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Abstract
We present and validate a novel diffusion tensor imaging (DTI) approach for segmenting the human
whole-brain into partitions representing grey matter (GM), white matter (WM) and cerebrospinal
fluid (CSF). The approach utilizes the contrast among tissue types in the DTI anisotropy vs.
diffusivity rotational invariant space. The DTI-based whole-brain GM and WM fractions (GMf and
WMf) are contrasted with the fractions obtained from conventional magnetic resonance imaging
(cMRI) tissue segmentation (or clustering) methods that utilized dual echo (proton density-weighted
(PDw), and spin-spin relaxation-weighted (T2w) contrast, in addition to spin-lattice relaxation
weighted (T1w) contrasts acquired in the same imaging session and covering the same volume. In
addition to good correspondence with cMRI estimates of brain volume, the DTI-based accurately
depicts expected age vs. WM and GM volume-to-total intracranial brain volume percentage trends
on the rapidly developing brains of a cohort of 29 children (6–18 years). This approach promises to
extend DTI utility to both micro and macrostructural aspects of tissue organization.
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Introduction
Diffusion tensor imaging (DTI) provides noninvasive orientation based tissue contrast
mechanisms and complements relaxation based conventional MRI (cMRI) methods. DTI scalar
and orientation maps can provide information about the tissue microstructural integrity in both
health and disease. The DTI-derived rotational invariant metrics, including the local tissue
eigenvalues and the corresponding anisotropy indices and mean diffusivity, have been utilized
in several applications in clinical psychology, neuropsychiatry, neurology, and radiology
(Pierpaoli et al, 1996; see Hasan, 2006 for extensive review of literature). In particular, DTI
applications to the developing child brain in health and disease offers a unique opportunity to
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understand the organization of the brain during transition to adolescence and adulthood (Simon
et al., 2005). Despite known limitations, at the current stage of DTI technology it seems that
echo-planar imaging (EPI) is the mainstay in multidimeniosnal MRI acquisitions that include
diffusion-weighted imaging (DWI) and its DTI extension, relaxometry, functional and
perfusion MRI (Le Bihan et al., 1995). EPI time-efficiency, motion insensitivity, reduced
specific absorption rates (SAR) and recent improvements (Bammer et al., 2002;Wang et al.
2005; Jaerman et al., 2005) make it attractive for mapping brain-structure and function
relations. A typical whole-brain high spatial and angular resolution DTI acquisition can be
accomplished in under 7 minutes at 3.0 T. Advances in high field technology, parallel imaging,
novel coil design and image quality improvements (gradient hardware) promise to make DTI
extremely useful for imaging neonates, infants, children and the elderly in both health and
disease where exam time is crucial (Dubois et al., 2006; Gupta et. al., 2005; Maas et al., 2005;
Mckinstry et al., 2002).

The application of conventional MRI contrast methods to brain tissue segmentation is a well-
established set of procedures that provides regional (Shaw et al., 2006;Sowell et al. 2003) or
global surrogate markers of development (Castellanos, et al. 2002;Giedd et al.
1999;Matsuzawa et al. 2001;De Bellis, 2001), natural aging (Courchesne et al., 2000;Good et
al. 2001;Sowell et al., 2003; see Table 1), and their interactions with neurodevelopmental and
neurodegenerative pathologies (Bartzokis et al., 2002;Brunetti et al., 2000;Castellanos et al.,
2002;Eliez et al., 2001;Prinster et al., 2006;Simon et al. 2005; Zhang and Sejnowski, 2005;
Wilde et al., 2005). To attain soft brain tissue segmentation, multispectral data volumes are
acquired in the same session and coregistered to maximize the information content and
seperability of tissue clusters (Pham et al, 2000;Good et al., 2001). Tissue segmentation using
cMRI requires radio frequency field inhomogeniety correction of the masked and co-registered
volumes (Rajapakse et al., 1996a;Good et al., 2001; see Table 1). MRI contrast-to-noise ratio
per unit scanning time between tissue types reflects a complex interplay and compromise
between intrinsic tissue and extrinsic parameters (Le Bihan, 1995; Conturro et al., 1995).
However, confounding variables such as age can make cMRI protocols harder to maintain if
a wide age span is included (Chard et al. 2002;Guttmann et al, 1998; Inglese and Ge 2003;
Matsuzawa et al., 2001).

