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Summary
Ubiquitin receptor proteins play an important role in delivering ubiquitylated protein substrates to
the proteasome for degradation. HHR23a and hPLIC2 are two such ubiquitin receptors that contain
ubiquitin-like (UBL) domains, which interact with the proteasome, and ubiquitin-associated (UBA)
domains, which interact with ubiquitin. Depending on their abundance UBL/UBA family members
can either promote or inhibit the degradation of other proteins, which suggests their participation in
the delivery of substrates to the proteasome is highly regulated. In previous work, we determined
UBL/UBA domain interactions to promote intramolecular interactions in hHR23a that are abrogated
with the addition of either ubiquitin or the proteasome component S5a. In yeast, we determined the
hHR23a ortholog (Rad23) to interact with another UBL/UBA family member (Ddi1) and to bind a
common tetraubiquitin chain. Here, we use NMR spectroscopy to reveal that hHR23a interacts with
hPLIC2 via UBL/UBA domain interactions and to map their binding surfaces. In addition, we
demonstrate that these two proteins associate in mammalian cells. Intriguingly, inhibition of the
proteasome mitigates hHR23a/hPLIC2 interaction.
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Introduction
The ubiquitin-proteasome pathway plays a key regulatory role in an astounding number of
cellular events, including the removal of misfolded proteins,1 production of immunocompetent
peptides,2 activation or repression of transcription,3, 4 and regulation of cell cycle progression.
5 Through it, proteins are ubiquitylated and consequently delivered to the 26S proteasome for
degradation.6 The moieties of a polyubiquitin chain are linked by isopeptide bonds between
the carbonyl carbon of the C-terminal glycine and a lysine side chain NH group. Ubiquitin
contains seven lysines, and among the factors that determine whether ubiquitylation leads to
proteasomal degradation is the chain length and lysine used to link the ubiquitin subunits.7
Another key factor is the recognition of the ubiquitylated protein by a ubiquitin receptor family
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member. In particular, proteins with attached K48-linked chains are degraded by the
proteasome; however, distinct receptor pathways are required to funnel them there.8, 9

Within the ubiquitin receptor family of proteins is a group that can directly connect
ubiquitylated proteins to the proteasome as their UBL domains bind the proteasome 10,11,
12,13 and UBA domains bind ubiquitin 14,15,16 simultaneously.16 Depending on their protein
levels UBL/UBA containing proteins can promote or inhibit the degradation of ubiquitylated
substrates.9 The inhibition is caused by the UBA domains, which sequester the polyubiquitin
chain to in turn prevent deubiquitylation.9,17,18

Whether ubiquitin receptor proteins act independently or collaboratively has yet to be
determined. However, in yeast, UBL/UBA family members interact with each other 19,20 via
UBL/UBA domain interactions.21 No such intermolecular interactions have been reported yet
in humans; however, the N-terminal UBL domain of hHR23a interacts dynamically with its
internal and C-terminal UBA domains.22 Evidence exists for such intramolecular interactions
in the yeast Dsk2 protein. In particular, a single domain protein construct of its UBA domain
interacts with itself and its UBL domain when crystallized.23

In this manuscript, we used NMR spectroscopy to demonstrate that hHR23a binds in a bidentate
manner to hPLIC2, a human ortholog of Dsk2. Dsk2 functions in spindle body duplication
24 and, like hHR23a’s ortholog Rad23, has been implicated in ER-associated degradation of
certain substrates.25 Our studies indicate that the UBA domain of hPLIC2 binds to hHR23a’s
UBL domain, and that its UBL domain binds hHR23a’s C-terminal UBA domain. In contrast
to these interactions, hPLIC2’s UBL domain does not demonstrate binding to the internal UBA
domain of hHR23a, even when at 2-fold molar excess and mM protein concentrations. Our
data provide an explanation for hPLIC2’s ability to bind hHR23a’s C-terminal, but not internal
UBA domain. Finally, we use immunoprecipitation experiments on endogenous hHR23a and
hPLIC2 proteins to demonstrate that they associate in mammalian cells. Intriguingly,
proteasome inhibition substantially reduces the interaction of these two proteins. This finding
provides insights into the functional significance of their interaction.

