 11, 10, and 3, respectively, were solved using
standard linear algebra techniques. Note that the total number of cumomers was the same as
the number of isotopomers. In contrast, with the EMU model 3 linear problems of size 5, 2,
and 3, respectively, were solved. Table 4 summarizes the comparison between the three
modeling methods for this simple example.

3.2 Tricarboxylic acid cycle
The second example that we consider is the simplified model of the tricarboxylic acid (TCA)
cycle shown in Figure 12. The stoichiometry and atom transitions for the eight reactions are
given in Table 5. In this network, acetyl coenzyme A and aspartate are the two substrates, and
glutamate and carbon dioxide are the products. Here, we simulated the steady-state labeling
distribution of glutamate assuming a mixture of 25% [2-13C]AcCoA and 25% [1,2-13C]AcCoA
as the tracer input. The assumed flux distribution is shown in Figure 12. In this example, we
only considered the labeling of carbon atoms and for simplicity ignored natural isotope
enrichments. The algorithm described in section 2.3 decomposed the TCA cycle network into
4 decoupled EMU reaction networks that are shown in Figure 13. The total number of balanced
EMUs was 24, i.e. 8 EMUs in the first network (EMU size 1), 5 EMUs in the second (EMU
size 2), 8 EMUs in the third (EMU size 3), and 3 EMUs in the fourth network (EMU size 5).
The EMU balances for the four decoupled networks are shown below.

− v6 − v8 v6 . . . . . .
1
2 v7 − v5 − v7

1
2 v7 v5 . . . .

. v6 − v6 − v8 . . . . .

. . . − v4
1
2 v4

1
2 v4 . .

. . . . − v2 . v2 .

. . . . . − v2 . v2
v1 . . . . . − v1 .

. . . . . . . − v1

·

OAC2
Fum2
OAC3
Suc2
AKG3
AKG4
Cit3
Cit4

=

− v8 . .
. . .
. − v8 .
. . .
. . .
. . .
. . .
. . − v1

·

Asp2
Asp3

AcCoA2

− v8 − v6 v6 . . .
v7 − v7 − v5 v5 . .

. . − v4 v4 .

. . . − v2 v2

. . . . − v1

·

OAC23
Fum23
Suc23
AKG34
Cit34

=

− v8 .
. .
. .
. .
. − v1

·
Asp23

OAC2 × AcCoA2
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− v6 − v8 v6 . . . . . .
1
2 v7 − v5 − v7

1
2 v7 v5 . . . .

. v6 − v6 − v8 . . . . .

. . . − v4
1
2 v4

1
2 v4 . .

. . . . − v2 . v2 .

. . . . . − v2 . v2

. . . . . . − v1 .

. . . . . . . − v1

·

OAC123
Fum123
OAC234
Suc123
AKG234
AKG345
Cit234
Cit345

=

− v8 . . .
. . . .
. − v8 . .
. . . .
. . . .
. . . .
. . − v1 .

. . . − v1

·

Asp123
Asp234

OAC23 × AcCoA2
OAC2 × AcCoA12

− v3 v3 .

. − v2 v2

. . − v1

·

Glu12345
AKG12345
Cit12345

=
.
.

− v1
· OAC123 × AcCoA12

Rotational symmetric molecules fumarate and succinate were modeled as described in section
2.7, and the following groups of EMUs were identified as equivalent: Fum2 and Fum3; Suc2
and Suc3; Fum123 and Fum234; Suc123 and Suc234. Note that the EMU model only contains
EMUs of size 5 and smaller, even though citrate contains 6 carbon atoms. This is direct
consequence of the EMU decomposition, and clearly illustrates the advantage of the EMU
framework. The decomposition will never generate EMUs of larger size than the simulated
metabolites, i.e. in this case 5 (= size of Glu12345). In contrast, the isotopomer and cumomer
methods used 26=64 variables for citrate. The 24 EMUs constituted a significant reduction
from the complete set of 176 isotopomers/cumomers that were required to describe this system
(a reduction of 86%). The cumomer model consisted of seven subproblems of size 6, 28, 53,
52, 28, 8, and 1, respectively. As expected, all three modeling methods, i.e. EMU, isotopomer,
and cumomer, simulated identical mass isotopomer abundances for glutamate: 34.64 mol%
(M+0), 26.95 mol% (M+1), 27.08 mol% (M+2), 8.07 mol% (M+3), 2.86 mol% (M+4), and
0.39 mol% (M+5).