There are many published works on the natural aging of the human brain. Due to the use of
continuously improving acquisition, spatio-temporal parameters and processing paradigms, it
is noteworthy that there are discrepancies in the published works on the developing healthy
brain using cMRI (see Table 1). Comparison across these studies can be difficult as the brain
coverage may vary and many studies have used different slice thickness/skip and acquisition
parameters. Nonetheless, these studies consistently document age-related changes in the
regional tissue composition of the brain. In general, to account for variability in the healthy
and normal human brain size due to skull size and gender, it is widely recommended to scale
the absolute volume of tissues with respect to the intracranial volume (ICV) (Good et al.,
2001;Rajapakse et al., 1996a,b). For example, there are at least two major cross-sectional
studies that covered the entire human life span and provided consistent estimates of the trends
observed in the developing human brain from childhood till late adulthood (Courchesne et al.,
2000;Sowell et al., 2003). Consistent with other reports (see Table 1), the whole-brain grey
matter fraction (GMf) decreases with age and white matter fractions (WMf) increases during
childhood, reflecting the continued myelination and axonal elimination or caliber size changes
with age (see Table 1 for more details). However, as Table 1 shows there is considerable
variability in the tissue fractions yielded by the cMRI methods, which undoubtedly due to
variations in segmentation procedures, imaging acquisition parameters and other factors (see
Table 1).
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The application of DTI contrast to soft brain tissue clustering was initially described by
Pierpaoli et. al. (1996). More recently, DTI methods have been applied to segment the thalamic
nuclei (Wiegell et al. 2003), the thalamocortical projections (Behrens et al., 2003), the fetal
brain (Maas et al. 2004), and the human corpus callosum (Hasan, 2006). Many recent DTI-
based clustering strategies have also been described (Lenglet et al. 2006;Liu et al. 2006;Wang
and Vemuri, 2005). The incorporation and fusion of cMRI contrasted maps, DWI, DTI-derived
metrics “mean diffusivity and anisotropy” in tissue segmentation and applications have also
been described on humans (Jones et al. 1999; Hadjiprocopis et al., 2005) and rodent brains
(Ali et al., 2005;Carano et. al. 2000).

In this paper, we present and validate an application of whole-brain DTI to tissue segmentation
of the developing healthy human child and adolescent brains; thus, extending the benefits of
DTI to include the provision of regional and global atrophy micro- and macrostructural metrics
that can be used in combination with region-of-interest and fiber based tracking methods to
monitor the brain-behavior relations. We validate the DTI-based results against estimates from
cMRI and against age to determine if the expected patterns of developmental change emerge.

Materials and methods
Participants

The participants included 15 girls and 14 boys (age range, mean ± SE = 7–17, 11.4 ± 3.1 years);
25/29 children were right-handed. The male and female groups did not differ in age (p=0.35).
All children were primarily English-speaking, were identified as neurologically normal by
review of medical history and were medically stable at the time of the assessments. All scans
were read as “normal” by a board certified radiologist (LK). Written informed consent was
obtained from the guardians and adolescents and assent from the children participating in these
studies per the University of Texas Health Science Center at Houston institutional review board
regulations for the protection of human research subjects.

MRI Data Acquisition
We acquired whole-brain data using a Philips 3.0 T Intera system with a SENSE parallel
imaging receive head coil. The MRI protocol included (a) conventional MRI (3d spoiled
gradient-echo, field-of-view=240×240 mm2 (isotropic voxel size = 0.9375 mm) and (b) 2d
dual spin-echo images TE1/TE2/TR=10/90/5000 ms, in the axial plane (3mm slice thickness,
square field-of-view=240×240 mm2 @ 44 sections) (c) phase-sensitive MRI in the sagittal and
axial planes, in addition to a matching prescription of axial diffusion-encoded data as described
below.

