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Abstract
This review article provides an overview of recent work in the modelling and analysis of recurrent
events arising in engineering, reliability, public health, biomedical, and other areas. Recurrent event
modelling possesses unique facets making it different and more difficult to handle than single event
settings. For instance, the impact of an increasing number of event occurrences needs to be taken
into account, the effects of covariates should be considered, potential association among the inter-
event times within a unit cannot be ignored, and the effects of performed interventions after each
event occurrence need to be factored in. A recent general class of models for recurrent events which
simultaneously accommodates these aspects is described. Statistical inference methods for this class
of models are presented and illustrated through applications to real data sets. Some existing open
research problems are described.
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1 Introduction
A decade ago in a Statistical Science article, Singpurwalla (1995) advocated the development,
adoption, and exploration of dynamic models in the theory and practice of reliability. He also
pinpointed that the use of stochastic processes in the modelling of component and system
failure times offers a rich environment to meaningfully capture dynamic operating conditions.
In this article, we review recent research developments in dynamic failure time models, both
in the context of stochastic modelling and inference concerning model parameters. Dynamic
models are not limited in applicability and relevance to the engineering and reliability areas.
They are also relevant in other fields such as public health, biomedicine, economics, sociology,
and politics. This is because in many studies in these varied areas, it is oftentimes of interest
to monitor the occurrences of an event. Such events could be the malfunctioning of a
mechanical or electronic system, encountering a bug in a computer software, outbreak of a
disease, occurrence of migraines, reoccurrence of a tumor, a drop of 200 points in the Dow
Jones industrial average during a trading day, commission of a criminal act in a city, serious
disagreements between a married couple, or the replacement of a cabinet minister/secretary in
an administration. These events recur and so it is of interest to describe their recurrence
behavior through a stochastic model. Supposing that such a model has excellent predictive
ability for event occurrences, then if event occurrences lead to drastic and/or negative
consequences, preventive interventions may be attempted to minimize damages, whereas if
they lead to beneficial and/or positive outcomes, certain actions may be performed to hasten
event occurrences.

It is because of performed interventions after event occurrences that dynamic models become
especially pertinent, since through such interventions, or sometimes noninterventions, the
stochastic structure governing future event occurrences is altered. This change in the
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mechanism governing the event occurrences could also be due to the induced change in the
structure function in a reliability setting governing the system of interest arising from an event
occurrence (cf., Hollander and Peña (1995); Kvam and Peña (2005);Peña and Slate (2005)).
Furthermore, since several events may occur within a unit, it is also important to consider the
association among the inter-event times which may arise because of unobserved random effects
or frailties for the unit. In addition, there is a need to take into account the potential impact of
environmental and other relevant covariates, possibly including the accumulated number of
event occurrences, which could affect future event occurrences.

In this review article we describe a flexible and general class of dynamic stochastic models for
event occurrences. This class of models was proposed by Peña and Hollander (2004). We also
discuss inference methods for this class of models as developed in Peña, Strawderman, and
Hollander (2001), Peña, Slate, and Gonzalez (2006), and Kvam and Peña (2005). We
demonstrate its applications to real data sets and indicate some open research problems.

2 Background and Notation
Rapid and general progress in event time modelling and inference benefited immensely through
the adoption of the framework of counting processes, martingales, and stochastic integration
as introduced in Aalen (1978) pioneering work. The present review article adopts this
mathematical framework. Excellent references for this framework are the monograph of Gill
(1980), and the books by Fleming and Harrington (1991) and Andersen, Borgan, Gill, and
Keiding (1993). We introduce in this section some notation and very minimal background in
order to help the reader in the sequel, but advise the reader to consult the afore-mentioned
references to gain an in-depth knowledge of this framework.

