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Abstract
Background: Transcriptional modules (TM) consist of groups of co-regulated genes and
transcription factors (TF) regulating their expression. Two high-throughput (HT) experimental
technologies, gene expression microarrays and Chromatin Immuno-Precipitation on Chip (ChIP-
chip), are capable of producing data informative about expression regulatory mechanism on a
genome scale. The optimal approach to joint modeling of data generated by these two
complementary biological assays, with the goal of identifying and characterizing TMs, is an
important open problem in computational biomedicine.

Results: We developed and validated a novel probabilistic model and related computational
procedure for identifying TMs by jointly modeling gene expression and ChIP-chip binding data. We
demonstrate an improved functional coherence of the TMs produced by the new method when
compared to either analyzing expression or ChIP-chip data separately or to alternative approaches
for joint analysis. We also demonstrate the ability of the new algorithm to identify novel regulatory
relationships not revealed by ChIP-chip data alone. The new computational procedure can be used
in more or less the same way as one would use simple hierarchical clustering without performing
any special transformation of data prior to the analysis. The R and C-source code for implementing
our algorithm is incorporated within the R package gimmR which is freely available at http://
eh3.uc.edu/gimm.

Conclusion: Our results indicate that, whenever available, ChIP-chip and expression data should
be analyzed within the unified probabilistic modeling framework, which will likely result in improved
clusters of co-regulated genes and improved ability to detect meaningful regulatory relationships.
Given the good statistical properties and the ease of use, the new computational procedure offers
a worthy new tool for reconstructing transcriptional regulatory networks.
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Background
Transcriptional regula tion is one of the crucial mecha-
nisms used by living systems to maintain homeostasis.
Disregulation of gene expression underlies toxic effects of
many chemicals [1], and gene expression changes are
often reliable markers of a disease [2]. The specificity of
transcriptional initiation of a eukaryotic gene is main-
tained through a complex interaction of one or more
sequence-specific transcription factors, regulatory DNA
regions harboring corresponding DNA regulatory motifs,
chromatin-remodeling proteins and the basal transcrip-
tional machinery [3]. While not all modes of expression
regulatory controls are known, it has been shown that in
many important biological processes the initiation of
transcription requires binding of one or more transcrip-
tional factors to their cognate regulatory motifs within
regulatory DNA regions. Two key high-throughput (HT)
experimental technologies are capable of producing data
offering insights into the expression regulatory mecha-
nism on a genome scale. The first technology are expres-
sion microarrays facilitating simultaneous monitoring
expression of virtually all genes in a genome [3-5]. The
second technology is the Chromatin Immuno-Precipita-
tion on Chip (ChIP-chip) technology facilitating assess-
ment of transcription factor binding events on a genomic
scale [6,7]. Optimal joint modeling of data generated by
these two complementary biological assays, with the goal
of identifying and characterizing TMs, is an important
open problem in computational biomedicine.

Earliest applications of microarray technology included
attempts at discovering shared regulatory motifs and cor-
responding transcription factors within groups of co-
expressed genes identified by cluster analysis [8]. Groups
of co-expressed genes were first identified by clustering
gene expression profiles. Putative regulatory motifs induc-
ing the co-expression were then identified de-novo using
the MEME algorithm [9]. The inefficiency of procedures in
which different data-types (e.g. expression data and pro-
moter sequences) are analyzed separately is due to the ina-
bility of patterns in different data-types to re-enforce each
other. For example, due to the noise in microarray data,
the correlation between expression levels of two co-regu-
lated genes could be too weak to be detected by clustering
expression data alone. However, if evidence exists that
promoters of these two genes are bound by the same TF,
this information could enforce the weak signal in the
expression data and allow us to identify these two genes
as being parts of the same TM. In the traditional two-step
approach such co-regulation will be lost since the second
step regulatory motif analysis is conditional on co-expres-
sion of the two genes.

Several heuristic algorithms have been developed for con-
structing TMs by integrated analysis of gene expression

and binding (ChIP-chip) data. Genetic Regulatory Mod-
ules (GRAM) algorithm [10] uses binding data to identify
a gene set bound to common TFs (p-value < 0.001). It
then searches for other genes at a lower level of signifi-
cance (p-value < 0.01) that are bound by those TFs and
have similar expression levels to the initial gene set core (d
< d0). ReMoDiscovery [11] follows similar stringent and
relaxed two step procedures and infers TMs from Chip-
chip, motif and expression data. Module Finding Algo-
rithm (MOFA) also uses two level p-values, but additional
criteria for selecting genes regulated by a specific TF is the
correlation between expression levels of such genes and
expression level of the TF [12]. Statistical-Algorithmic
Method for Bicluster Analysis (SAMBA) algorithm [13]
transforms expression and binding data items to proper-
ties of genes/genes or genes/proteins, then generates a
genes-properties bipartite graph. The algorithm aims at
discovering sets of genes with statistically significant com-
mon properties. SAMBA requires discretization of inher-
ently continuous gene expression and binding data based
on more or less ad-hoc cut-offs which will almost cer-
tainly reduce the information content of the data.

In a model-based approach to find TMs based on gene
expression and TF binding data, one postulates the prob-
abilistic model of all data and then estimates parameters
of the model which define TM membership. Three such
models based on Bayesian networks have been proposed.
In the first approach [14] both gene expression and ChIP-
chip data are directly modeled within the same Bayesian
hierarchical model. In the other model, ChIP-chip data is
used to calculate prior probabilities of TM memberships
[15] based on an extension of the Bayesian module net-
works model [16]. In both of these models, the number of
the modules has to be first be estimated from the data (or
guessed) and all inference is valid conditional on the
number of modules being correct. Since both of these
models can also be thought of as extensions of the basic
finite-mixture model, it is very likely that they will share
inherent instability with respect to misspecification of the
"correct" number of modules [17,18]. Earlier, a Bayesian
casual network inferred from discretized expression data
was used to describe the gene regulatory network with the
binding data used to establish the constraints for the net-
work structure [19]. The number of genes participating in
the network construction is limited because of the com-
plexity of model search. COGRIM [20] algorithm uses a
Bayesian hierarchical framework to fit a gene-by-gene lin-
ear regression model of a gene's expression levels as func-
tion of is a quadratic function of all TFs' expression levels
and their pair-wise interactions. The ChIP-chip binding
data and the TF binding motif scores based on predefined
Position Weight Matrices (PWM) are integrated as the
prior information in the model. Genes are grouped into
same TMs if they are regulated by the same set of TFs.
Page 2 of 20
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:283 http://www.biomedcentral.com/1471-2105/8/283
We developed a novel Expression-ChIP Infinite Mixture
(ECIM) model for identifying TMs by jointly modeling
gene expression and TF binding data. The model is con-
structed by extending the context-specific infinite mixture
model (CSIMM) [21] in such a way that expression and
binding data are represented by two separate contexts
with different probabilistic models. We also constructed a
novel probabilistic representation for the ChIP-chip data
that seems to capture all relevant information from this
data and use it within the binding-context of the model.
The overall approach makes use of the Bayesian infinite
mixture framework [17,18] to circumvent the issue of
identifying the 'correct' number of global and local pat-
terns in the data. Context-specificity not only allows the
use of different probabilistic models to represent expres-
sion and binding data, but it also allows for discordances
between patterns of co-expression and co-regulation. Pos-
terior distribution of model parameters is estimated using
Gibbs sampling [22]. TMs are formed based on Posterior
Pairwise Probabilities (PPPs) of co-membership and Pos-
terior Binding Probabilities (PBPs). It has been previously
shown that PPPs can be directly interpreted as measures of
statistical significance of co-membership [18,21].