3.3 Reducing EMU balances
In section 2.6 we noted that the computational effort for solving EMU balances depends on
the number of EMU nodes. It is often possible to reduce the number of EMU variables in the
EMU networks by eliminating EMU nodes with a single influx. Note that no information is
lost in this process. We applied this strategy to simplify the EMU networks for the TCA cycle
example. The reduced EMU networks are shown in Figure 14. In this case, the number of
EMUs was reduced from 24 to 9 EMUs, i.e. 95% reduction compared to the complete set of
176 isotopomers. The corresponding EMU balances are shown below.
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− v8 − v6 v6 0
1
2 v7 + 1

2 v5 − v5 − v7
1
2 v7

0 v6 − v8 − v6

·

OAC2
Fum2
OAC3

=

− v8 0 0

0 0 − 1
2 v5

0 − v8 0

·

Asp2
Asp3

AcCoA2

− v8 − v6 v6
v7 − v5 − v7

·
OAC23
Fum23

=
− v8 0

0 − v5
·

Asp23
OAC2 × AcCoA2

− v8 − v6 v6 0
1
2 v7 − v5 − v7

1
2 v7

0 v6 − v8 − v6

·

OAC123
Fum123
OAC234

=

− v8 0 0 0

0 0 − 1
2 v5 − 1

2 v5
0 − v8 0 0

·

Asp123
Asp234

OAC23 × AcCoA2
OAC3 × AcCoA12

Glu12345 = OAC123 × AcCoA12

Note that with the reduced EMU model we can simulate the labeling of glutamate in this system
for any steady-state fluxes and any substrate labeling by solving four very simple linear
problems of size 3, 2, 3, and 1, respectively. The solutions to the EMU balances for the assumed
steady-state fluxes and labeling of acetyl-CoA are shown below. As expected, the simulated
MID of glutamate was identical to that obtained with the full EMU model and the isotopomer
and cumomer models. Table 6 summarizes the comparison of modeling methods for the TCA
cycle example.

Solution of EMU balances for reaction network of EMU size 1

OAC2
Fum2
OAC3

=

− 175 125 0

62 1
2 − 125 37 1

2
0 125 − 175

−1

·
− 50 0 0

0 0 − 25
0 − 50 0

·
1 0
1 0

0.5 0.5
=

0.8333 0.1667
0.7667 0.2333
0.8333 0.1667

Solution of EMU balances for reaction network of EMU size 2

OAC23
Fum23

= − 175 125
75 − 125

−1 · − 50 0
0 − 50 · 1 0 0

0.4167 0.5000 0.0833 = 0.7083 0.2500 0.0417
0.5917 0.3500 0.0583

Solution of EMU balances for reaction network of EMU size 3

OAC123
Fum123
OAC234

=

− 175 125 0

37 1
2 − 125 37 1

2
0 125 − 175

−1

·
− 50 0 0 0

0 0 − 25 − 25
0 − 50 0 0

·

1 0 0 0
1 0 0 0

0.3542 0.4792 0.1458 0.0208
0.4167 0.2917 0.2500 0.0417

=
0.6927 0.1927 0.0990 0.0156
0.5698 0.2698 0.1385 0.0219
0.6927 0.1927 0.0990 0.0156

Solution of EMU balance for reaction network of EMU size 5

Glu12345 = 0.3464 0.2695 0.2708 0.0807 0.0286 0.0039
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3.4 Central carbon metabolism of E. coli
In this example we applied the EMU framework to a realistic metabolic network model of E.
coli central carbon metabolism. The network was comprised of 73 reactions (with
corresponding carbon atom transitions) of which 17 were assumed reversible, utilizing 76
metabolites with 5 substrates, 65 balanced intracellular metabolites, and 6 products. The
network model included reactions for the glycolysis, pentose phosphate pathway, Entner-
Doudoroff pathway, TCA cycle, product formation, amphibolic reactions, one-carbon
metabolism, and amino acid biosynthesis reactions. For this network we simulated the mass
isotopomer distributions of 26 amino acid fragments that can be measured experimentally by
GC/MS. Table 7 provides an overview of the simulated amino acid fragments. In this case, the
network model was decomposed into 14 decoupled EMU reaction networks of EMU size 1 to
9. Table 8 summarizes the EMU decomposition. The largest EMU subnetwork was EMU size
1 subnetwork (i.e. one-carbon EMUs), which contained 141 EMUs. The total number of EMUs
was 307, which was reduced to 223 EMUs by eliminating EMU nodes with a single influx. In
comparison, there were 4,612 isotopomers/cumomers required to simulate the same amino acid
fragments, i.e. a reduction of 93–95%. It is interesting to note that there were 241 carbon atoms
in this network model, but only 141 EMUs of size 1 were required for the simulation model.
Thus, clearly not all individual carbon atoms needed to be simulated in this network. In contrast,
the cumomer method required balancing of all 241 weight-1 cumomers. The simulated mass
isotopomer distributions from all three methods (i.e. EMU, isotopomer, cumomer) were
identical (results not shown).