We denote by (Ω, F, P) the basic probability space on which all random entities are defined.
Since interest will be on times between event occurrences or on the times of event occurrences,
nonnegative-valued random variables will be of concern. For a random variable T with range
ℜ+ = [0, ∞), F(t) = FT(t) = P{T ≤ t} and S(t) = ST (t) = 1 − F (t) = P{T > t} will denote its
distribution and survivor (also called reliability) functions, respectively. The indicator function
of event A will be denoted by I{A}. The cumulative hazard function of T is defined according
to

Λ(t) = ΛT (t) = I {t ≥ 0}∫0t F (dw)
S(w − )

with the convention that S(w−) = limt↑w S(t) = P{T ≥ w} and ∫a
b ⋯ = ∫(a,b ⋯ . For a

nondecreasing function G : ℜ+ → ℜ+ with G(0) = 0 its product-integral over (0, t] is defined
via (cf., Gill and Johansen (1990), Andersen et al. (1993))
∏w=0

t 1 − G(dw) = limM→∞∏i=1
M 1 − (G(ti) − G(ti−1)) ,  where as M → ∞, the partition

0 = t0 < t1 < ··· < tM = t0 satisfies max1≤i≤M |ti − ti − 1| → 0. The survivor function in terms of
the cumulative hazard function becomes

S(t) = I {t < 0} + I {t ≥ 0} ∏
w=0

t
1 − Λ(dw) . (2.1)

For a discrete random variable T with jump points {tj}s, the hazard λj at tj is the conditional
probability that T = tj, given T ≥ tj, so Λ(t) = ∑{j: tj≤t} λj. If T is an absolutely continuous random
variable with density function f(t), its hazard rate function is λ(t) = f(t)/S(t) so
Λ(t) = ∫0

tλ(w)dw = − log S(t). The product-integral representation of S(t) according to
whether T is purely discrete or purely continuous is
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S(t) = ∏
w=0

t
1 − Λ(dw) = {Πt j≤t 1 − λ j if T is discrete,

exp { − ∫0tλ(w)dw} if T is continuous.
(2.2)

A benefit of using hazards or hazard rate functions in modelling is they provide qualitative
aspects of the event occurrence process as time progresses. For instance, if the hazard rate
function is increasing (decreasing) then this indicates that the event occurrences are increasing
(decreasing) as time increases, and thus we have the notion of increasing (decreasing) failure
rate [IFR (DFR)] distributions. For many years, it was the focus of theoretical reliability
research to deal with classes of distributions such as IFR, DFR, increasing (decreasing) failure
rate on average [IFRA (DFRA)], etc., specifically with regards to their closure properties under
certain reliability operations (cf., Barlow and Proschan (1981)).

In monitoring an experimental unit for the occurrence of a recurrent event, it is convenient and
advantageous to utilize a counting process {N(s), s ≥ 0}, where N(s) denotes the number of
times that the event has occurred over the interval [0, s]. The paths of this stochastic process
are step-functions with N(0) = 0 and with jumps of unity. If we represent the calendar times of
event occurrences by S1 < S2 < S3 < … with the convention that S0 = 0, then
N (s) = ∑ j=1

∞ I {S j ≤ s}. The inter-event times are denoted by Tj = Sj − Sj−1, j = 1, 2, …. In
specifying the stochastic characteristics of the event occurrence process, one either specifies
all the finite-dimensional distributions of the process {N(s)}, or specifies the joint distributions
of the Sjs or the Tjs. For example, a common specification for event occurrences is the
assumption of a homogeneous Poisson process (HPP) where the inter-event times Tjs are
independent and identically distributed exponential random variables with scale β. This is
equivalent to specifying that, for any s1 < s2 < … < sK, the random vector (N(s1), N(s2) − N
(s1), … , N(sK) − N(sK−1)) have independent components and with N(sj) − N(sj−1) having a
Poisson distribution with parameter β(sj − sj−1). From this specification, the finite-dimensional
distributions of (N(s1), N(s2), …, N(sK )) can be obtained.