The new computational procedure can be used in more or
less the same way as one would use simple hierarchical
clustering without need to perform any special transfor-
mation of data prior to the analysis. In the results section
we show that PBPs are able to identify binding relation-
ships not revealed by CHIP-chip binding data alone. We
demonstrate the ability of this procedure to integrate
information from gene expression and TF binding data by
assessing the functional coherence of TMs constructed
from real-world datasets.

Results and Discussion
Data preparation
We constructed four expression-binding datasets to exam-
ine the performance of ECIM and alternative methods.
For each dataset, binding data consisted of ChIP-Chip
data assessing binding affinities for 106 TFs to promoters
of 6270 genes [6]. Expression datasets we used were the
sporulation data set consisting of gene expression meas-
urements throughout the sporulation process for the yeast
strain SK1 [8]; the sporulation data set consisting of gene
expression measurements during sporulation for the yeast
strains SK1 and W303y [23]; the cell cycle data set consist-
ing of gene expression measurements spanning two com-
plete yeast cell cycles [24]; and the combined sporulation-
cell cycle dataset which we previously used to validate the
CSIMM model [21]. Dual channel data [8] was processed
by: (i) adjusting for background signal intensities; (ii) cal-
culating log-intensity ratios of intensities in two channels;
(iii) adjusting log-ratios using local regression of log-
ratios on average log-intensities in two channels; and (iv)

centering each gene's log-ratios by subtracting the gene-
specific average log-ratio. Affymetrix data [23,24] was
processed by: (i) setting any measurement below one to
one; (ii) log-transforming measurements; and (iii) center-
ing each gene's log-measurements by subtracting the
gene-specific average log-measurement. Genes with the
maximum signal strength of less than 100 were excluded
from the analysis. To make results comparable across dif-
ferent datasets, we used only data for genes represented on
all microarray platforms (4980 genes).

Sensitivity and specificity of co-memembership in TMs
Using the Gibbs sampler, we generated a sequence of TMs
approximating the marginal posterior distribution of TMs
given data. This distribution was summarized by calculat-
ing PPPs of two genes belonging to the same TM, and PBP
of a specific TF binding to the promoter of a specific gene.
For each dataset we constructed an Expression-ChIP Infi-
nite Mixture (ECIM) based hierarchical clustering of genes
using PPPs as the similarity measure with the average-
linkage principle. The precision of such analysis was com-
pared to results obtained by using alternative analytical
approaches and by using the equivalent models with only
expression or only binding data. Following are descrip-
tions of all methods compared:

ECIM Expression and Binding
Hierarchical clustering based on PPPs derived from ECIM
analysis of both expression and binding data.

ECIM Expression
Hierarchical clustering based on PPPs derived from ECIM
analysis of expression data.

ECIM Binding
Hierarchical clustering based on PPPs derived from ECIM
analysis of binding data.

Binding P-Values
TM's formed based on p-values of binding calculated in
the original publication[6].

Binding PBP
TMs formed based on PBPs from ECIM analysis of expres-
sion and binding data.

Euclidian Distance
Hierarchical clustering based on Euclidian distances of
expression data.

GRAM
TMs formed using the GRAM algorithm with default
parameters, expression and binding data.
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SAMBA
TMs formed using the SAMBA algorithm with default
parameters and expression data only.

ROC curves were constructed by correlating results for the
949 KEGG-associated genes where "functional clusters"
are based on the co-membership of these 949 genes
within any KEGG [25] pathway. It is obvious that this is
not the perfect "gold standard" as some co-regulated
genes will not be categorized to belong to a common
pathway and vice versa. However, the assumption behind
using membership in specific pathways as a gold stand-
ard, which is that co-regulated genes are more likely to
participate in the same pathway than randomly grouped
genes, is reasonable. Other well-known annotation data-
bases, such as GO [26] or MIPS [27], are more compli-
cated to use since they are hierarchically structured and
results would depend on the level of specificity used to
construct functional grouping.

ROC for hierarchical TMs based on hierarchical clustering using PPPs 
and Euclidian distance
The tree was cut at different depths to create clustering
with every possible number of clusters. For a fixed number
of clusters a pair of genes (from the 949 genes assigned to
at least one pathway) belonging to the same cluster was
assumed to be a "true positive" if the two genes both
belonged to at least one specific KEGG pathway, and it
was considered to be a "false positive" if they did not share
a single KEGG pathway. True and false positive rates were
then obtained by dividing the number of true/false posi-
tives with the total number of gene pairs sharing a com-
mon KEGG pathway and total number of gene pairs not
sharing a KEGG pathway respectively. When the number
of clusters is equal to the number of genes and all genes
are placed in their own individual clusters, both true and
false positive rates are equal to zero. A ROC curve is
defined when we reduce the number of clusters and both
true and false positive rates increase. At the extreme when
all genes are placed in the same cluster, both true and false
positive rates are equal to one.

ROC curves for ECIMs based on binding p-values and PBP
The significance cut-off was varied between 0 and 1. For
each cut-off level, two genes were considered to be co-reg-
ulated if they were bound by at least one common TF at
this significance level. True and false positive rates were
established in the same way as for the clusters formed by
hierarchical clustering with KEGG "gold standard".

GRAM and SAMBA
True and false positive rates for TMs produced by the two
algorithms with default parameters were calculated in the
same way as for the previous two situations. There was no
recommended way to vary specificity and sensitivity of

these two algorithms so we report only a single true and
false positive rate for each algorithm.

Since just 5% of gene-pairs annotated in KEGG shared the
same pathway, only when the True Positive Rate (TPR) is
at least 20 times higher than the False Positive Rate (FPR)
do true positive pairs outnumber the false positives.
Therefore we only show ROC curves for each dataset/
method combination for statistically relevant false-posi-
tive rates (less than 0.05). The FPRs achieved by GRAM
and SAMBA are around or less than 0.001, thus we plotted
left most part of ROC curves (less than 0.0025) to make a
clear comparison (Figure 1). ROC curves on the expended
rage of FPRs (less than 0.05) are shown Figure 2.