Results
HHR23a and hPLIC2 interact via UBL/UBA domain interactions

Since hHR23a’s UBL domain interacts with its own UBA domains,22 we tested whether it
binds that of hPLIC2 (Figure 1(a)). We acquired [1H,15N] HSQC experiments on 15N-labeled
hHR23a with or without unlabeled hPLIC2 UBA domain (Figure 1(b)). [1H,15N] HSQC
experiments detect all hydrogen atoms that are attached to nitrogen, and their chemical shift
values are sensitive to their chemical environment.26 We determined that addition of equimolar
quantities of hPLIC2 UBA domain causes several hHR23a resonances to shift in such spectra
(Figure 1(b)). The assignment of the amide resonances in the [1H,15N] HSQC spectrum of
hHR23a to specific atoms was achieved in a previous study,22 and this information was used
to identify the resonances that shift. Consistent with our hypothesis, all of the resonances that
shift dramatically are derived from the hHR23a UBL domain. This finding offers strong
evidence that the UBA domain of hPLIC2 binds hHR23a’s UBL domain.

To test whether hPLIC2’s UBL domain likewise binds hHR23a’s UBA domains, we performed
an analogous experiment to that described above. In particular, unlabeled hPLIC2 UBL domain
was titrated into 15N-labeled hHR23a, which was monitored by [1H,15N] HSQC experiments.
Interestingly, we observed significant perturbation of resonances derived from the C-terminal,
but not the internal UBA domain of hHR23a when these two proteins are at equimolar
concentration (Figure 1(c)). Surprisingly, only minor chemical shift perturbations are observed
in the internal UBA domain even when hPLIC2 UBL domain is at 2-fold molar excess
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(Supplementary Figure 1). We quantified the data from Figures 1(b) and (c) according to
Equation 1, where ΔδN and ΔδH represent the chemical shift perturbation value of the amide
nitrogen and proton, respectively.

ΔδHN = (0.2 × ΔδN2 + ΔδH2)1/2 (1)

This analysis demonstrates the large chemical shift perturbations for hHR23a UBL or C-
terminal UBA domain resonances upon hPLIC2 UBA (black) or UBL (red) domain addition,
respectively (Figure 1(d)). It is noteworthy that the protein complex containing full-length
hHR23a and hPLIC2 UBL domain is saturated at equimolar concentration, as only one residue
(G331) experiences additional chemical shift perturbations when the hPLIC2 UBL domain
concentration is increased from equimolar to 2-fold molar excess (Supplementary Figure 1).
This finding demonstrates that the hPLIC2 UBA domain competes effectively with those of
hHR23a for hHR23a’s UBL domain. Furthermore, minor chemical shift perturbations are
observed for resonances derived from the UBA domains or UBL domain of hHR23a upon
addition of hPLIC2’s UBA or UBL domain, respectively (Figure 1(d)). In a previous study,
we demonstrated that monoubiquitin causes chemical shift perturbations for amide resonances
of hHR23a’s UBL domain, as it binds hHR23a’s UBA domains and thereby abrogates the
intramolecular UBL/UBA domain interactions.16 It is noteworthy that the hPLIC2 UBL
domain exhibits a similar effect, and the profile of the chemical shift perturbations of hHR23a’s
UBL domain mimics that which results from monoubiquitin addition. This phenomenon
suggests that binding to hPLIC2, like ubiquitin binding, abrogates the intramolecular UBL/
UBA domain interactions present in hHR23a.22 This hypothesis is confirmed below by using
NMR relaxation experiments.

The C-terminal UBA domains of hPLIC2 and hHR23a bind to an analogous surface on each
other’s UBL domain

The chemical shift perturbation data of Figure 1(d) was mapped onto a surface representation
of hHR23a’s UBL domain (Figure 2(a)). In particular, the residues were colored according to
a gradient derived from their chemical shift perturbation value, such that a darker blue
represents a larger perturbation. This analysis reveals that the residues of the hHR23a UBL
domain affected by the hPLIC2 UBA domain localize to a hydrophobic surface formed by β-
strands. This surface is well known for its interactions with S5a 10, 22, 27 and its own UBA
domains,22 which suggests that hPLIC2 UBA domain binding to hHR23a is mutually
exclusive with these interactions.