An important concept in dynamic modelling is that of a history or a filtration, a family of σ-
fields F = {Fs : s ≥ 0} where Fs is a sub-α-field of F with Fs1 ⊆ Fs2 for every s1 < s2 and with
Fs = ∩h↓0Fs+h, a right-continuity property. One interprets Fs as all information that accrued
over [0, s]. When augmented in (Ω, F, P), we obtain the filtered probability space (Ω, F, F,
P). It is with respect to such a filtered probability space that a process {X(s) : s ≥ 0} is said to
be adapted [X(s) is measureable with respect to Fs, ∀s ≥ 0)]; is said to be a (sub)martingale
[adapted, E|X(s)| < ∞, and, ∀s, t ≥ 0, E{X(s+ t)|Fs}(≥) = X(s) almost surely]. Doob-Meyer’s
decomposition guarantees that for a submartingale Y = {Y (s) : s ≥ 0} there is a unique increasing
predictable [measurable with respect to the σ-field generated by adapted processes with left-
continuous paths] process A = {A(s) : s ≥ 0}, called the compensator, with A(0) = 0 such that
M = {M(s) = Y (s) − A(s) : s ≥ 0} is a martingale. Via Jensen’s Inequality, then for a square-
integrable martingale X = {X(s) : s ≥ 0}, there is a unique compensator process A = {A(s) : s
≥ 0} such that X2 − A is a martingale. This process A, denoted by X  = { X (s) : s ≥ 0}, is
called the predictable quadratic variation (PQV) process of X. A useful heuristic, though
somewhat imprecise, way of presenting the main properties of martingales and PQVs are
through the following differential forms. For a martingale M, E{dM(s)|Fs−} = 0, ∀s ≥ 0;
whereas, for the PQV M , E{dM2(s)|Fs−} = Var{dM(s)|Fs−} = d M  (s), ∀s ≥ 0.

For the HPP N = {N(s) : s ≥ 0} with rate β and with F = {Fs = σ{N(w), w ≤ s} : s ≥ 0}, N is a
submartingale since its paths are nondecreasing. Its compensator process is A = {A(s) = βs :
s ≥ 0}, so that M = {M(s) = N(s) − βs : s ≥ 0} is a martingale. Furthermore, since N(s) is Poisson-
distributed with rate βs, so that {M2(s) − A(s) = (N(s) − βs)2 − βs : s ≥ 0} is a martingale, the
PQV process of M is also A. Through the heuristic forms, we have E{dN(s)|Fs−} = dA(s), s ≥
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0: Since dN(s) ∈ {0, 1}, then we obtain the probabilistic expression P{dN(s) = 1|Fs−} = dA
(s), s ≥ 0: Analogously, Var{dN(s)|Fs−} = E{[dN(s) − dA(s)]2|Fs−} = dA(s), s ≥ 0: These
formulas hold for a general counting process {N(s) : s ≥ 0} with compensator process {A(s) :
s ≥ 0}. In essence, conditionally on Fs−, dN(s) has a Bernoulli distribution with success
probability dA(s). Over the interval [0, s], following Jacod, the likelihood function could be
written in product-integral form as

L (s) = ∏
w=0

s
{dA(w)}dN (w){1 − dA(w)}1−dN (w) = { ∏w=0

s
dA(w) dN (w)} exp { − A(s)}, (2.3)

with the last equality holding when A(·) has continuous paths.

Stochatic integrals play a crucial role in this stochastic process framework for event time
modelling. For a square-integrable martingale X = {X(s) : s ≥ 0} with PQV process X  = { X
(s) : s ≥ 0}, and for a bounded predictable process Y = {Y (s) : s ≥ 0}, the stochastic integral

of Y with respect to X, denoted by ∫YdX = {∫0
sY (w)dX (w) : s ≥ 0},  is well-defined. It is also

a square-integrable martingale with PQV process ∫YdX = {∫0
sY 2(w)d X (w) : s ≥ 0}. When

X is associated with a counting process N, that is, X = N − A, the paths of the stochastic integral
∫Y dX can be taken as pathwise Lebesgue-Stieltjes integrals.