3.5 Gluconeogenesis pathway
In this final example we consider the pathway of gluconeogenesis shown in Figure 15. We
constructed a detailed biochemical network model for this pathway, where we considered all
carbon, hydrogen, and oxygen atom transitions. This pathway is suitable for probing with
multiple isotopic tracers, i.e. 13C, 2H, and 18O. In this example, the goal was to simulate the
mass isotopomer distribution of glucose. Glucose is the main product of gluconeogenesis and
is easily analyzed by GC/MS. The gluconeogenesis network model was comprised of 24
reactions utilizing 21 metabolites, with 5 substrates (oxaloacetate, glycerol, glycogen, NADH,
and water), 14 balanced intracellular metabolites, and 2 products (glucose, and CO2). Table 9
shows the number of carbon, hydrogen, and oxygen atoms for each of the 21 metabolites in
this system. Note that we only considered stable, i.e. carbon-bound, hydrogen atoms for each
metabolite (see section 1.2). Simulation of this system using the isotopomer and cumomer
methods is impossible, because that would require 2,637,120 variables. With the EMU
approach, however, the network was decomposed into 60 decoupled EMU reaction networks
of EMU size 1 to 19, with 493 total EMUs, which was further reduced to 354 EMUs by
eliminating EMU nodes with a single influx. Table 10 shows the complete list of EMU
networks generated from EMU decomposition for this example. Note that the largest EMU
network contained only 12 EMUs (9 in the reduced EMU model). With this model, simulation
of the mass isotopomer distribution of glucose for any fluxes and labeling input took less than
0.1 sec (on a Pentium III 1.6 GHz computer). Thus, we have reduced the computational
complexity of simulating the gluconeogenesis pathway from an impossible problem to solve
to a set of linear subproblems that are trivial to solve. In Table 11 we compare the EMU method
vs. the isotopomer/cumomer methods, considering alternative labeling strategies with
combinations of 13C, 2H, and 18O tracers. In all cases the EMU method was superior compared
to the isotopomer/cumomer methods.

4. DISCUSSION
Metabolic flux analysis (MFA) provides key parameters for quantifying physiology in fields
ranging from metabolic engineering to the analysis of human metabolic disease. The
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mathematical centerpiece of MFA is the simulation model that describes labeling dynamics
under transient or stationary conditions. An important limitation of MFA as carried out via
stable-isotope labeling and stable-isotope measurements is the large number of isotopomer
equations that need to be solved, especially when multiple isotopic tracers are used for the
labeling of the system. The isotopomer/cumomer modeling framework is a generic top-down
modeling strategy. It provides the most detailed description of the labeling state of a system
given by the isotopomer fractions of all metabolites. It has been the assumption that this
description of a system’s labeling state is required to interpret isotope data (Wiechert and
Wurzel, 2001). However, alternative modeling methods have been developed for specific
isotope measurements and for specific input of labeling. For example, it is well known that
fractional enrichments of carbon atoms can be simulated efficiently using atom mapping
matrices, the method that was originally proposed by Zukpe and Stephanopoulos (Zupke and
Stephanopoulos, 1994). More recently, Van Winden et al. (van Winden et al., 2002) developed
the concept of bondomers that allows efficient simulation of NMR fine spectra and MS data
without the use of isotopomers. However, the bondomer method is valid only for 13C-labeling
experiments where a single uniformly 13C-labeled substrate is applied. If multiple carbon
sources are present, then all substrates need to be uniformly 13C-labeled with the same
enrichment. This requirement significantly limits the applicability of the bondomer method.