Diffusion Tensor Acquisition
The diffusion-weighted data were acquired using a single-shot spin echo diffusion sensitized
echo-planar imaging (EPI) sequence with the balanced Icosa21 encoding scheme (Hasan,
2006;Hasan and Narayana 2003;2006), a diffusion sensitization of b=1000 sec.mm−2, a
repetition and echo times of TR=6.1 s, TE= 84 ms, respectively. EPI image distortion artifacts
were reduced by using a SENSE acceleration factor or k-space undersampling of R of two
(Bammer et. al., 2002;Hasan and Narayana, 2006;Jaermann et al., 2004). The slice thickness
was 3 mm with 44 axial slices covering the whole-brain (foramen magnum to vertex), a square
field-of-view=240×240 mm2, and an image matrix of 256×256 that matched the 3d-SPGR
(spoiled gradient or field echo) and 2d conventional MRI dual spin echo sequences described
above. The number of non-diffusion weighted or b~0 magnitude image averages was 8; in
addition, each encoding was repeated twice and magnitude-averaged to enhance the signal-to-
noise ratio (SNR) (Conturo et al., 1995); thus, effectively 50 images were acquired for each of
the 44 axial sections to cover the whole-brain. The total DTI acquisition time was
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approximately 7 minutes and resulted in SNR-independent DTI-metric estimation (in brain
parenchyma --grey and white matter tissue); SNR (b~0) ~ 50–60, SNR (DWI) ~ 20–30) which
gave reproducible results.

Conventional MRI Data Processing and Tissue Segmentation
The whole-brain cMRI data (i.e 3d SPGR and 2d dual-echo) were converted into ANALYZE
formatted volumes (T1w, PDw & T2w) and skull stripped using MRIcro software package
which has the brain extraction tool. Using SPM99 (see Good et al., 2001), the PDw and T2w
images were coregistered and resliced to their corresponding T1w volumes. Following
recommendations by Simon et al. (2005), the Cincinnati Children’s Hospital Medical Center,
(CCHMC, Cincinnati, OH) pediatric brain template was obtained and the T1w images were
spatially normalized to the same stereotactic space by registering each of the images to the
CCHMC template. Average PDw and T1w brain templates were created in SPM2 as suggested
by Good et al. (2001). Following the template formation, automated tissue segmentation was
performed on the PDw and T2w images in addition to the T1w using their respected templates.
Tissue volumes were calculated from the segmented volumes as suggested elsewhere (Good
et al, 2001;Simon et al., 2005).

DTI Data Processing
Although the DTI raw images were acquired with fat suppression, all image volumes were
semi-automatically stripped to remove non-parenchymal tissue. Diffusion-weighted data were
distortion-corrected using the mutual information maximization approach (Netsch and Van
Muisvinkel, 2004). The details of the DTI processing are provided elsewhere (Hasan, 2006).

DTI-derived Metrics—The DTI-derived rotationally-invariant metrics used are the parallel
(λ||=λ1) and transverse diffusivity (λt). The transverse (perpendicular) diffusivity was defined
as the mean of the minor (third) and medium (second) eigenvalues (λt = λ⊥ = (λ2+λ3)/2)
(Beaulieu, 2002;Hasan and Narayana, 2006;Song et al., 2005). The fractional anisotropy (FA)
and mean diffusivity (Dav) are computed using the eigenvalues as:

FA = 1
2

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

λ12 + λ2
2 + λ32

[1]

Dav =
λ1 + λ2 + λ3

3 =
λ∥+ 2 × λ⊥

3 [2]

Notice that FA is scale-independent (i.e. FA(cλ1; cλ2 cλ3) = FA). The apparent diffusivities
are generally estimated by log-linear algebraic transformations (Basser et al., 1994) or by the
moments of the log-transformed apparent diffusion coefficients (Ackerman, 2003;Arfanakis
et al, 2002;Frank, 2001;Hasan and Narayana, 2003). This log-linear decoupling of intensity
makes anisotropy indices more immune to local intensity modulations due RF field excitation
inhomogenieties (Bammer et al., 2002).

Region-of-Interest and DTI Feature Space Formation
The regions-of-interest derived from the analysis represented 50 “normally appearing” white
matter structures, grey matter structures and ventricular CSF. The structures included the right-
left (contralateral) caudate head, putamen, internal capsule (anterior, external, posterior limb),
corpus callosum segments (see Figure 1), corticospinal tract, forceps minor and major, inferior
and superior longitudinal fasciculi and arcuate fasciculus and other grey (cortical,
hippocampal) and white matter structures (cerebellar, peduncular). The compact white matter
structures belonged to three major categories: commissural, association, and projection fibers
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that are involved in inter and intra-hemispheric communication. The ROI placement and fiber
tracking procedures were done by trained raters and used anatomical landmarks from the
conventional MRI sets (sagittal phase-sensitive inversion recovery). The ROI placement
procedure was supervised by a radiologist and used a sophisticated three-dimensional system
that fused DTI maps with conventional high resolution anatomical MRI (Hasan, 2006); this
procedure was shown to help reduce partial averaging artifacts due to CSF. From these ROIs,
a feature space was created to determine the tissue classification thresholds (see Figure 1).