HPLIC2 binds the proteasome and S5a with an analogous UBL domain surface compared to
hHR23a.11,22,27 We tested whether this surface is also used to bind hHR23a’s C-terminal
UBA domain. Unlabeled hHR23a was titrated into 15N-labeled hPLIC2 UBL domain, which
was monitored by [1H,15N] HSQC experiments (Figure 3(a)). We quantified the chemical shift
perturbation data according to Equation 1 (Figure 3(b)), and mapped the results onto a surface
representation of hPLIC2’s UBL domain (Figure 3(c)). The assignment of the amide
resonances in the [1H,15N] HSQC spectrum of hPLIC2’s UBL domain to specific atoms was
achieved in a previous study,11 and prolines, which lack amide protons, were excluded from
this analysis. This analysis revealed that the UBL domains of hPLIC2 and hHR23a use the
same surface to bind each other’s C-terminal UBA domains (Figure 2(a) and 2(b), Figure 3(c)
and 3(d)).

HHR23a adopts an opened conformation when bound to hPLIC2
The surface of hHR23a that binds the hPLIC2 UBA domain (Figure 2(a)) also binds S5a.22
Upon binding S5a, hHR23a adopts an opened conformation, in which its UBA domains no
longer interact with the N-terminal UBL domain.22 We hypothesized hPLIC2 UBA domain
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binding to have the same effect. To test this, we performed 15N NMR relaxation experiments
on the hHR23a/hPLIC2 UBA domain complex (Supplementary Figure 3(a) and 3(b)). These
experiments probe the internal dynamics of each residue and can be used to identify flexible
regions within a protein and to assess how rapidly each domain tumbles. In the unbound protein,
the relaxation data reflect the UBL/UBA domain interaction by fast RN(NX) relaxation values.
22 When complexed with the hPLIC2 UBA domain, the linker regions connecting each of the
four structured domains of hHR23a have fast RN(NZ) and slow RN(NX), as in the free protein.
Such trends indicate flexibility and, in fact, the values in these regions change little upon adding
hPLIC2 UBA domain. In contrast, the RN(NX) relaxation values for residues in the UBA
domains decreased substantially compared to their values in the free protein (Table 1)
indicating that these domains are tumbling more labile when hHR23a is bound to hPLIC2 UBA
domain. It is worth noting that the values for the UBL domain residues are also reduced, even
though this domain is complexed with UBA from hPLIC2. RN(NX) relaxation values are
sensitive to chemical exchange, which occurs in the free protein as each of the UBA domains
competes for an overlapping surface of the UBL domain.22 Such exchange is not apparent in
the hHR23a/hPLIC2 UBA domain complex, suggesting the presence of one stable protein
complex in which hPLIC2’s UBA domain binds hHR23a’s UBL domain. Altogether, our
chemical shift perturbation data and relaxation studies support our hypothesis that hPLIC2
UBA domain binding to hHR23a precludes intramolecular UBL/UBA domain interactions.
Our data support a model in which the hHR23a/hPLIC2 complex is stabilized by intermolecular
interactions between N-terminal UBL and C-terminal UBA domains (Figure 4).

Endogenously expressed hHR23a and hPLIC2 interact in human cells
After establishing that hHR23a and hPLIC2 interact in vitro, we tested whether they associate
in vivo. Towards this aim, HeLa cells were lysed and immunoprecipitated with anti-hPLIC2
antibody and protein G beads. After extensive washing, the remaining proteins were separated
by SDS-PAGE and visualized with either anti-hPLIC2 or anti-hHR23a antibody. This
experiment demonstrated endogenous hPLIC2 and hHR23a to interact (Figure 5 (a), lane 2).
To exclude the possibility that the apparent interaction stems from nonspecific interactions
with the protein G resin, we also performed a mock immunoprecipitated experiment with pre-
bleed serum (Figure 5 (a), lane 1). No hHR23a protein was detected in this experiment and
therefore we conclude that hPLIC2 and hHR23a interact in vivo.