In this contribution we have developed a novel approach for modeling isotopomer distributions
that significantly reduces the size of the computational problem without any loss of
information. This approach is valid for any stable-isotope measurement and any labeling input.
The elementary metabolite unit (EMU) framework is a bottom-up modeling approach and is
based on a highly efficient decomposition algorithm that identifies the minimum amount of
information that is required for isotopic simulations. We have shown that for realistic metabolic
networks EMU models are orders-of-magnitude smaller than corresponding isotopomer and
cumomer models, especially when multiple isotopic tracers are applied. As such, the EMU
approach is the preferred method for simulating MS and NMR measurements for metabolic
flux and network analysis. Important applications of the EMU method include the analysis of
metabolic pathways using a combination of multiple isotopic tracers, e.g. gluconeogenesis
pathway in section 3.5, and the analysis of nonstationary systems. Due to the significant model-
size reduction the EMU framework allows efficient analysis of dynamic systems. For example,
the time required for dynamic simulations of the E. coli network is on the order of seconds for
the EMU model, compared to an hour for the corresponding cumomer model. These and other
applications of the EMU approach will be explored in more detail in subsequent studies.
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Figure 1.
Elementary metabolite units (EMU) are distinct subsets of the compound’s atoms. There are
7 EMUs for a 3-atom metabolite A. The subscript in the first column and the shaded areas in
the second column denote the atoms that are included in the EMU. The EMU size is the number
of atoms included in the EMU.
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Figure 2.
Three types of biochemical reactions with the corresponding EMU reactions. Shaded areas
indicate atoms included in the EMUs. The mass isotopomer distribution (MID) of product C
is fully determined by MIDs of substrate EMUs. For the condensation reaction, MID of C123
is obtained from the convolution (or Cauchy product, denoted by ‘×’) of MIDs of A12 and
B1. For the cleavage reaction and unimolecular reaction MID of C123 equals MID of A123.
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Figure 3.
Simple metabolic network used to illustrate the decomposition of a metabolic network into
EMU reactions. Atom transitions for the reactions in this model are given in Table 2. The
assumed steady-state fluxes have arbitrary units and the network substrate A is labeled on the
second atom.

Antoniewicz et al. Page 20

Metab Eng. Author manuscript; available in PMC 2007 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Decoupled EMU reaction networks generated for the simulation of metabolite F. Note that the
EMU reaction networks contain only these EMUs that are strictly required to simulate F.
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Figure 5.
A schematic of the algorithm for simulating labeling distributions and calculating sensitivities
from EMU balances. EMU balances are solved sequentially starting with the smallest EMU-
size networks up to the largest EMU-size network. The simulated measurements and
sensitivities are extracted from matrices X and dX/dv, respectively.
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Figure 6.
Stereospecific atom transitions for the reaction catalyzed by aconitese. Aconitase
stereospecifically transfers the pro-R hydrogen from the pro-R arm of citrate to C3 of isocitrate,
and produces only one of four possible stereoisomers of isocitrate, i.e. (2R,3S)-isocitrate.
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Figure 7.
Six equivalent EMUs of pyruvate. Three hydrogen atoms of pyruvate at C3 are biochemically
equivalent, and two oxygen atoms at C1 are equivalent due to resonance stabilization. As such,
there are six equivalent EMUs of pyruvate containing all three carbon atoms, two of the three
hydrogen atoms at C3, and one of two oxygen atom at C1. Shaded areas indicate atoms that
are included in the EMUs.
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Figure 8.
Malic enzyme converts malate to pyruvate. Note that one of the three hydrogen atoms at C#6
of pyruvate is derived from the solvent. The two prochiral hydrogen atoms of malate at C#7,
which are biochemically distinct, become indistinguishable after malate is converted to
pyruvate.
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Figure 9.
Differences between molecules with a rotation axis and center of inversion. (2S,3R)-
Butane-1,2,3,4-tetraol (i.e. erythritol) has a center of inversion and is not superposable on itself.
Thus, carbon atoms C1 and C4, and C2 and C3 of erythritol are biochemically distinct. (2R,
3R)-Butane-1,2,3,4-tetraol, on the other hand, has a rotation axis and is superposable on itself.
Hence, carbon atoms C1 and C4, and C2 and C3 are biochemically indistinguishable, resulting
in scrambling of isotopic labeling.
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Figure 10.
Equivalent EMUs of fumarate, a rotationally symmetric molecule. The following four EMUs
are equivalent: Fum12467, Fum13467, Fum45689, and Fum4568,10 (numbering of fumarate atoms
is arbitrary). Shaded areas indicate atoms included in the EMUs.
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Figure 11.
A schematic of the algorithm for the decomposition of metabolic networks into decoupled
EMU networks. This algorithm systematically identifies the minimal set of EMU reactions
that are needed for the simulation model. The algorithm is exhaustive, unsupervised, and
computationally efficient.
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Figure 12.
Simplified model of the tricarboxylic acid cycle. Abbreviations of metabolites: OAC,
oxaloacetate; Asp, aspartate; AcCoA, acetyl coenzyme A; Cit, citrate; AKG, α-ketoglutarate;
Glu, glutamate; Suc, succinate. The assumed fluxes have arbitrary units.
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Figure 13.
EMU reaction networks generated for glutamate from EMU network decomposition of the
TCA cycle. The complete molecule of glutamate corresponds to EMU Glu12345. Subscripts
denote carbon atoms that are included in the EMUs. Abbreviations of metabolites are same as
in Figure 12.
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Figure 14.
Simplified EMU reaction networks for glutamate. The EMU networks from Figure 13 were
reduced by lumping linear EMU nodes having only one influx. Abbreviations of metabolites
are same as in Figure 12.
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Figure 15.
Reactions of the gluconeogenesis pathway used to simulate the labeling of glucose.
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Table 1
EMU reactions corresponding to the reactions shown in Figure 2. Note that EMU reactions are always EMU size
balanced, i.e. the size of the EMU product always equals the total size of substrate EMUs.