DTI based Tissue Segmentation
The collected ROI DTI metrics and their corresponding errors were further used in a
multidimensional supervised and trained feature space initiated clustering procedure to
segment the whole-brain (cerebrum, brain stem and cerebellum) tissue into three tissue types:
white matter, grey matter and cerebrospinal fluid (CSF). The method uses the contrast in FA
maps between CSF, white matter, and grey matter and the cluster separability and
discriminability of white matter and grey matter based on the principal diffusivity indices. The
CSF was segmented based on its high diffusivity and low anisotropy (Pierpaoli et al.,
1996;Hasan, 2006).

Statistical analysis
Group mean comparisons were made using the t-test for unpaired groups: within group
comparisons were conducted using paired t-tests. Alpha levels were adjusted for the number
of dependent univariate tests M=3 (GM, WM & CSF) (p < 0.05/M). Correlations with age were
based on the Pearson coefficient (Glanttz, 2002; Howell, 2006). For reproducibility studies on
the same rater, same subjects, and SNR measurements we have used the intraclass indices
(ANOVA), paired student t-test and the Bland-Altman bias analysis as described elsewhere
(Glantz 2002;Hasan, 2006). Meta statistical analyses of published reports were conducted as
described elsewhere (Hedges, 1985;Hunter and Schmidt, 2004)

Data Quality and Reproducibility
Since the data from all healthy control children were collected over a one-year span at high
SNR, we collected, using identical protocols a database of water phantom measurements,
healthy adult controls to assure the field uniformity and stability of the MRI scanner. The
diffusion encoding (Icosa21b) provided three levels of SNR and hence the SNR dependence
of the DTI-metrics and estimates (fiber tracks, group comparisons, correlations) reported in
this work were also studied on all subjects. The DTI feature space generated by carefully placed
ROIs was invariant to rating as judged by the intraclass correlation coefficient.

Results
Illustration of the DTI based feature Space

Figure 1 illustrates the formation of the tissue clustering borders using the FA vs. mean
diffusivity space. We have also included results from the entire spherical water phantom
measurements acquired using the same DTI protocol over the time span of the brain studies.
Notice the stability and reproducibility of our studies as judged by the insignificant spread of
water phantom DTI-metric measurements over a one year span. The GM, WM and CSF are
separable using this two dimensional feature space at the selected high SNR and spatial
resolution working levels.

Comparison of DTI segmentation with cMRI methods
Figure 2 shows a group mean comparison of the DTI results and cMRI results on all healthy
controls. Notice that although the approaches yielded roughly comparable estimates, the
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differences are statistically significant (p<0.01) using post-hoc paired comparisons (see Table
2 for more quantitative details). However, both the DTI and cMRI methods gave group means
comparable consistent with published results on children (see Table 1). The DTI measured
volume tend to be higher for GM and lower for WM but are largely consistent with many of
the studies on children listed in Table 1, yielding a GMf of ~ 0.6. Our results are particularly
convergent with more recent studies (e.g. Sowell et al. 2003;Castellanos et al. 2002;De Bellis,
2001).