We tested whether hPLIC2 and hHR23a interact when the proteasome is inhibited by MG132.
Under these conditions, polyubiquitylated substrates, to which these proteins bind,15,28
accumulate. Intriguingly, hHR23a association with hPLIC2 is dramatically reduced in cells
treated with MG132 (Figure 5(a), lane 3 and 4). To demonstrate that the reduction is not due
to either a decrease in hHR23a protein levels or to a change in its localization, we used anti-
hHR23a antibody (Abcam) and Western blot analysis to detect the hHR23a protein levels in
untreated and MG132 treated HeLa whole cell lysates. No obvious change to the level of
detected hHR23a protein was observed after MG132 treatment (Figure 5(b)). This finding
suggests that these two proteins dissociate to bind different ubiquitylated substrates.

Discussion
In this manuscript, we demonstrate the two human UBL/UBA family members hHR23a and
hPLIC2 to interact in vitro as well as in vivo. Our study complements others, which demonstrate
that the ubiquitin-proteasome pathway is plagued with packing problems, as the same β-sheet
surface of ubiquitin and ubiquitin-like domains is required for intra- and inter-molecular
interactions.10,11,22,27,29,30 Indeed, critical to understanding the contribution of these
interactions to ubiquitin-mediated protein degradation is an understanding of how it is
determined which interactions will dominate and when.
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We attempted to use chemical shift perturbation analysis as was done for the UBL domains to
determine the hHR23a UBA2 domain surface responsible for binding hPLIC2 UBL domain.
This analysis was unable to reveal a single surface, most likely because residues undergo
chemical shift perturbations from two distinct processes, namely the new interaction with the
hPLIC2 UBL domain and lost one with the hHR23a UBL domain. However, T317 is among
the hHR23a UBA2 domain residues that exhibit significant chemical shift perturbations upon
hPLIC2 UBL domain addition. One of the key structural differences between hHR23a’s UBA
domains is that the C-terminal one contains an ordered strand formed by V316-Q319 that
extends towards this domain’s second α-helix. Unique interactions involving this region likely
contribute to hPLIC2’s preference for the C-terminal UBA domain of hHR23a. In addition,
our chemical shift perturbation data implicate L336, Q339 and K346 (Figure 1(d), red) as
participating in binding the hPLIC2 UBL domain. These residues are not conserved in
hHR23a’s internal UBA domain and only Q339 is conserved in hPLIC2’s UBA domain (Figure
6(a)). These changes likely contribute to hHR23a’s C-terminal UBA domain preference for
hPLIC2’s UBL domain over its own (Figure 6(b)). In addition, hPLIC2’s UBA domain can
displace those of hHR23a at equimolar concentration, suggesting that hHR23a’s UBL domain
similarly prefers intermolecular interaction with hPLIC2. To date, full-length hPLIC2 has not
been expressed and purified from E. coli, but we expect the full-length protein to exhibit an
even higher affinity for hHR23a, as the two UBL/UBA domain binding modes can occur
simultaneously. In addition, it is possible that higher order oligomers form as the UBL and
UBA domains bind different molecules. This possibility is more likely however at high
concentrations, above that expected in the cellular environment.

Despite their interaction, UBL/UBA family members do not appear to interfere with each
other’s ability to bind ubiquitin or ubiquitylated substrates. To the contrary, in yeast Rad23
and Ddi1 bind a common tetraubiquitin chain 21 and therefore may collaborate in delivering
ubiquitylated substrates to the proteasome. We demonstrate here that endogenous hPLIC2 and
hHR23a interaction is severely reduced in cells treated with MG132 (Figure 5(a)). This finding
offers strong evidence that their protein complex dissociates to allow each protein to bind their
ubiquitylated substrates. It is possible, however, that hHR23a and hPLIC2 can interfere with
each other’s ability to bind the proteasome, which would impact the delivery of ubiquitylated
substrates to the proteasome. At high protein levels, UBL/UBA family members do inhibit the
degradation of ubiquitylated substrates.9 This effect, however, may be dominated by the UBA
domains sequestering the polyubiquitin chains, and thereby preventing their deubiquitylation.
9,17,18