ECIM-derived TMs based on the expression and binding
data clearly outperformed all other approaches. In all
three datasets, ECIM framework was able to successfully
integrate information from both data types and signifi-
cantly improve precision of analysis over individually
analyzing any one of two data types. When using only
binding data, it made no difference whether we simply
use p-values to construct modules or apply ECIM proce-
dure using only the binding data context, which was
expected since the binding data was the only information
source even we use different processing methods. On the
other hand, TMs constructed by either hierarchically clus-
tering genes using PPPs or using PBPs derived from the
same analysis, were equally precise. This suggests that
either PPP or PBP summarizes the posterior distribution
of TMs generated by the ECIM analysis of two data types
and carries all the meaningful information about the
underlying TM structure.

To demonstrate the seamless integration of ECIM frame-
work with more sophisticated expression data models we
re-analyzed the combined sporulation-cellcycle data set
we previously described [21] using CSIMM model for
multiple expression data contexts (Figure 2 and Figure
3D). As expected, the ECIM with CSIMM expression data
contexts outperformed all other approaches, indicating
the ability of the CSIMM model to effectively integrate
information from different expression data sets and the
ability of the ECIM model to integrate further such com-
plex expression data with ChIP-Chip binding data.

The performance of two previously described computa-
tional procedures for constructing TMs based on joint
analysis of expression and binding data was relatively
poor. Points defined by single pairs of true/false positive
rates for both methods with default parameters fall below
all ROC curves including the one that uses only binding
p-values. For the combined sporulation-cellcycle dataset
we manipulated the parameters for the two algorithm
with the goal of obtaining ROC points for a range of false
Page 4 of 20
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positive rates. Detailed tables of parameters used and
resulting FPRs and TPRs are shown in Supplemental
Tables 1 and 2, (see Additional files 2 and 3 ). ROC points
obtained by these two algorithms with non-default
parameters are depicted by smaller dots in Figures 2 and
3D. While we managed to expand the range of FPRs, the
overall conclusions did not change.

In the case of SAMBA we used only expression data
because we could not establish with certainty the appro-
priate transformation for the binding data used in the
original study [13]. This is appropriate because the statis-
tical procedure implemented in SAMBA is same for both
the gene expression and appropriately transformed ChIP-

chip data. Furthermore, SAMBA has been originally
described in the context of clustering gene expression data
alone and the web page manual describes only this kind
of use. However, it is important to emphasize that
SAMBA's performance should be compared to results of
other procedures that use only gene expression data (Euc-
lidian Distance and ECIM Expression). Given the poor
precision of TMs generated by SAMBA when compared to
ECIM using only expression data, we conjecture that add-
ing binding data is unlikely to improve SAMBA's results to
the point of performing better than ECIM using both data
types. For the sporulation data in Figure 1A both SAMBA
and GRAM failed to identify any TMs. Same was the case
for GRAM with cell-cycle data in Figure 1C.

ROC curves for 8 different algorithms using three different yeast gene expression datasetsFigure 1
ROC curves for 8 different algorithms using three different yeast gene expression datasets. A) Chu,1998, sporulation; B) 
Primig,2000, sporulation;C) Cho,1998, cellCycle and the ChIP-chip data of Lee, 2002. KEGG pathways were used as the gold 
standard. ECIM utilizing both expression and binding data dominated all other algorithms. ROC "spots" for GRAM and SAMBA 
algorithms were obtained by applying the algorithms using the default parameters.
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In the original publications, both SAMBA and GRAM were
used to analyze larger expression datasets than we used
here. To assess the scalability of results presented here we
also analyzed a significantly larger dataset with 165
microarray experiments assessing yeast transcriptional
responses to various environmental perturbations [28].
The functional coherence of produced TMs was also com-
pared to the functional coherence of TMs previously con-
structed using a large scale gene expression data analysis
[29] for 23 different cut levels provided by authors, and
two latest algorithms (ReMoDiscovery and COGRIM)
[11,20] for constructing TMs from jointly analyzing gene
expression data, ChIP-chip data and DNA motif scores
obtained by scanning gene promoters using predefined
PWM. The comparisons to ReMoDiscovery and COGRIM

were based on results published in original publications
describing these two algorithms. These results were based
on analyzing the gene expression datasets that contained
the Gasch dataset [28], and on the same TF binding data-
set we used in our analyses (Lee's ChIP-chip data [6]). We
downloaded module definitions from the respective sup-
port web sites and constructed ROC points using again
KEGG pathways as the gold standard. For ReMoDiscovery
we used two modules definitions discussed in the paper
(seed module and extended module). For COGRIM we
used two modules defined by authors (B+C+ correspond-
ing to modules defined by COGRIM and supported by
binding data alone and B-C+ corresponding to modules
defined by COGRIM but not supported by binding data
alone) and the combined module corresponding to all
modules constructed by COGRIM. Unfortunately, after
multiple attempts we were not able to construct TMs using
SAMBA on this dataset. This could be a consequence of
the large number of missing values in this dataset or our
inability to correctly format missing values. We again
manipulated GRAM parameters (details in Supplemental
Table 1, (see Additional file 2) to expand the range of false
positive rates.

Basic conclusion still held and all algorithms we tested
produced improved ROC results when compared to the
smaller expression datasets (Figure 4). However, although
ECIM performed as well or better than any other algo-
rithm, significant improvements in precision from adding
ChIP-chip data were visible only when PBP's are used to
construct the modules. This could be the consequence of
the additional noise in the algorithm for constructing
hierarchical clustering from PPPs. ECIM also outper-
formed TMs constructed by the large gene expression
datasets alone [26] as well as two algorithms that use
expression, binding and DNA sequence motif informa-
tion to infer TMs [11,20] despite the dramatically smaller
number of data points used in the analysis. COGRIM out-
performed GRAM and matched the functional coherence
of modules that were based on a much larger gene expres-
sion dataset alone. This could be due to the additional reg-
ulation information used in the analysis or simply due to
the more efficient use of the expression data alone.

Finally, we performed additional comparisons between
TMs produced by GRAM and ECIM using Gene Ontolo-
gies as the gold standard [26]. In this comparison, we con-
structed TMs by cutting the hierarchical tree constructed
by the ECIM algorithm so that the total number of genes
in resulting TMs was about the same as the number of
genes implicated by GRAM (740 unique genes in 98 TMs).
For each gene-pair we identify the most specific GO cate-
gory to which both of them belong by defining the specif-
icity as I = [1-log2(S/2)/log2(N/2)] where S is the number
of genes annotated in this GO item and N is the total

ROC curves for 8 different algorithms using the combined sporulation and cell-cycle gene expression dataset and the ChIP-chip data of Lee, 2002Figure 2
ROC curves for 8 different algorithms using the combined 
sporulation and cell-cycle gene expression dataset and the 
ChIP-chip data of Lee, 2002. KEGG pathways were used as 
the gold standard. ECIM utilizing both expression and binding 
data dominated all other algorithms. ROC "spots" for GRAM 
and SAMBA algorithms were obtained by applying the algo-
rithms using the default parameters. Smaller ROC "spots" for 
SAMBA were obtained by systematically manipulating algo-
rithm's parameters.