The cMRI methods were generally less sensitive to age variation compared to the DTI approach
(see Table 2 for detailed summary and comparisons). To investigate the origin of the group
variance in the DTI based method we plotted the GMf, WMf, total intracranial volume and
GM-to-WM ratio as function of age (Figure 3). The DTI based group mean whole brain volume
partitions in cm3 (mL) were found to be (GMv = 913±81, WMv= 494± 68, CSFv= 97±27
cm3; N=29), group fraction means ± SE: (GMf = 60.7 ± 3.1, GMf = 32.9 ± 3.3, CSFf = 6.4 ±
1.7) and age trends: r(age, GMf; p) = (−0.48; 0.008), r(WMf, age;p) =0.35;0.06), r(CSFf, age;p)
= (0.145; 0.47). Notice the ability of the DTI approach to capture the predicted trends (see
Table 1 for an extensive comparison). The DTI-segmented whole-brain fractions (GMf, WMf
& CSf) and age trends were not significantly different between the age-matched males and
females in our sample. The cMRI published or non-DTI based (Table 1) GM-to-WM volume
ratios are shown in Figure 4 as function of the population mean age (see Table 1), and contrasted
with our own results. A meta analysis (Hedges 1985;Hunter and Schmidt 2004) of the 22 cMRI
published quantitative reports incorporating age of the population (Table 1) on the gray matter
fractions provided the regression equation GMf = 0.67 - 0.00187 * Average Age; r=-0.245,
p<0.03). Our DTI segmentation results are consistent with published results on both mean
values and rate of change of GMf and WMf (Rajapakse et al., 1996; see Table 1).

Discussion
In this report, we described and applied for the first time a novel automated approach for tissue
segmentation that is based on intrinsic rotationally-invariant and coregistered metrics derived
from the DTI data. The approach is based on deterministic and trained feature space (Figure
1) derived on a population of subjects using the same high SNR protocol. The simple approach
presented and used can also be adapted for more regionally driven segmentation and to
incorporate more established statistical and probabilistic segmentation methods (Ali et al.,
2005;Lenglet et al. 2006;Liu et al. 2006;Maas et al. 2004;Wang et al. 2005;Wiegell et al.
2003). We have validated the approach using a cohort of developing child and adolescent brains
and found that the whole brain GM and WM fractions derived and the corresponding rate of
change per unit year are comparable to published trends (see meta analysis results above, Table
1,2;Figs 2–4), and to estimates based on two alternative methods based on cMRI. The two
cMRI methods also yielded significantly different estimates of tissue fractions even though
they were based on the same brains, image acquisition sequences, and normalized to the same
template (see Table 2). Thus, the differences across methods cannot be attributed to the DTI
method alone. This DTI approach can be fused with cMRI methods or used, for example, as a
first pass segmentation to evaluate the needed thresholds for compact white matter fiber
tracking. We have tested this approach using optimally designed encoding schemes that were
shown to have minimal rotational variance and biases in the estimation of grey and white matter
DTI metrics (Hasan, 2006;Hasan and Narayana 2006). Our approach used the DTI-derived
eigenvalues and the corresponding scalar maps such as mean diffusivity and FA.

Since DTI requires high signal-to-noise ratios (SNR) and high spatial accuracy to distinguish
white-grey matter tissue boundaries, the estimation of anisotropy in grey matter, in particular,
is expected to be problematic (Conturo et. al., 1995;Hasan and Narayana, 2003;Le Bihan,
1995;Pierpaoli et al., 1996). This problem is mitigated by the use of rotationally-invariant
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encoding schemes at high SNR as implemented in this paper. The entire DTI scan took 7
minutes, which is tolerable by most children, young and older adults. In special situations when
imaging sedated children or uncooperative subjects, the optimized DTI data set would provide
both microstrutural and macrostructural information, so that the approach presented here offers
an efficient use of available scan time. The DTI data acquired did not undergo any further
special steps as all data were coregistered as part of the DTI processing pipeline. Additional
advantages of the DTI approach over multi-modal cMRI include (I) the use of high SNR
isotropically distributed and rotationally invariant diffusion encoding scheme (Hasan and
Narayana 2003;Pierpaoli et al., 1996), (II) the use of reduced image distortions following the
adoption of parallel imaging (Bammer et al., 2002; Jaerman et al., 2005), (III) the utility of
intrinsic tissue diffusion based contrast in the self-registered DTI maps, and (IV) the fact that
DTI processing involves decoupling of radio frequency inhomogeniety field related intensity
variations which are common in conventional MRI based approaches (Bammer et al.,
2002;Rajapakse et al., 1996a,b;Table 1 references). The whole-brain GM, WM and CSF
fractions found using this approach are consistent with published reports using validated
multispectral cMRI approaches on children, adolescents (Castellanos et al., 2002; Corchesne
et al. 2000; Giedd et al., 1999;Giedd et al, 2004;Simon et al., 2005;Sowell et al. 2003;Wilde
et al. 2005;Table 1) and the smooth transitions from birth to childhood (Matsuzawa et al.,
2001) and the universal transition to adulthood (Ge et al., 2002; Ingelese and Ge 2004;
Corchesne et al. 2000; Sowell et al., 2003; see also Table 1).