Materials and Methods
Sample preparation

Dr. Peter Howley generously provided us with the plasmids for the expression of GST tagged
hPLIC2 UBL domain [pGEX-2T-hPLIC2 (26–103)] and GST tagged hPLIC2 UBA domain
[pGEX-2T-hPLIC2 (574–624)]. The plasmids containing these genes were each transformed
into BL21 (DE3) cells and grown at 37°C in M9 minimal medium or in Luria broth containing
ampicillin (100 μg/ml). The cells were harvested three hours after protein expression was
induced with 0.4 mM isopropyl β-D-thiogalactoside (IPTG). The proteins were purified by
using affinity purification on glutathione S-sepharose resin as described previously.22 Further
purification was achieved on an FPLC system (Pharmacia), by either Superdex 200 (for
hHR23a) or 75 (for UBL and UBA domains of hPLIC2) preparative columns. 15N labeled
samples for NMR spectroscopy were produced by growth and expression in M9 minimal media
with 15N NH4Cl as the only source of nitrogen.
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NMR spectroscopy
All NMR samples were dissolved in 20 mM NaPO4 (pH 6.5), 30 mM NaCl, 0.1% NaN3, and
10% D2O. Spectra were acquired at 25°C on Varian NMR spectrometers operating at either
800 or 600 MHz. Processing was performed in NMRPipe 31 and the resulting spectra were
visualized in XEASY.32 Protein concentrations were calculated by using extinction
coefficients based on amino acid composition and absorbance at 280 nm for protein dissolved
in 6M guanidium hydrochloride. Rates for 15N longitudinal (RN(NZ)) and transverse
(RN(NX)) relaxation were recorded on hHR23a with 2-fold molar excess hPLIC2 UBA domain.
The data were collected at 800 MHz with a cryogenically cooled probe and at 25°C and pH
6.5. In this complex, hHR23a was 0.4 mM and 15N-labeled whereas hPLIC2 UBA domain was
unlabeled. RN(NZ) and RN(NX) were derived by fitting data acquired with different relaxation
delays to a single exponential decay function and error values were determined by repeating
one data point.

In vivo experiments
HeLa cells were cultured in DMEM (Fisher) +10% FBS (Invitrogen) medium for 8 hours, in
the absence or presence of 20 μM MG132. Cells were harvested and then lysed with TBS buffer
(50mM Tris-HCl pH7.4, 150mM NaCl) containing 1 mM EDTA, 1% Triton X-100, and
protease inhibitor cocktail (Roche). Nuclei and insoluble debris were removed by
centrifugation. In figure 5(a), immunoprecipitation of hPLIC2 was performed by using a
previously published method.28 Briefly, 2 μl of anti-hPLIC2 or pre-bleed (as a control) rabbit
serum was added to 1 ml of lysate containing 1000 μg total protein prepared from a 10 cm dish
of adherent cells. After rotating for an hour at 4°C, 20 μl of protein G beads was added and the
solution rotated for another 30 minutes at 4°C. The beads were subsequently spun down,
washed several times in the lysis buffer, and the proteins separated by SDS-PAGE. HPLIC2
or hHR23a were visualized with either anti-hPLIC2 (from Dr. Peter Howley) or anti-hHR23a
(Abcam) antibody. In figure 5(b), 200 μl of HeLa cell lysate containing 100 μg of total protein
was precipitated by 10% TCA, disrupted with 80 μl of glass beads. The proteins were resolved
by SDS-PAGE and probed with anti-hHR23a (Abcam) antibody.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations
hHR23  

human homologue of Rad23

hPLIC2  
human homolog 2 of protein linking integrin-associated protein and cytoskeleton