Reaction type Biochemical reaction EMU reaction EMU size balance

Condensation A + B → C A12 + B1 → C123 2 + 1 = 3
Cleavage A → B + C A123 → C123 3 = 3
Unimolecular A → C A123 → C123 3 = 3
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Table 2
Stoichiometry and atom transitions for the reactions in the example metabolic network.

Reaction number Reaction stoichiometry Atom transformations*

1 A → B abc → abc
2 B ↔ D abc ↔ abc
3 B → C + E abc → bc + a
4 B + C → D + E + E abc + de → bcd + a + e
5 D → F abc → abc

*
For each metabolite atoms are identified using lower case letters to represent successive atoms of that metabolite.
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Table 3
Complete list of EMU reactions generated for metabolite F with the described decomposition algorithm.
Subscripts denote atoms that are included in the respective EMUs. Note that EMU reactions are always size
balanced.

Reaction No. EMU reaction EMU reaction size balance

6 D123 → F123 3 = 3
2 B123 → D123 3 = 3
5 B23 + C1 → D123 2 + 1 = 3
1 A123 → B123 3 = 3
3 D123 → B123 3 = 3

1 A23 → B23 2 = 2
3 D23 → B23 2 = 2
2 B23 → D23 2 = 2
5 B3 + C1 → D23 1 + 1 = 2

4 B2 → C1 1 = 1
1 A2 → B2 1 = 1
3 D2 → B2 1 = 1
2 B2 → D2 1 = 1
5 B3 → D2 1 = 1
1 A3 → B3 1 = 1
3 D3 → B3 1 = 1
2 B3 → D3 1 = 1
5 C1 → D3 1 = 1
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Table 4
Comparison of three modeling approaches for simulating mass isotopomer labeling of F in the example network
(Figure 3). The simulated abundances were identical for all methods, i.e. the EMU, isotopomer, and cumomer
methods. The EMU method required 10 variables to simulate the labeling of F, as opposed to 28 variables for
the isotopomer and cumomer methods (a reduction of 64%).

isotopomer model cumomer model EMU model

Simulated mass isotopomer
distribution of metabolite F
(molfractions)

M+0 0.0001 0.0001 0.0001

M+1 0.8008 0.8008 0.8008
M+2 0.1983 0.1983 0.1983
M+3 0.0009 0.0009 0.0009

Type of model equations nonlinear linear linear

Number of variables in each
subproblem

28 4, 11, 10, 3 5, 2, 3

Total number of variables 28 28 10
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Table 5
Stoichiometry and atom transitions for reactions of the TCA cycle. This network model was used to simulate the
steady-state mass isotopomer distribution of glutamate.