GM/WM ratios across cMRI studies of children and adolescents show marked variability,
ranging from 1.23 to 2.65. Despite this variability, the DTI-based GM/WM ratio of our
normally developing sample was 1.88, which closely fit the age-adjusted regression line for
all studies and provided further support for the validity of our approach (see Fig. 4 and Table
2). In contrast to the cMRI segmentation solutions, the DTI volumetry metrics were sensitive
to age-related variation that reflects the dynamic progressive and regressive neural processes
regulating axonal and dendritic development and connectivity. This sensitivity represents a
significant advantage for studies of developmental changes in tissue microstructure and
macrostructure. DTI-based volumetry also has potential to enhance understanding of changes
in tissue composition in clinical populations due to interactions of developmental changes with
injury or disease processes

It is also noteworthy that the partial averaging in the voxel and SNR related biases in DTI can
be studied further as function of spin history preparation (CSF fluid, GM or WM attenuation),
encoding, slice thickness, or the b-factor. For example, the encoding scheme adopted in our
work (Icosa21b) can provide independent rotationally-invariant data sets (Icosa6 and Icosa15)
at different SNR values using the same data (Hasan and Narayana, 2003), and hence some
sensitivity analysis can be conducted to show the SNR performance of this approach both
regionally and globally. These studies will be reported in a future communication.
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Figure 1.
Illustration of the formation of the DTI metric (mean diffusivity vs. fractional anisotropy)
training feature space on all children. The scatter plot shows the FA vs. Dav two dimensional
space on 50 manually selected ROIs that span the whole-brain white matter fiber networks
(association, projection, and commissural), grey matter (cortical and basal ganglia) and
ventricular CSF.. For scanner temporal stability and quality assurance, the scatter plot also
includes the DTI (FA vs. Dav) results on the entire isotropic water phantom collected using the
same protocol over the time span of acquisition of the data on controls. Notice the ability to
classify the different tissue types in this space
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Figure 2.
Group comparison of three different approaches used in tissue segmentation of the whole-brain
(a) DTI based and (b) cMRI based using the 2d dual echo and (c) using the 3d spgr data sets.
The ANOVA tests and ad hoc follow-up paired comparisons indicated that the three methods
are comparable but differed significantly (p<0.01). The sources of the variability in the DTI
approach as function of age is analyzed in Figure 3.
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Figure 3.
The scatter plots and least squares linear regression fits of age vs. (a) GMf and (b) WMf as
obtained using the DTI-based tissue segmentation approach. The age vs. total intra cranial
volume and grey-to-white matter volume ratios are shown in c and d respectively. Notice (a)
the decrease in GMf, (b) increase in WMf, (c) the variability of the ICV due to variations in
head size and gender and (d) the global decrease in GM/WM ratio (or corresponding whole-
brain fractions) as function of age. The correlation coefficient and corresponding p values are
also shown.

Hasan et al. Page 14

Neuroimage. Author manuscript; available in PMC 2008 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
A scatter plot showing the mean population age in years vs. the whole-brain GM/WM volume
ratio reported in 22 quantitative studies summarized in Table 1 on both children, young and
older adults. The least-squares linear regression fit predicts a steady decrease in the GM/WM
ratio vs. age relation (our study result is also shown; see also Figure 3d and the underlined
entire life span studies in Table 1).
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Table 1
Key Publications using MRI volumetry of the normal human whole-brain (WB)

Study Pop. N, Gender Age
Range
MN±SE
yrs

Method Regions GMf
WMf
CSFf
*100
(%)

GM WM CSF
(mL)

GM/
WM ratio ~

Age vs.
Tissue
Type
Trend (r
(p) /
slope)

Ben2006 89
39M
50F

11–76
43.6

1.5T
5mm×24 axial

WB NA 730
780

0.94
(NI)