Martingale theory also plays a major role in obtaining asymptotic properties of estimators as
first demonstrated in Aalen (1978),Gill (1980), and Andersen and Gill (1982). The main tools
used in asymptotic analysis are Lenglart’s inequality (cf., Lenglart (1977); Fleming and
Harrington (1991);Andersen et al. (1993)) which is used in proving consistency; Rebolledo
(1980) martingale central limit theorem (MCLT) (cf., Fleming and Harrington (1991);
Andersen et al. (1993)) which is used for obtaining weak convergence results. We refer the
reader to Fleming and Harrington (1991) and Andersen et al. (1993) for the in-depth theory
and applications of these modern tools in failure-time analysis.

3 Class of Dynamic Models
Let us now consider a unit being monitored over time for the occurrence of a recurrent event.
The monitoring period could be a fixed interval or it could be a random interval, and for our
purposes we denote this period by [0, τ], where τ is assumed to have some distribution G, which
may be degenerate. With a slight notational change from Section 2 we denote by N†(s) the
number of events that have occurred on or before time s, and by Y†(s) an indicator process
which equals 1 when the unit is still under observation at time s, 0 otherwise. With S0 = 0 and
Sj, j = 1, 2, … denoting the successive calendar times of event occurrences, and with Tj = Sj −
Sj−1, j = 1, 2, … being the inter-event or gap times, observe that

N †(s) = ∑
j=1

∞
I {S j ≤min (s, τ)} and Y †(s) = I {τ ≥ s}. (3.4)

Associated with the unit is a, possibly time-dependent, 1 × q covariate vector X = {X(s) : s ≥
0}. In reliability engineering studies, the components of this covariate vector could be related
to environmental or operating condition characteristics; in biomedical studies, they could be
blood pressure, treatment assigned, initial tumor size, etc.; in a sociological study of marital
disharmony, they could be length of marriage, family income level, number of children residing
with couple, ages of children, etc. Usually, after each event occurrence, some form of
intervention is applied or performed, such as replacing or repairing failed components in a
reliability system, reducing or increasing physical activity after a heart attack in a medical
setting. These interventions will typically impact the next occurrence of the event. There is
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furthermore recognition that for the unit the inter-event times are associated or correlated,
possibly because of unobserved random effects or so-called frailties. A pictorial representation
of these aspects is contained in Figure 1. Observe that because of the finiteness of the
monitoring period, which leads to a sum-quota accrual scheme, there will always be a right-
censored inter-event time. The observed number of event occurrences over [0, τ], K = N†(τ),
is also informative about the stochastic mechanism governing event occurrences. In fact, since
K = max {k : ∑ j=1

k T j ≤ τ} then, conditionally on (K, τ), the vector (T1, T2, …, TK) have
dependent components, even if at the outset T1, T2, … are independent.

Recognizing these different aspects in recurrent event settings, Peña and Hollander (2004)
proposed a general class of models that simultaneously incorporates all of these aspects. To
describe this class of models, we suppose that there is a filtration F = {Fs : s ≥ 0} such that for
each s ≥ 0, σ{(N†(v), Y†(v+), X(v+), ɛ(v+)) : v ≤ s} ⊆ Fs. We also assume that there exists an
unobservable positive random variable Z, called a frailty, which induces the correlation among
the inter-event times. The class of models of Peña and Hollander (2004) can now be described
in differential form via