GRAM
SAMBA
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number of genes annotated in GO. It has been shown that
such a measure of specificity is a good way to represent the
level of information about functional relationship
between genes based on GO groupings [30]. For a specific
cut-off i, a pair of genes is True Positive if the correspond-
ing I>i and are placed in at least one common TM. A pair
of genes is False Positive if I>i, but the two genes do not
share a commong TM. ROC curves in Figure 5 are con-
structed by systematically changing the threshold i and
calculating corresponding true and false positive rates for
TMs constructed by GRAM and those constructed by
ECIM. Results of this analysis are concordant with results
obtained by using KEGG pathways as the gold standard.

In addition to constructing ROC curves we examined the
coherence of TMs identified in this analysis in terms of
statistical significances of over-represented Gene Ontolo-
gies. For each TM, we identified the most over-represented
Gene Ontology as measured by the p-value of the Fisher's
exact test. The distribution of TM sizes and the statistical
significances of most over-represented Gene Ontologies is
depicted in Figure 6. Assuming that the false discovery rate
of 0.05 to be statistically significant, the results of the
analysis are summarized in Table 1. Overall, the higher
proportion of TMs constructed by ECIM (15 out of 51 vs
15 out of 94) were statistically significantly associated
with at least on Gene Ontology. The number of genes in
statistically significant TMs constructed by ECIM was

ROC curves from Figures 1 and 2 with expanded range for FPRFigure 3
ROC curves from Figures 1 and 2 with expanded range for FPR. ROC curves for 8 different algorithms using four different 
yeast gene expression datasets. A) Chu,1998, sporulation; B) Primig,2000, sporulation;C) Cho,1998, cellCycle, D) combined 
sporulation and cell-cycle dataset Liu,2006, and the ChIP-chip data of Lee, 2002. KEGG pathways were used as the gold stand-
ard. ECIM utilizing both expression and binding data dominated all other algorithms. Large ROC "spots" for GRAM and 
SAMBA algorithms were obtained by applying the algorithms using the default parameters. Smaller ROC "spots" for GRAM and 
SAMBA were obtained by systematically manipulating algorithm's parameters.
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more than twice the number of genes in statistically signif-
icant TMs constructed by GRAM.

The comparison of Gene Ontologies significantly associ-
ated with TMs constructed by ECIM and GRAM (Table 2)
reveals that several key Gene Ontologies were implicated
by both algorithms (protein biosynthesis, Sporulation,
sulfur metabolism, mitosis and amino acid metabolism).
On the other hand, 8 out of 15 ECIM modules and 5 out
15 GRAM modules were algorithm specific. All of these 13
algorithm specific categories could be linked in one way
or another to the two basic process investigated by expres-
sion data (sporulation and cell cycle). Consequently, it
seems that both algorithms are identifying relevant TMs,
it is just that ECIM is assigning a greater number relevant
genes to these TMs. The list of all TMs along with the asso-
ciated Gene Ontologies is given in the Supplemental
Table 3, (see Additional file 4).

Constructing TM's and identification of associated 
regulators
To demonstrate the simplicity of use and interpretation of
ECIM results we constructed TMs based on results of the

combined sporulation-cell cycle dataset. 294 genes were
selected based on the fact that their average linkage dis-
tance based on ECIM-derived PPPs to at least one other
gene or group of genes was below 0.1 and their cluster size
is larger than 10. Previously we demonstrated that such
average linkage distance cut-offs have direct interpreta-
tions in terms of statistical significance of implicated asso-
ciations [21]. The heatmap in Figure 7 depicts clusters of
co-regulated genes and their associated TFs as well as the
strength of this association based on PBPs. On the right
hand side of the heat-map, are gene ontologies most sig-
nificantly associated with each TM. All TFs associated with
different TM's (Figure 8) are identified based on either the
high PBPs between individual genes and individual TFs,
or by over-representation of genes with statistically signif-
icant binding p-values (<0.001) for a TF in the ChIP-chip
experiment (see methods). Descriptions of resulting TMs
are given in the Supplementary Table 4, (see Additional
file 5). The biological meaning of identified TMs is dis-
cussed in the next section.

We also investigate the utility of PBPs in identifying novel
regulatory relationships not implicated by ChIP-chip data

Table 1: Summaries of associations between TMs and Gene Ontologies

Number of Genes Assigned 
to TMs

Number of TMs Number of TMs 
Significantly Correlated 
With At Least One GO 

(Fisher's FDR<0.05)

Number of Genes in 
Significant TMs

GRAM 740 94 15 206
ECIM 740 51 15 425

Table 2: Functional comparison of TMs constructed by ECIM and GRAM. Several key Gene Ontologies were implicated by both 
algorithms (bold text with matching numbers).

FDR 
adjusted p-

value

GO categories associated with ECIM modules GO categories associated with GRAM modules FDR 
adjusted p-