GM ↓ 2.8
ml/yr
WM ↓ 1.1
ml/yr
CSF NA

Bru2000 55
24M
31F

16–76 1.5T
4mm×30 axial

WB 56
39
4

NA 1.43 GMf
−0.68
(0.00001)
↓
WMf not
significant
CSFf 0.66
(0.00001)
↑

Cas2002 139
56F
83M

4.5–19
yrs
(10.5
±3.2)

1.5T
1.5mm axial

Cereb 66
34

728±74
377±50

1.93 NA

Cav1996 30
15M
15F

7–11
9

1.5T
3.1mm × 60
axial

WB/Cereb 58
29
13

761
380
171

2.0 GM NA
WM ↑
CSF NA

Cha2002 27
13M
14F

23.2–55.2
36.1

1.5T
1.5mm×124
T1w axial

WB 55.5
26
17.5

750±56
356±32
237

2.1 NA

Cou2000 116
79M
37F

19m–80
yrs
21.4±20

1.5T
3mm axial

WB 59
29
12

805
400
150

2.12±0.5 GM ↓
−0.75
(0.001)
WM ↑↓
(peak ~
40–50 yrs)
CSF ↑
0.85
(0.001)

Eli2001 85
21M
64F

4–19
10.2±3.8

1.5T
5mm axial

WB 54
38
8

655±74
455±73
100±26

1.44 GM ↓
WM ↑
CSF ↑

Ge2002 54
22M
32F

20–86
46.8±19.3

1.5T
3mm 50sl
axial

WB 50
35
14

680±102
478±72
188

1.45 GMf ↓
−0.57
(0.0001)
WMf ↑↓
−0.35
(0.009)
CSFf NA

Giedd1999 145
89M
56F

4.2–21.6 1.5T
1.5mm3daxial

WB 55
28
17

730
380
225

1.92 GM NA
WM ↑
12.4%
CSF NA

Giedd2004 161
95M
66F

4.2–21.6 n/a Cereb NA 727
383

1.90 GM ↓
WM ↑
CSF NA

Good2001 465
265M
200F

17–79 2.0T
1.5mm×120
sagmp-rage

WB 48
26
25

788
424
399

1.85 GM ↓
R²=0.48
WM ↑↓
R²=0.33
CSF ↑
R²=0.38

Gur1999 80
40M
40F

18–45
26±5.6

1.5T
5mm axial

WB 53
39
8

663
483
102

1.37 GM ↓
−0.26
(0.01)
WM NA
CSF NA

Gut1998 72
22M
50F

18–81 1.5T
3mm Dual
axial

WB 47
36
11

1.31 GM ↓
−0.44
(0.46)
WM ↓
−0.084
(0.07)
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Study Pop. N, Gender Age
Range
MN±SE
yrs

Method Regions GMf
WMf
CSFf
*100
(%)

GM WM CSF
(mL)

GM/
WM ratio ~

Age vs.
Tissue
Type
Trend (r
(p) /
slope)
CSF ↑
0.996
(0.0003)

Jer2001 78
37M
41F

30–99
64±17.4

1.5T
4mm coronal

Cereb NA NA NA GM r =
−0.53
(0.001)
WM r = −
0.63
(0.001)
CSF r =
0.74
(0.001)

Mat2001 34
17M17F

1m–26yrs 1.5T
1mm×155
axial

WB 55
31
14

675
375
175

1.8 GM ~↑
WM ↑
CSF~↑

Nop2000 84
42M
42F

19–31
23.3±2.2

1.5T
2mm coronal

WB
(no
cerebellum)

55
38
7

708
483
84.5

1.47 NA

Pfe1994 161 3m-70yrs NA WB NA NA 2.0 GM ↓ 0.7
(mL/yr)
WM ↑,
CSF ↑ 0.6

Quar2003 54
22M
32F

16–70
38.5
±13.1

1.5T
4mm axial

WB 53%
38%
9%

NA 1.41 GM ↓
−0.43
(0.001)
WM no
change
CSF ↑
0.47
(0.001)