P{dN (s) = 1 | Fs−, Z } = ZY †(s)λ0 ɛ(s) ρ N †(s − ); α ψ(X (s)β) ds, (3.5)

where λ0(·) is a baseline hazard rate function; ρ(·; ·) is a nonnegative function with ρ(0; ·) = 1
and with α being some parameter; ψ(·) is a nonnegative link function with β a q × 1 regression
parameter vector; and Z is a frailty variable. The at-risk process Y†(s) indicates that the
conditional probability of an event occurring becomes zero whenever the unit is not under
observation. Possible choices of the ρ(·; ·) and ψ(·) functions are ψ(k; α) = αk and ψ(w) = exp
(w), respectively. For the geometric choice of ρ(·; ·), if α > 1 the effect of accumulating event
occurrences is to accelerate event occurrences, whereas if α < 1 the event occurrences
decelerate, the latter situation appropriate in software debugging. The process ɛ(·) appearing
as argument in the baseline hazard rate function, called the effective age process, is predictable,
observable, nonnegative, and pathwise almost surely differentiable with derivative ɛ′(·). This
effective age process models the impact of performed interventions after each event occurrence.
A pictorial depiction of this effective age process is in Figure 2. In this plot, after the first event,
the performed intervention has the effect of reverting the unit to an effective age equal to the
age just before the event occurrence (called a minimal repair or intervention), while after the
second event, the performed intervention has the effect of reverting the effective age to that of
a new unit (hence this is called a perfect intervention or repair). After the third event, the
intervention was neither minimal nor perfect and it has the effect of re-starting the effective
age at a value between zero and that just before the event occurred; while for the fourth event,
the intervention was detrimental in that the re-starting effective age exceeded that just before
the event occurred.

The effective age process could occur in many forms, and the idea is this should be determined
in a dynamic fashion in conjunction with interventions that are performed. As such the
determination of this process should preferably be through consultations with experts of the
subject matter under consideration. Common forms of this effective age process are:

Minimal Intervention or Repair : ɛ(s) = s (3.6)

Perfect Intervention or Repair : ɛ(s) = s − S
N †(s−)

(3.7)

BBS Model : ɛ(s) = s − SΓη(s−)
(3.8)
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where in (3.8) with I1, I2, … being independent Bernoulli random variables with Ik having

success probability p(Sk) with p : ℜ+ → [0, 1], we define η(s) = ∑i=1
N †(s) Ii and Γ0 = 0, Γk =

min{j > Γk−1 : Ij = 1}, k = 1, 2, … Thus, in (3.8), ɛ(s) represents the time measured from s since
the last perfect repair. This effective age is from Block, Borges, and Savits (1985), whereas
when p(s) = p for some p ∈ [0, 1], we obtain the effective age process for the Brown and
Proschan (1983) minimal repair model. Clearly, the effective age functions (3.6) and (3.7) are
special cases of (3.8). Other effective age process that could be utilized are those associated
with the general repair model of Kijima (1989),Stadje and Zuckerman (1991),Baxter, Kijima,
and Tortorella (1996),Dorado, Hollander, and Sethuraman (1997) and Last and Szekli
(1998). See also Lindqvist (1999) and Lindqvist, Elvebakk, and Heggland (2003) for a review
of some of these models pertaining to repairable systems and Gonzalez, Peña, and Slate
(2005) for an effective age process suitable for cancer studies.

A crucial property arising from the intensity specification in (3.5) is it amounts to postulating
that, with

A†(s; Z, λ0( ⋅ ), α, β) = Z∫0sY †(w)λ0 ɛ(w) ρ N †(w − ); α ψ(X (w)β) dw, (3.9)

then, conditionally on Z, the process

{M †(s; Z, λ0( ⋅ ), α, β) = N †(s) − A†(s; Z, λ0( ⋅ ), α, β) : s ≥ 0} (3.10)

is a square-integrable martingale with PQV process A†(·; Z, λ0(·), α, β). The class of models is
general and flexible and subsumes many current models for recurrent events utilized in survival
analysis and reliability. In particular, it includes those of Jelinski and Moranda (1972),Gail,
Santner, and Brown (1980),Gill (1981),Prentice, Williams, and Peterson (1981),Lawless
(1987),Aalen and Husebye (1991),Wang and Chang (1999),Peña et al. (2001), and Kvam and
Peña (2005). We demonstrate the class of models via some concrete examples.