value

2.7E-57 protein biosynthesis (1) oxidative phosphorylation 9.9E-12
2.1E-39 ribosome biogenesis and assembly amino acid metabolism (5) 2.9E-10
1.6E-17 meiosis protein biosynthesis (1) 4.7E-09
1.6E-16 spore wall assembly (sensu Fungi) (2) Sporulation (2) 3.7E-08
1.4E-15 sulfur metabolism (3) sulfur metabolism (3) 2.3E-07
1.2E-07 spore wall assembly (sensu Fungi) (2) protein biosynthesis (1) 3.3E-06
1.8E-07 DNA replication protein biosynthesis (1) 8.8E-06
2.7E-07 arginine biosynthesis Glycolysis 6.8E-05
5.7E-06 ribosome biogenesis protein biosynthesis (1) 1.3E-04
1.5E-03 mitosis (4) de novo' IMP biosynthesis 6.1E-04
2.4E-03 lagging strand elongation chromatin assembly or disassembly 1.6E-03
4.7E-03 amino acid biosynthesis (5) sulfur metabolism (3) 6.8E-03
1.0E-02 mitotic cell cycle (4) alcohol catabolism 7.3E-03
1.6E-02 cytokinesis, completion of separation interphase of mitotic cell cycle (4) 1.2E-02
3.6E-02 protein neddylation mitotic sister chromatid cohesion (4) 1.4E-02
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ROC curves for 7 different algorithms using the combined dataset of yeast transcriptional responses to various environmental changes [28] and the ChIP-chip data of Lee, 2002Figure 4
ROC curves for 7 different algorithms using the combined dataset of yeast transcriptional responses to various environmental 
changes [28] and the ChIP-chip data of Lee, 2002. We used the experiments with at least 5 time points or dose-response 
points for the total of 165 microarrays. KEGG pathways were used as the gold standard. The functional coherence of pro-
duced TMs was also compared to the functional coherence of TMs constructed by three other algorithms utilizing expression 
datasets containing the Gasch dataset used in our calculations. ROC points for TMs constructed by Naama Barkai's lab [11] 
utilizing only a very large expression dataset at 23 different cut-off levels are depicted by yellow spots. The seed module and 
extended module constructed by ReMoDiscovery [11] utilizing gene expression, ChIP-chip and binding sequence motif data 
are depicted by pink spots. B+C+, B-C+ and the C+ TMs constructed by combining B+C+ and B-C+ modules identified by 
COGRIM [20] utilizing gene expression, ChIP-chip and binding sequence motif data are depicted by dark blue spots. All three 
diagrams represent the same ROC curves/plots for different ranges of False Positive Rates (x-axis) ECIM results again domi-
nated all other algorithms in terms of functional coherence.
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alone. We used experimentally verified binding site lists
from TRANSFAC [31] consisting of 174 binding sites
involving 127 genes and 57 TFs as our gold-standard.
Among all gene/TF pairs with binding p-values less than
0.001, 35% are verified in TRANSFAC. The threshold
0.001 was carefully selected to balance the specificity and
sensitivity of binding between all TFs and gene promoters
[6]. We selected 8 gene/TF pairs (around 0.1% of the
total) with highest PBPs among all 7239 (127*57) pairs
in TRANSFAC. None of the 8 pairs had binding p-values
less than 0.001. However, 3 of the 8 gene/TF pairs (SIP4/
SIP4, CLN2/SWI4, SMK1/SUM1) are listed in TRANSFAC.
The accuracy rate (0.37) is almost same as binding p-
value's, which suggests that PBP is able to identify novel
regulation information. Another two gene/protein pairs
(SPR3/SUM1, OPI3/INO4) are very good candidates for
further investigation. SPR3's promoter region has SUM1's
putative binding site MSE and its transcription is
increased with the presence of SUM1 [32], OPI3's pro-
moter region has INO4's putative binding site UASINO
element, its transcription is depressed with the presence of
INO4[33,34].

Description of transcriptional modules detected
Sporulation
Clusters associated with the biological processes of synap-
sis/recombination and spore wall assembly were clearly
discerned in the Primig sporulation dataset (Figure 7).
Genes within each of the clusters for both yeast strains
SK1 and W303 were all upregulated late in the sporulation
process. Joint data clustering showed enrichment in the
number of clusters associated with sporulation as well as
the number of regulators identified (Figure 8). In addition
to modules regulated by Sum1 and Pho4, the ECIM algo-
rithm identified a third transcriptional module associated
with synapsis/recombination (cluster 4) that consisted of
three additional regulators; Gln3, Otu1 and Rcs1. Gln3
positively regulates genes that are subject to nitrogen cat-
abolite repression (NCR)[35]; under conditions of nitro-
gen limitation, Gln3 localizes to the nucleus and activates
NCR-sensitive genes. Gln3 was likely detected due to the
use of nitrogen-deficient sporulation media. In addition
to its role as a deubiquitylation enzyme, Otu1 has been
suggested by database mining to affect PIS1 expression,
which is required for the final step in phosphatidylinosi-
tol synthesis[36]. Previous work has demonstrated that S.
cerevisiae inositol auxotrophic strains require inositol for
the completion of sporulation[37]. Rcs1 is a transcription
factor involved in iron utilization and homeostasis [38].
Previous studies have found that it is also involved in con-
trolling cell size [39] as well as biotin uptake and biosyn-
thesis, nitrogen assimilation and purine biosynthesis[40].
Using joint data clustering, two transcriptional modules
separately detected Sum1. SUM1 is required for middle
sporulation element-mediated repression during meiotic
development in S. cerevisiae [32].

Amino acid metabolism
A single transcriptional module involved in the biological
process of amino acid metabolism was detected using
expression data exclusively. This ten gene Gcn4-regulated
module could not be further specifically annotated. In
contrast, joint data clustering identified a transcriptional
module that was significantly associated with methionine
biosynthesis (cluster 2 in Figure 8). Genes in this module
were cell cycle regulated and had increased expression in
the S/G2 transition (Figure 7). This "MET" cluster has sim-
ilarly been observed using microarrays to study S. cerevi-
siae cell cycle-regulated genes[41]. In addition to Gcn4,
the primary regulator of the transcriptional response to
amino acid starvation, joint data clustering identified
Met4, Met31, Cbf1 and Ino4 (Figure 8). Met4 is responsi-
ble for the regulation of the sulfur amino acid pathway
and requires different combinations of auxiliary factors
including Met31 and Cbf1. In the Primig sporulation
dataset [23], genes in the cluster associated with methio-
nine biosynthesis show a derepression early in the sporu-
lation process prior to sporulation clusters associated with

ROC curves comparing the functional coherence of TMs constructed by GRAM and ECIM using the combined sporu-lation and cell-cycle gene expression dataset and the ChIP-chip data of Lee, 2002 with Gene Ontologies as gold stand-ardFigure 5
ROC curves comparing the functional coherence of TMs 
constructed by GRAM and ECIM using the combined sporu-
lation and cell-cycle gene expression dataset and the ChIP-
chip data of Lee, 2002 with Gene Ontologies as gold stand-
ard.
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spore wall assembly. Ino4 is required for derepression of
inositol-choline-regulated genes involved in phospholi-
pid synthesis. Previous work has shown that the comple-
tion of sporulation requires inositol [37].

Protein biosynthesis
Three clusters associated with the biological processes of
rRNA processing and metabolism, RNA processing and
ribosomal gene expression, and mitochondrial ribosomal
protein metabolism were detected using expression data
exclusively. However, only one transcriptional module
was identified, consisting of the regulators Fhl1, Rap1 and
Yap5. This same cluster was identified using joint data
clustering (cluster 10) and two additional regulators were
identified; Met4 and Pdr1. Patterns identified in both
sporulation and cell cycle datasets suggested that genes
regulated by this module were upregulated in G1- and S-
phases and/or early in SK1 sporulation. The forkhead-like
transcription factor Fhl1 plays a key role in the control of
rRNA processing [42]. Rap1, in its role as a positive regu-
lator, activates a number of ribosomal proteins [43]. Yap5

is a bZIP protein, shown to be regulated at the G1/S tran-
sition [44]. Pdr1 is a master drug regulator involved in the
recruitment of other zinc cluster proteins to pleiotropic
drug resistance elements to modulate the regulation of
multidrug resistance genes [45]. Met4, also identified
above in the amino acid metabolism transcriptional mod-
ule category, is a transcription factor involved in the regu-
lation of the sulfur amino acid pathway.