XPC  
xeroderma pigmentosum C

CL  
collagen like

HSQC  
heteronuclear single quantum coherence

NMR  
nuclear magnetic resonance

UBA  
ubiquitin-associated

UBL  
ubiquitin-like

Kang et al. Page 8

J Mol Biol. Author manuscript; available in PMC 2008 January 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Ubiquitin recognition proteins hHR23a and hPLIC2 interact via UBL/UBA domain
interactions. (a) The sequence location of hHR23a’s and hPLIC2’s UBL and UBA domains as
well as hHR23a’s XPC binding domain and hPLIC2’s collagen-like domain is illustrated. (b)
Comparison of the [1H,15N] HSQC spectrum of 15N-labeled hHR23a alone (black) to that
acquired in the presence of equimolar amount of hPLIC2 UBA domain. The zoomed region
highlights the chemical shift perturbations of hHR23a caused by hPLIC2 UBA domain
addition. (c) [1H,15N] HSQC spectra are displayed of hHR23a alone (black) and with equimolar
amount of hPLIC2’s UBL domain (red). Selected shifted resonances of hHR23a’s C-terminal
UBA domain are labeled. Together with Figure 1(b) and (c), these data provide strong evidence
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for the UBL/UBA domain interactions of hHR23a and hPLIC2. (d) Chemical shift perturbation
data of hHR23a caused by hPLIC2’s UBA domain (black) or hPLIC2’s UBL domain (red).
The data were treated according to equation 1.
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Figure 2.
The surface of hHR23a’s UBL domain that binds hPLIC2’s UBA domain is provided. GRASP
33 and MOLMOL 34 were used to generate panels (a) and (b), respectively. The reported UBL
domain coordinates for hHR23a 22 were used to generate this figure. The surface not shown,
namely that rotated by 180° relative to that shown in (a) contains no perturbed residues, and
is provided as Supplementary Figure 2(a).
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Figure 3.
The surface of hPLIC2’s UBL domain that interacts with hHR23a is revealed. (a) [1H,15N]
HSQC spectra of hPLIC2 (26-103) alone (black) and with equimolar quantities of hHR23a
(red). Selected shifted or broadened resonances of hPLIC2’s UBL domain are labeled. (b)
Chemical shift perturbation data for hPLIC2’s UBL domain caused by hHR23a addition. The
data were treated according to equation 1. I102, whose resonance disappeared upon hHR23a
addition, is indicated by a red star, whereas P40 and P49, which are excluded from this analysis,
are indicated with black stars. (c and d) The surface of hPLIC2 UBL domain that binds hHR23a
has been identified. GRASP 33 and MOLMOL 34 were used to generate panels (c) and (d)
respectively. P40, which lacks an amide proton, is labeled in panel (c) and colored yellow in
panel (d). The reported UBL domain coordinates for hPLIC2 11 were used to generate this
figure. The surface not shown, namely that rotated by 180° relative to that shown in (a) contains
no perturbed residues, and is provided as Supplementary Figure 2(b).
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Figure 4.
A schematic model of how hHR23a interacts with hPLIC2. A hydrophobic surface of hHR23a’s
UBL domain interacts with hPLIC2’s UBA domain, whereas charged residues appear to play
a role in its C-terminal UBA domain binding to hPLIC2’s UBL domain. Pink dots represent
hydrophobic surfaces, whereas the “+” and “−“ symbols reflect electrostatic surfaces.
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Figure 5.
(a) Endogenously expressed hHR23a and hPLIC2 interact in human cells. Endogenous hPLIC2
from HeLa cells cultured in DMEM +10% FBS medium for 8 hours in the absence or presence
of the proteasome inhibitor MG132 was immunoprecipitated with anti-hPLIC2 antibody (from
Dr. Peter Howley). The immunoprecipitates were subjected to Western blot analysis using anti-
hPLIC2 or anti-hHR23a (Abcam) antibody. The first lane represents a negative control in which
the immunoprecipitation was performed using prebleed serum. 1000 μg of protein from the
cell lysate was used for Lanes 2 and 3 whereas 5000 μg was used for Lane 4. (b) The amount
of detectable endogenous hHR23a protein in HeLa cells is unperturbed by MG132 treatment.
HeLa cell lysates containing 100 μg of total protein from (a) were TCA precipitated, disrupted
with glass beads, and the resulting proteins resolved by SDS-PAGE and probed with anti-
hHR23a (Abcam) antibody.
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Figure 6.
Sequence alignment of the UBA (a) and UBL (b) domains from hHR23a and hPLIC2. Identical
and conserved residues are highlighted in yellow and blue, respectively. T317, L336, Q339
and K346 from hHR23a are implicated by NMR titration experiments (Figure 1(d)) as
interacting with hPLIC2’s UBL domain and are boxed. Secondary structural elements for
hHR23a’s C-terminal UBA (a) and UBL (b) domains are included.
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Table 1
Average Relaxation Values for Each Domain of hHR23a Alone 22 and in Complex with hPLIC2 UBA domain

RN (NZ) (s−1) RN (NX) (s−1)

Domain Free Complex Free Complex

UBL 1.2 1.0 41.9 25.1
UBA1 1.4 1.4 27.9 16.0

XPC binding 1.3 1.3 35.0 25.5
UBA2 1.4 1.4 30.0 13.7
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