Example
The first example concerns a load-sharing K-component parallel system with identical
components. The recurrent event of interest is component failure and failed components are
not replaced. When a component fails, a redistribution of the system load occurs among the
remaining functioning components, and to model this system in a general way, we let α0 = 1
and α1, …, αK−1 be positive constants, referred to as load-share parameters. One possible
specification of these parameters is αk = K=(K − k), k = 0, 1, 2, …, K − 1, though they could
be unknown constants, possibly ordered. The hazard rate of event occurrence at calendar time
s, provided that the system is still under observation, is λ(s) = λ0(s)[K −N†(s−)]α N†(s−), where
λ0(·) is the common hazard rate function of each component and N†(s) is the number of
component failures observed on or before time s. This is a special case of the general class of
models with ɛ(s) = s, ρ(k; α1, …, αK−1) = [K − k]αk, and ψ(w) = 1. This is the equal load-sharing
model in Kvam and Peña (2005). More generally, this could accommodate environmental or
operating condition covariates for the system, and even an unobserved frailty component.

Example
Assume in a software reliability model that there are α bugs at the beginning of a debugging
process and the event of interest is encountering a bug. A possible model is these α bugs are
competing to be encountered, and if each of them has hazard rate of λ0(s) of being encountered
at time s, then the total hazard rate at time s of the software failing is λ0(s)α. Upon encountering
a bug at time S1, this bug is eliminated, thus decreasing the number of remaining bugs by one.
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The debugging process is then re-started at time just after S1 (assuming it takes zero time to
eliminate the bug, clearly an over-simplification). In general, suppose that just before calendar
time s, N†(s−) bugs have been removed, and the last bug was encountered at calendar time
SN†(s−). Then, the overall hazard of encountering a bug at calendar time s with s > SN†(s−) is
λ0(s − SN†(s−))[α − N†(s−)]. Thus, provided that the debugging process is still in progress at
time s, then the hazard of encountering a bug at time s is λ(s) = λ0(s − SN†(s−)) max[0, α −
N†(s−)]: Again, this is a special case of the general class of models with ɛ(s) = s− SN†(s−), a
consequence of the re-start of debugging process, ρ(k; α) = max{0, α−k}, and ψ(w) = 1. This
software debugging model is the model of Jelinski and Moranda (1972) and it was also
proposed by Gail et al. (1980) as a carcinogenesis model. See also Agustin and Peña (1999)
for another model in software debugging which is a special case of the general class of models.

Cox (1972) proportional hazards model is one of the most used models in biomedical and
public health settings. Extensions of this model have been used in recurrent event settings, and
Therneau and Grambsch (2000) discusses some of these Cox-based models such as the
independent increment model of Andersen and Gill (1982), the conditional model of Prentice
et al. (1981), and the marginal model of Wei, Lin, and Weissfeld (1989). The independent
increment model is a special case of the general class of models obtained by taking either ɛ
(s) = s or ɛ(s) = s − SN†(s−) with ρ(k; α) = 1 and ψ(w) = exp(w). The marginal model stratifies
according to the event number and assumes a Cox-type model for each of these strata, with the
jth inter-event time in the ith unit having intensity Yij(t) λ0j(t) exp{Xi(t)βj}, where Yij(t) equals
one until the occurrence of the jth event or when the unit is censored. The conditional model
is similar to the marginal model except that Yij(t) becomes one only after the (j & minus; 1)th
event has occurred.

4 Statistical Inference
The relevant parameters for the model in (3.5) are λ0(·), α, β, and the parameter associated with
the distribution of the frailty variable Z. A variety of forms for this frailty distribution is
possible, but we restrict to the case where Z has gamma distribution with mean one and variance
1/ξ. The parameter associated with G, the distribution of τ, is usually viewed as nuisance,
though in current joint research with Akim Adekpedjou, a PhD student at the University of
South Carolina, the situation where G is informative about the distributions of the inter-event
times is being explored.