The second transcriptional module involved in the bio-
logical process of rRNA processing and metabolism (clus-
ter 5) was identified using joint data clustering and
consisted of three additional regulators; Arg80, Hap3 and
Rcs1. Patterns identified in the Cho cell cycle dataset [24]
suggested that genes regulated by this module were upreg-
ulated in S-and G2-phases. The ReMoDiscovery algorithm
similarly identified Arg80 associated with ribosome bio-
genesis [11], a transcription factor involved in regulation
of arginine-responsive genes. Likewise, the GRAM algo-
rithm identified Rcs1 associated with protein synthesis
[10]. Rcs1, also identified above in the sporulation tran-
scriptional module category, is a transcription factor
involved in a variety of different processes, including iron
homeostasis, control of cell size, biotin biosynthesis,
nitrogen assimilation and purine biosynthesis. Hap3 is a
subunit of the CCAAT-binding factor (CBF), which acti-
vates genes required for respiratory metabolism; the Hap2
and Hap3 subunits of CBF are also required for optimal
expression of ASN1, an asparagine synthase [46].

Cell cycle
Two transcriptional modules involved in the biological
processes of chromatin cohesion and DNA repair and G2/
M cell cycle transition were detected using expression data
exclusively. Joint data clustering also identified these two
modules (clusters 3 and 8), but found several more regu-
lators. In addition to Dot6, MATa1, Mbp1, Mcm1, Ndd1
and Swi6, the CSIMM algorithm identified Fkh2, Ino4
and Swi4. Further, two additional transcriptional mod-
ules associated with the biological processes of late-G1-
specific transcription (cluster 6) and cytokinesis (cluster
1) were detected (Figure 8) and included the regulators
Ace2, Ash1, Mbp1, Skn7, Stb1 and Swi4 as well as Fkh1,
Ino4 and Mcm1.

In diploid cells, MATa1 has been shown to interact with
another homeodomain protein, MATalpha2, and bind
DNA as a heterodimer to repress transcription of haploid-
specific genes [47]. Mbp1 is a DNA-binding protein that
forms the MBF complex with Swi6; MBF is a sequence-
specific transcription factor that regulates gene expression
during the G1/S transition of the cell cycle [48]. In addi-
tion to Mbp1, Swi6 has been shown to form the SBF com-
plex with the DNA-binding protein Swi4 to regulate
transcription at the G1/S transition [49]. The MBF and SBF

The distribution of TM sizes vs -log10 of FDR-adjusted p-val-ues calculated by Fisher's test for association between the membership in a TM and the most significantly over-repre-sented Gene OntologyFigure 6
The distribution of TM sizes vs -log10 of FDR-adjusted p-val-
ues calculated by Fisher's test for association between the 
membership in a TM and the most significantly over-repre-
sented Gene Ontology. The green line represents the statis-
tically significant cut-off of FDR<0.05. All points above the 
line represent statistically significant associations.
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complexes regulate late-G1-specific transcription.
Although Skn7 is required for induction of heat-shock
genes by oxidative stress [50], it has recently been shown
to associate with Mbp1, forming a transcription factor
independent of MBF that may be involved in the bud-
emergence process [51]. Stb1 binds to Swi6 and has a role
in the regulation of MBP-specific transcription [52].
Mcm1 has been shown to be required for the coordina-
tion of G2-specific transcription [53]. Ndd1 is essential for
the expression of a set of late-S-phase-specific genes [54].
Fkh1 and Fkh2 are transcription factors of the forkhead

family that regulate the cell cycle [55]. Ace2 has been
shown to activate the expression of early-G1-specific
genes [56]. Dot6 is a protein of unknown function
involved in telomeric silencing [57] and filamentation
[58]. Ino4, also identified above using joint expression
and binding data clustering in the amino acid metabolism
transcriptional module category, is a transcription factor
that regulated genes involved in phospholipid synthesis.
In diploid cells deprived of nitrogen, Ash1 has been
shown to be asymmetrically localized to the nuclei of
daughter cells during pseudohyphal growth [59].

Finally, the transcriptional coherence of the genes in these
TMs and associated regulators were assessed by calculat-
ing average correlations between expression levels of
genes in a TM and the expression levels of associated TFs
(Table 3). The statistical significance of these average cor-
relations (r) was assessed by calculating p-values based on
resampling-based null-distribution of average correla-
tions. Briefly, for each TM-TF pair a random set of genes of
the same size as the original TM was selected from the list
of all genes used in the analysis. The average correlation
between the expression levels of the TF and all genes in
such random set was calculated and compared to the
actual average correlation for this TM-TF pair. This was
repeated 2000 times. For r>0, one-sided p-value assessing
the statistical significance of r was calculated as the pro-
portion of times when r was larger than re-sampled aver-
age correlations. For r<0, one-sided p-value was calculated
as the proportion of times when r was smaller than re-
sampled average correlations. Two-sided p-values were
obtained by doubling the one-sided p-values and are
reported in Table 3. P-values that were equal to zero by
this calculations were set to the smallest observable non-
zero p-value (0.001). 23 out of 37 TM-TF pairs were signif-
icantly positively or negatively correlated (p-value< 0.05).
Expected number of pairs with p-value<0.05 under the
global null hypothesis that none of the TM-TF pairs were
correlated is less than 2. 15 out of 23 TFs were positively
correlated with respective TMs representing putative
inducers. 8 TM-TF pairs were negatively correlated impli-
cated potential repressors.

In this paper we utilized the ChIP-chip dataset of Lee et al
[6] instead of the newer ChIP-chip dataset[60]. The reason
for this was the "higher information density" in the Lee
dataset which has about 4000 statistically significant
binding events while the newer dataset has about 25%
more binding events for twice as many transcription fac-
tors examined. However, we did perform similar analysis
using the newer dataset for comparative reasons. ROC
curves resulting from this analysis (Figure S1 in the web
supplement, (see Additional file 1)) and TMs (Supple-
mentary Table 5, (see Additional file 6) were similar to the
ones discussed here.

Table 3: Average correlations between expression levels of 
genes in a TM and the expression levels of associated TFs.

Factor Mo
dul
e

Module description Corr
elatio

n 
with 

modu
le

P 
value 

of 
correl
ation

FKH1 1 Cell Cycle 0.53 0.001
MCM1 1 Cell Cycle 0.14 0.007
INO4 1 Cell Cycle 0.22 0.029
GCN4 2 Amio Acid Metabolism 0.09 0.539
CBF1 2 Amio Acid Metabolism 0.17 0.079
MET4 2 Amio Acid Metabolism 0.00 0.497
INO4 2 Amio Acid Metabolism 0.33 0.001
MET31 2 Amio Acid Metabolism -0.14 0.789
SWI4 3 Cell Cycle 0.01 0.689
MCM1 3 Cell Cycle 0.04 0.079
FKH2 3 Cell Cycle -0.24 0.001
INO4 3 Cell Cycle 0.48 0.001
NDD1 3 Cell Cycle 0.39 0.001
GLN3 4 Sporulation -0.21 0.001

YFL044C 4 Sporulation 0.09 0.6
RCS1 4 Sporulation -0.37 0.001
HAP3 5 Protein Biosynthesis 0.12 0.003
RCS1 5 Protein Biosynthesis -0.24 0.001