Reaction number Reaction stoichiometry Carbon atom transformations*

1 OAC + AcCoA → Cit abcd + ef → dcbfea
2 Cit → AKG + CO2 abcdef → abcde + f
3 AKG → Glu abcde → abcde
4 AKG → Suc + CO2 abcde → bcde + a
5 Suc → Fum ½ abcd + ½ dcba → ½ abcd + ½ dcba
6 Fum → OAC ½ abcd + ½ dcba → abcd
7 OAC → Fum abcd → ½ abcd + ½ dcba
8 Asp → OAC abcd → abcd

*
For each compound atoms are identified using lower case letters to represent successive atoms of each compound. Abbreviations of metabolites: OAC,

oxaloacetate; Asp, aspartate; AcCoA, acetyl coenzyme A; Cit, citrate; AKG, α-ketoglutarate; Glu, glutamate; Suc, succinate.
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Table 6
Comparison of modeling approaches for the simulation of isotopomer labeling of glutamate in the TCA cycle
model (Figure 12). Glutamate labeling was simulated using the EMU, isotopomer, and cumomer methods. The
assumed fluxes are shown in Figure 12 and the assumed labeling of AcCoA was 25% [2-13C]AcCoA and 25%
[1,2-13C]AcCoA. Simulated abundances were identical for all three methods. The reduced EMU model consisted
of only 9 EMU variables, as opposed to 176 variables for the isotopomer and cumomer models (a reduction of
95%).

isotopomer model cumomer model EMU full model EMU reduced model

Simulated mass
isotopomer
distribution (MID)
of glutamate
(molfractions)

M+0 0.3464 0.3464 0.3464 0.3464

M+1 0.2695 0.2695 0.2695 0.2695
M+2 0.2708 0.2708 0.2708 0.2708
M+3 0.0807 0.0807 0.0807 0.0807
M+4 0.0286 0.0286 0.0286 0.0286
M+5 0.0039 0.0039 0.0039 0.0039

Type of model
equations

nonlinear linear linear linear

Number of
variables in each
subproblem

176 6, 28, 53, 52, 28, 8, 1 8, 5, 8, 3 3, 2, 3, 1

Total number of
variables

176 176 24 9
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Table 7
Selected ion fragments of TBDMS derivatized amino acids that were simulated using the EMU and isotopomer
methods.

Amino acid Monitored intensities Amino acid carbon
atoms*

Fragmentation

Ala 232 – 239
260 – 268

2-3
1-2-3

M – C5H9O
M – C4H9

Gly 218 – 224
246 – 253

2
1-2

M – C5H9O
M – C4H9

Val 260 – 269
288 – 298

2-3-4-5
1-2-3-4-5

M – C5H9O
M – C4H9

Leu 274 – 283 2-3-4-5-6 M – C5H9O
Ile 274 – 283 2-3-4-5-6 M – C5H9O
Ser 288 – 296

362 – 370
390 – 399

2-3
2-3
1-2-3

M – C7H15O2Si
M – C5H9O
M – C4H9

Thr 376 – 382
404 – 414

2-3-4
1-2-3-4

M – C5H9O
M – C4H9

Met 292 – 298
320 – 327

2-3-4-5
1-2-3-4-5

M – C5H9O
M – C4H9

Phe 302 – 307
308 – 316
336 – 345

1-2
2-3-4-5-6-7-8-9
1-2-3-4-5-6-7-8-9

M – C7H7
M – C5H9O
M – C4H9

Asp 302 – 309
376 – 382
390 – 397
418 – 428

1-2
1-2
2-3-4
1-2-3-4

M – C8H17O2Si
M – C6H11O
M – C5H9O
M – C4H9

Glu 330 – 336
404 – 411
432 – 443

2-3-4-5
2-3-4-5
1-2-3-4-5

M – C7H15O2Si
M – C5H9O
M – C4H9

Tyr 302 – 307 1-2 M – C13H21OSi

*
The identity of amino acid ion fragments were verified previously.
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Table 8
Comparison of modeling approaches to simulate the labeling of 26 amino acid fragments in the E. coli network
model. With the EMU method, the network model was decomposed into 14 decoupled EMU networks with 307
total EMUs (223 EMUs after model reduction). In comparison 4,612 isotopomers/cumomers were required (a
reduction of 93–95%).

isotopomer model cumomer model EMU full model EMU reduced model

Type of model nonlinear linear linear linear

Number of
variables in each
subproblem

4,612 54, 241, 527, 771,
876, 832, 655, 404,
183, 57, 11, 1

EMU size 1: 141
EMU size 2: 87
EMU size 3: 46
EMU size 4: 12, 8, 1, 1
EMU size 5: 5, 1, 1, 1, 1
EMU size 6: none
EMU size 7: none
EMU size 8: 1
EMU size 9: 1

EMU size 1: 101
EMU size 2: 62
EMU size 3: 32
EMU size 4: 9, 7, 1, 1
EMU size 5: 4, 1, 1, 1, 1
EMU size 6: none
EMU size 7: none
EMU size 8: 1
EMU size 9: 1

Total number of
variables

4,612 4,612 307 223
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Table 9
Metabolites in the gluconeogenesis pathway. For each metabolite we considered solely stable, i.e. carbon-bound,
hydrogen atoms.