Knowing the values of the model parameters is important because the model could be utilized
to predict future occurrences of the event, an important issue especially if an event occurrence
is detrimental. To gain knowledge about these parameters, a study is performed to produce
sample data which is the basis of inference about the parameters. We consider a study where
n independent units are observed and with the observables over (calendar) time [0, s*] denoted
by

DATAn(s * ) = { (Xi(v), Ni
†(v), Yi

†(v), ɛi(v)), v ≤ s * , i = 1, 2, … , n}. (4.11)

Observe that DATAn(s*) provides information about τis. More generally, we observe the
filtrations {(Fiv, v ≤ s*), i = 1, 2, …, n} or the overall filtration
F

s * = {Fv = ∨i=1
n Fiv,v ≤ s *}. The goals of statistical inference are to obtain point or interval

estimates and/or test hypotheses about model parameters, as well as predict the time of
occurrence of a future event, when DATAn(s*) or Fs* is available. We focus on the estimation
problem below, though we note that the prediction problem is of great practical importance.

Conditional on Z = (Z1; Z2, …, Zn), from (2.3) the likelihood process for (λ0(·); α, β) is
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L C(s; Z, λ0( ⋅ ), α, β) = ∏
i=1

n {Zi
Ni

†(s){ ∏v=0

s
Bi(v; λ0( ⋅ ), α, β) dNi

†(v)} ×

exp − Zi∫0sBi(v; λ0( ⋅ ), α, β)dv },
(4.12)

where Bi(v; λ0( ⋅ ), α, β) = Y i
†(v)λ0 εi(v) ρ N i

†(v − ); α ψ X i(v)β . Observe that the
likelihood process when the model does not involve any frailties is obtained from (4.12) by
setting Zi = 1; i = 1, 2, …, n, which is equivalent to letting ξ → ∞. The resulting no-frailty
likelihood process is

L (s; λ0( ⋅ ), α, β) = ∏
i=1

n {{ ∏v=0

s
Bi(v; λ0( ⋅ ), α, β) dNi

†(v)} exp − ∫0sBi(v; λ0( ⋅ ), α, β)dv }. (4.13)

This likelihood process is the basis of inference about (λ0(·), α, β) in the absence of frailties.
Going back to (4.12), by marginalizing over Z under the gamma frailty assumption, the
likelihood process for (λ0(·), α, β, ξ) becomes

L (s; λ0( ⋅ ), α, β, ξ) = ∏
i=1

n {( ξ
ξ + ∫0sBi(w; λ0( ⋅ ), α, β)dw )ξ

= ∏
v=0

s (Ni
†(v − ) + ξ)Bi(v; λ0( ⋅ ), α, β)

ξ + ∫0sBi(w; λ0( ⋅ ), α, β)dw

dNi
†(v)}. (4.14)

There are two possible specifications for the baseline hazard rate function λ0(·): parametric or
nonparametric. If parametrically specified then it is postulated to belong to some parametric
family of hazard rate functions, such as the Weibull or gamma families, that depends on an
unknown p×1 parameter vector θ. In this situation, a possible estimator of (θ, α, β, ξ), given
Fs*, is the maximum likelihood estimator (θ̂, α̂, β̂, ξ̂), the maximizer of the mapping (θ, α, β,
ξ) ↦ L(s*; λ0(·;θ), α, β, ξ). Stocker (2004) studied the finite-and large-sample properties, and
associated computational issues, of this parametric ML estimator in his dissertation research.
In particular, following the approach of Nielsen, Gill, Andersen, and Sorensen (1992) he
implemented an expectation-maximization (EM) algorithm (cf., Dempster, Laird, and Rubin
(1977)) for obtaining the ML estimate. In this EM implementation the frailty variates Zis are
viewed as missing and a variant of the no-frailty likelihood process in (4.13) is used for the
maximization step in this algorithm. We refer to Stocker (2004) for details of this computational
implementation. For large n, and under certain regularity conditions, it could also be shown
that (θ̂, α̂, β̂, ξ̂) is approximately multivariate normally distributed with mean (θ, α, β, ξ) and
covariance matrix 1