ARG80 5 Protein Biosynthesis 0.09 0.142
MBP1 6 Cell Cycle -0.02 0.858
SWI4 6 Cell Cycle 0.02 0.841
SKN7 6 Cell Cycle -0.12 0.882
ASH1 6 Cell Cycle 0.24 0.156
ACE2 6 Cell Cycle -0.13 0.003
SWI6 6 Cell Cycle 0.12 0.227
STB1 6 Cell Cycle 0.15 0.001
SUM1 7 Sporulation 0.23 0.001
PHO4 7 Sporulation 0.39 0.001
MBP1 8 Cell Cycle -0.29 0.001
DOT6 8 Cell Cycle 0.16 0.001
SWI4 8 Cell Cycle 0.32 0.001
SWI6 8 Cell Cycle 0.03 0.445
SUM1 9 Sporulation 0.26 0.001
PDR1 10 Protein Biosynthesis -0.18 0.001
MET4 10 Protein Biosynthesis 0.06 0.001
RAP1 10 Protein Biosynthesis -0.17 0.001
FHL1 10 Protein Biosynthesis 0.04 0.001
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Conclusion
We presented a novel probabilistic model and related
computational procedures for jointly modeling the gene
expression and TF binding data within the context specific
Bayesian infinite mixture framework. The algorithm iden-
tifies transcriptional modules consisting of groups of co-
regulated genes and TFs that regulate expression of genes
within such groups. The method does not require prior
knowledge of number of modules. We demonstrated the
improved functional coherence of TMs by analyzing real
world data. We also demonstrated that novel regulatory
relationship can be identified which would not be impli-
cated by either analyzing gene expression or binding data
separately. The new method also produced more func-
tionally coherent TMs than two alternative algorithms for
joint analysis of gene expression and binding data. In the
original publications, both of these algorithms were tested
on much larger expression datasets than we used here.
However, the functional coherence as measured by the
sensitivity and specificity of predicting the co-member-

ship in KEGG pathways remained significantly improved
for the ECIM algorithm in analyzing an order of magni-
tude larger dataset [28]. Furthermore, most of the expres-
sion datasets examining a specific biological process are
similar in size to datasets we used here and so the compar-
isons we made are very relevant.

Since there are no free parameters to adjust or tune during
clustering phase, users only need to provide the data and
the time consuming sampling process will go by itself,
then user can select or change either stringent or relaxed
criteria to search qualified gene group and corresponding
TFs immediately. The output will show results of the anal-
ysis in a familiar form without the need to completely
understand the mathematical/computational machinery
used. We believe that this is an appealing characteristic of
ECIM. The model presented here does not account for
combinatorial interactions of different TFs in regulating
expression. However, the modular nature of the model
allows straightforward incorporation of more precise

Heatmap of expression data and PBPs for highly specific TMs inferred by ECIM algorithm using the combined sporulation and cell-cycle gene expression dataset and Lee's ChIP-chip dataFigure 7
Heatmap of expression data and PBPs for highly specific TMs inferred by ECIM algorithm using the combined sporulation and 
cell-cycle gene expression dataset and Lee's ChIP-chip data. Each line in the heatmap represents a gene. Red-green heatmap 
represents gene expression levels in the three different gene expression datasets that were combined together in this analysis 
and each column represents one microarray. The yellow-blue heatmap represents Posterior Binding Probabilities for 29 most 
significant TFs with each column in the heatmap representing a TF. Colour-bar on the right of the heatmap depicts groupings of 
co-regulated genes into TMs and is denoted with the significantly correlated functional category.
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Transcriptional regulatory network based on TMs associated with 4 key biological processes implicated by the analysis, also depicted in Figure 7Figure 8
Transcriptional regulatory network based on TMs associated with 4 key biological processes implicated by the analysis, also 
depicted in Figure 7. A) TMs constructed with expression data only. B) TMs constructed using expression and binding data
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A) The joint probabilistic model for gene expression TF binding data B) The flow chart depicting the complete analysis flow for constructing TMs using ECIM algorithmFigure 9
A) The joint probabilistic model for gene expression TF binding data B) The flow chart depicting the complete analysis flow for 
constructing TMs using ECIM algorithm.
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models for ChIP-chip data which will most likely further
improve the performance of the method.

Methods
The probabilistic model and computational algorithm
Suppose that expression levels are measured for T genes
across M experimental conditions. If xim is the expression
level of gene i for experimental condition m, then xi = (xi1,
xi2, ..., xiM) denotes the complete expression profile for
gene i. Suppose further the ChIP-Chip experiments meas-
ured binding affinity of N TFs to promoters of each of T
genes. If pij is the p-value for rejecting the null-hypothesis
that TF j does not bind the promoter of gene i, we define
the "binding intensity" of TF j to promoter of gene i as yij
= log(pij)/log(pmin), where pmin is the minimum of all p-
values. yi = (yi1, yi2, ..., yiN) denotes the complete "binding
profile" for gene i. xi and yi jointly represent the expres-
sion-binding (EB) profile for gene i.

Each gene's EB profile can be viewed as being generated by
one out of Q different underlying EB patterns. Suppose
that ci is the classification variable indicating the EB pat-

tern that generates EB profile i. ci = q means that EB profile

i was generated by pattern q. A clustering structure indicat-
ing putative TMs is defined by a set of classification varia-
bles for all EB profiles C = (c1, c2, ..., cT). The expression

part of pattern q that generates profile i is represented by
the mean vector and the variance-covariance matrix of the

M-dimensional Gaussian random variable (µq, Σq). The

binding part of pattern q is N-dimensional vector bq = (bq1,

..., bqN), where bqj ∈ {0,1} and , specifying the

identity of the TF binding to promoters of genes in TM q
(bqj = 1 implicates that TF j is associated with genes in TM

q). The space of all possible associated TFs is augmented
by a "baseline" TF having p-value of 0.5 for all genes. This
allows certain expression patterns not to be associated
with any real TF.

Observed expression profiles of genes from the same TM
(i.e. generated by the same expression pattern) are
assumed to be a random sample from the same multivar-
iate Gaussian random variable (e.g. ci = q implies that xi
~NM(µq, Σq)). The binding profiles of genes associated
with TM q, {yi : ci = q}, are assumed to be observations
from the random variable with probability density func-
tion defined as

 where p(yij) = 2(yij) if bqj = 1 and p(yij) = 

2(1 - yij) if bqj = 0. (1)

The local structure of the expression and binding patterns
is specified by the Q × 2 matrix L(C) = (L1, ..., LQ), where
Lq1 = k1 if genes in TM q are placed in group k1 within the
expression context and Lq2 = k2 if genes in TM q are placed
in group k2 within the binding context.