Raj1996b 105
56M
49F

4–18
11.4±3.5

1.5T
1.5mm×124
axial

WB
Shelling
No CS F

54
44

NA 1.23 GM ↓
WM ↑

Sim2005 18
11M
7F

7.5–14.2
10.4±2

1.5T
1mm×160
sag;mp-rage

WB 56
28
16

763
379
223

2.01 NA

Sow2003 176
86F
90M

7–87 yrs
32±22

1.5T
1.2mm×124
axial

WB 58
32
10

825
460
150

1.79 GM ↓
WM ↑↓
peak ~
40–50 yrs
CSF ↑

Tede2005 104 20–50 1 T
4mm×30 axial

53
35
12

1.51 NA

Wil2005 16
8M
8F

9–16.4
12.8±2.4

1.5T
1mm T1w
1.5mm T2w
sagittal

WB 69
25
6

884±77
333±71
72±33

2.65 NA

This Study 29
14M,15F
25R/4L

7.2–16.7
11.4±3.1
med=11.4

3.0T
3mm×44
DTI-epi

WB 61
±31
33
±3.3
6
±1.7

913±81.4
494±68
97±27

1.88±0.26 GM ↓
−0.48
(0.008)
WM ↑ 0.35
(0.06)
CSF 0.17
(0.38)

*
Data reported from healthy control human brains. Studies are listed alphabetically by leading author last name and year. Underlined studies covered the

entire human life span. The up and down arrows summarize the reported trends; the up-down arrows indicate a parabolic (rise-plateau and decay trends).

M=males; F=females, m=month, yrs=years; GM=grey matter, WM=white matter; WB=whole brain, mL= cm3; NA=not available; NI=not included in
the group mean vs. age GM/WM regression in Fig 4.)
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Table 2
Detailed group mean, age correlations and rate of change comparisons between the three methods used

N=28 cMRI-2d Dual Echo Method 1 cMRI-3d SPGR Method 2 DTI-segmentation Method 3
μ±σ (GMf ) p Group Means paired
t-test

0.5838 ± 0.0178
p(1,3)=0.001

0.6169 ± 0.0174
p(1,2)<1e-5

0.6074 ± 0.0305
p(2,3)=0.10

μ±σ (WMf) 0.3424±0.0198
p(1,3)= 0.07

0.3281± 0.0131
p(1,2)= 0.0005

0.3291 ± 0.0323
p(2,3)= 0.87

μ±σ (GM/WM) 1.7131 ± 0.1447
p(1,3)= 0.009

1.8847 ± 0.1130
p(1,2) < 1e-5

1.8696 ± 0.2609
p(2,3)= 0.76

r (GMf, age)& p −0.1916 (0.33)
p(1,3)=0.21

−0.2234(0.25)
p(1,2)= 0.91

−0.4969(0.007)
p(2,3)= 0.26

r (WMf, age) & p 0.1294(0.51)
p(1,3)=0.28

0.2076(0.29)
p(1,2)=0.78

0.4088(0.03)
p(2,3)=0.43

r (GM/WM) & p −0.1532(0.44
) p(1,3)=0.18

−0.2424(0.21)
p(1,2)=0.74

−0.4899(0.008)
p(2,3)= 0.31

β ± σ(β) (GMf, age) −0.0011 ± 0.0011
p(1,3)=0.06

−0.0013 ± 0.0011
p(1,2)=0.90

−0.005 ± 0.0017
p(2,3)=0.07

β ± σ(β) (WMf, age) 0.0008 ± 0.0013
p(1,3)= 0.28

0.0009 ± 0.0008
p(1,2)=0.95

0.0043 ± 0.0029
p(2,3)=0.26

β ± σ(β) (GM/WM) −0.0073 ± 0.0092
p(1,3)= 0.05

−0.0090±0.0071
p(1,2)=0.88

−0.0421 ± 0.0147
p(2,3)=0.05

• The subjects (N=28) are the same included in Figure 1 (one female subject 1/29 was excluded as the cMRI segmentation results were not
feasible)

• GMf=GM/ICV & WMf=WM/ICV (volume fractions to total intracranial volume are used to account for variability due to gender and brain
size at equal age).

• The correlation ( r ) is the Pearson coefficient. The slope β for the least squares regression (rate of change of y = GMf, WMf or GM/WM per

unit x = age in years can also be computed from r as β = r∗
σy
σx

 (x=age (μ±σ) = 11.2 ± 3.0; N=28)

• All possible post hoc paired comparisons between the three methods (1, 2&3) are two-tailed. The paired t-test is used for group comparisons
(1,3; 2,1 & 3,2).

• The age-correlation (r) and rate (β) comparisons are done as described in Glantz (2002) and Howell (2006).
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