Metabolite name Carbon atoms Hydrogen atoms Oxygen atoms Total atoms

Balanced metabolites
 Glucose 6-phosphate (G6P) 6 7 6 19
 Fructose 6-phosphate (F6P) 6 7 6 19
 Fructose 1,6-bisphosphate (FBP) 6 7 6 19
 Dihydroxyacetone phosphate (DHAP) 3 4 3 10
 Glyceraldehyde 3-phosphate (GAP) 3 4 3 10
 1,3-Bisphosphoglycerate (BPG) 3 3 4 10
 3-Phosphoglycerate (3PG) 3 3 4 10
 2-Phosphoglycerate (2PG) 3 3 4 10
 Phosphoenolpyruvate (PEP) 3 2 3 8
 Glucose 1-phosphate (G1P) 6 7 6 19
 Mannose 6-phosphate (M6P) 6 7 6 19
 Glycerol 3-phosphate (Glyc3P) 3 5 3 11
 Erythrose 4-phosphate (E4P) 4 5 4 13
 Transketolase + C2H2O2 moiety (E-C2) 2 2 2 6
Products
 Glucose 6 7 6 19
 Carbon dioxide 1 0 2 3
Substrates
 Oxaloacetate 4 2 5 11
 Glycerol 3 5 3 11
 Glycogen 6 7 6 19
 NADH 0 1 0 1
 Water 0 2 1 3
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Table 10
Complete list of EMUs generated for the simulation model of glucose from EMU network decomposition of the
gluconeogenesis pathway. The mass isotopomer distribution of glucose, including all carbon, hydrogen, and
oxygen atoms was simulated. This required only 493 EMUs (354 EMUs in the reduced model). In comparison
2,637,120 isotopomers/cumomers would have been required to describe this system.

Full EMU model Reduced EMU model

EMU size No. EMUs in subnetwork EMU size No. EMUs in subnetwork

1 11, 8 1 8, 5
2 12, 11, 9 2 9, 8, 6
3 11, 11, 11, 10, 9 3 8, 8, 8, 7, 6
4 12, 11, 11, 11, 9, 9, 9, 6, 1 4 9, 8, 8, 8, 6, 6, 6, 4, 1
5 12, 12, 11, 10, 9, 9, 9, 9, 5, 6, 1, 1, 1 5 9, 9, 8, 7, 6, 6, 6, 6, 4, 4, 1, 1, 1
6 12, 10, 10, 10, 10, 9, 9, 9, 5, 1, 1 6 9, 8, 7, 7, 7, 6, 6, 6, 4, 1, 1
7 11, 10, 10, 10, 9, 8 7 9, 7, 7, 7, 6, 6
8 10, 9, 8 8 7, 7, 6
9 9, 5 9 7, 3
10 5 10 3
11 none 11 none
12 none 12 none
13 6 13 4
14 none 14 none
15 none 15 none
16 none 16 none
17 5 17 4
18 5, 4 18 4, 4
19 6 19 4

Total number of EMUs = 493 Total number of EMUs = 354
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Table 11
Comparison of modeling approaches for simulating glucose labeling in the gluconeogenesis pathway. Different
combinations of stable isotopes can be used to trace this pathway. Here, we considered 13C-carbon tracers, 2H-
hydrogen tracers, and 18O-oxygen tracers. The total number of variables required to simulate the labeling of
glucose was determined for the EMU approach and the isotopomer/cumomer methods.

Total number of variables

Tracer used Isotopomer/cumomer methods EMU full model EMU reduced model

13C 396 51 35
18O 420 88 61
2H 768 121 84

13C + 18O 21,392 142 100
13C + 2H 42,224 206 145
18O + 2H 42,416 379 268

13C + 18O + 2H 2,637,120 493 354
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