Specification of the complete model
The probabilistic model describing the distribution of the
data (i.e. observed EB profiles (xi, yi)) is given in the form
of a Bayesian hierarchical model [61]. Dependencies
between various model parameters and the data are
defined by the Directed Acyclic Network [62] in Figure 9.
Nodes in the network represent random variables and arcs
define the independence structure of the joint probability
distribution function. An arc drawn between a node and a
dotted rectangle containing multiple nodes implies that it
is the parent node for all nodes within the rectangle.
Assuming that the probability distribution of any node is
independent of its non-descendants if values of the parent
nodes are given (Directed Markov Assumption), the joint
probability distribution of all parameters and data is given
by the product of the local probability distributions of
individual random variables given their parents.

p(X, Y, C, L, M, S, B, α, a, λ, τ, β, ϕ) = p(X|C, M, S) p(Y|C, 
B) p(C|α)p(S|β, ϕ) p(L|C, a)p(M|λ, 

τ)p(α)p(a)p(λ)p(τ)p(β)p(ϕ),

where M = {µ1, ..., µQ} and S = {Σ1, ..., ΣQ} are the set of
all mean vectors and variance-covariance matrices defin-
ing expression patterns, and B = {b1, ..., bq} is the set of
corresponding binding patterns. Due to the context-spe-
cificity, not all parameters defining EB patterns are
unique. That is, (µq, Σ q) = (µq', Σ q') whenever Lq1= Lq'1, and
bq = bq' whenever Lq2 = Lq'2.

As specified above, p(xi | ci = q, M, S) = fN (xi | µq, Σq), where
fN(.|µ,Σ) is the multivariate Gaussian probability distribu-
tion function with mean µ and variance-covariance matrix
Σ, and p(yi | ci = q, B) = fpA(yi | bq), where fPA(.|b) is the den-
sity function given binding vector b defined in Eq 1.

Prior distributions for the local TM assignments C and
context groupings L are defined following the infinite
mixtures approach that avoids the specification of the
"correct" number of groups of local clusters for each con-
text[17,18,21]. The prior distribution for C is defined by
specifying prior probabilities that a complete data vector
will be either placed in an already existing TM q,

bqj
j
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∑ =
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1
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, or that a new TM is created

, where C-i = (c1, c2,

..., ci-1, ci+1, ..., cT), n-i,q is the number of profiles generated

by EB pattern q without counting EB profile i, and α is the
hyper-parameter. Similarly, local structure priors are spec-
ified by the probability that expression or binding profiles
from TM q are further grouped together within the corre-
sponding context. The probability of assigning TM q to an
already existing group of TMs t within context f (f = 1 for
the expression context and 2 for the binding context), is

, where n-qft is the number of

TMs currently placed in local grouping t within context f
without counting TM q and a is the hyper-parameter. The
probability of assigning TM q to a new local group is

. Hyper-parameters a

and α are further modeled and estimated from the data
and don't have to be specified in the analysis[21,63]. Con-
ditional distributions for all other parameters in the
model given their parent nodes in the DAG are the same
as previously described [17,18,21] and are given in the
web supplement (see Addtional file 1).

The goal of the analysis is to estimate the posterior distri-
bution of parameters in the model given data p(C,L, M, S,
B, α, a, λ, τ, β, ϕ | X, Y) in the traditional sense of Bayesian
statistical analysis. More specifically, we are interested in
the marginal distribution of C, L and B given (X, Y)
obtained by integrating out all other parameters p(C, L,
B|X, Y) = ∫p(C, L, M, S, B, α, a, λ, τ, β, ϕ|X, Y)d(M, S, α, a,
λ, τ, β, ϕ|X, Y)

Fitting the model
The joint posterior distribution of all parameters in the
model given data is estimated using Gibbs sampler. Gibbs
sampler [22] is a general procedure for sampling observa-
tions from a multivariate distribution. It proceeds by iter-
atively drawing observations from complete conditional
distributions of all components given the current values
of all other components. Under mild condition, the distri-
bution of generated multivariate observations converges
to the target multivariate distribution. The Gibbs sampler
employed here is derived from previously described algo-
rithms for fitting infinite mixture models.

The posterior probability of placing EB profile i into an
existing TM q, given all other parameters is

, and the posterior probability of placing EB profile i into
new TM is

Similarly, the posterior probability of placing TM q within
the expression data context into an existing cluster of TMs
t is

 where

. and within the binding data context it is

. Posterior

probabilities of placing TMs into new clusters of TMs
within each context are similarly derived as for EB profile
classification variables C.

All other conditional posterior distributions are similar to
the simple infinite mixture models [21]. The Gibbs sam-
pler proceeds to sample first EB profile classification vari-
ables C, then local groupings of TMs within the expression
and binding contexts C, and then the rest of the parame-
ters in the model. To alleviate the problem of "slow mix-
ing", we apply heuristic annealing adjustment [18,21].
Previously, we demonstrated that such modifications pre-
serve the topology of the posterior distribution of cluster-
ings [18]. TMs are then formed based on the marginal
posterior distributions of the classification variables C
and L(C). Summarizing the posterior distribution of C
and L(C) generated by the Gibbs sampler is generally a
non-trivial problem due to the label switching[64,65]. We
circumvent this problem by summarizing posterior distri-
butions of C and L(C) in terms of Posterior Pairwise Prob-
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(PBPs). Given the sequence of parameters (Cg, Lg, Bg) after
B burn in iterations, g = B + 1, ..., G, generated by the
Gibbs sampler, for each pair of genes, PPP is the propor-
tion of Gibbs samples after burn-in in which the two
genes are placed in the same TM. For each gene-TF pair,
PBP is the proportion of Gibbs samples after burn-in in
which the specific TF is associated with the TM that con-
tains the specific gene.
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Inferring transcription factors from PBP and binding p-
value
Once we select gene clusters based on average PPP dis-
tance and proper Gene Ontology annotations we can infer
associated TFs by either PBP or binding p-values. The first
method transformed binding p-value to a boolean value
based on the p-value cut-off threshold (0.001). Each TF
was then examined to determine if it was significantly
bound to the promoters of the gene cluster using a Fisher
exact test (p-value <= 0.005). The second method calcu-
lated the average PBP between gene clusters and each TF.
Those TFs with PBP >= 0.1 were considered significant.
The selection of thresholds for significance is established
empirically to balance the sensitivity and specificity of
candidate TFs. This is the same cut-off threshold as used in
the original publication [6]. The PBP threshold was cho-
sen by examining the distribution of all PBPs to select the
cut-off with pretty much the same level of specificity that
was achieved by the p-value cut-off. Cluster size of 10 was
somewhat ad-hoc cut-off aimed at getting reasonable level
of statistical power to detect significant Gene Ontologies
correlating with TMs.

It is important to emphasize that ROC curves presented
before are completely independent of these threshold
selections. These thresholds are only used when finally
constructing TM's based on the posterior distribution gen-
erated by the Gibbs sampler. ROC's are designed to sys-
tematically compare true and false positive results using
all possible ways to automatically construct TM's from the
Gibbs sampler output.
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