n I −1(θ̂, α̂, β̂, ξ̂), where I(θ, α, β, ξ) is the observed Fisher information
associated with the likelihood function L(s*; λ0(·;θ), α, β, ξ). That is, with Θ = (θ, α, β, ξ)t, I
(θ, α, β, ξ) = −{∂2/∂Θ∂Θt}l(s*; λ0(·;θ), α, β, ξ), where l(s; λ0(·;θ), α, β, ξ) is the log-likelihood
process given by

l(s; λ0( ⋅ ; θ), α, β, ξ) = ∑
i=1

n {ξ log ( ξ
ξ + ∫0sBi(w; λ0( ⋅ ; θ), α, β)dw ) +

∫0s log
(Ni

†(v − ) + ξ)Bi(v; λ0( ⋅ ; θ), α, β)

ξ + ∫0sBi(w; λ0( ⋅ ; θ), α, β)dw
dNi

†(v)}. (4.15)
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Tests of hypotheses and construction of confidence intervals about model parameters could be
developed using the asymptotic properties of the ML estimators. For small samples, they could
be based on their approximate sampling distributions obtained through computer-intensive
methods such as bootstrapping. It is usually the case that a parametric specification of λ0(·) is
more suitable in the reliability and engineering situations.

In biomedical and public health settings, it is typical to specify λ0(·) nonparametrically, that
is, to simply assume that λ0(·) belongs to the class of hazard rate functions with support [0, ∞).
This leads to a semiparametric model, with infinite-dimensional parameter λ0(·) and finite-
dimensional parameters (α, β, ξ). Inference for this semiparametric model was considered in
Peña et al. (2006). In this setting, interest is on the finite-dimensional parameters (α, β, ξ) and
the infinite-dimensional parameters Λ0( ⋅ ) = ∫0

⋅λ0(w)dw and its survivor function

S0( ⋅ ) = Πw=0
⋅ 1 − Λ0(dw) . A difficulty encountered in estimating Λ0(·) is that in the

intensity specification in (3.5), the argument of λ0(·) is the effective age ɛ(s), not s, and our
interest is on Λ0(t), t ≥ 0. This poses difficulties, especially in establishing asymptotic
properties, because the usual martingale approach as pioneered by Aalen (1978),Gill (1980),
and Andersen and Gill (1982) (see also Andersen et al. (1993) and Fleming and Harrington
(1991)) does not directly carry through. In the simple IID renewal setting where ɛ(s) = s −
SN†(s–), ρ(k; α) = 1, and ψ(w) = 1, Peña, Strawderman, and Hollander (2000) and Peña et al.
(2001), following ideas of Gill (1981) and Sellke (1988), implemented an approach using time-
transformations to obtain estimators of Λ0(·) and S0(·). In an indirect way, with partial use of
Lenglart's inequality and Rebolledo’s MCLT, they obtained asymptotic properties of these
estimators, such as their consistency and their weak convergence to Gaussian processes. This
approach in Peña et al. (2001) was also utilized in Peña et al. (2006) to obtain the estimators
of the model parameters in the more general model.

The idea behind this approach is to define the predictable (with respect to s for fixed t) doubly-
indexed process Ci(s; t) = I{ɛi(s) ≤ t}, i = 1, 2; …, n, which indicates whether at calendar time
s the unit's effective age is at most t. We then define the processes
N i(s, t) = ∫0

sCi(v, t)N i
†(dv); Ai(s, t) = ∫0

sCi(v, t)Ai
†(dv); and

M i(s, t) = N i(s, t) − Ai(s, t) = ∫0
sCi(v, t)M i

†(dv). Because for each t ≥ 0, Ci(·; t) is a
predictable and a {0, 1}-valued process, then Mi(·, t) is a square-integrable martingale with
PQV Ai(·, t). However, observe that for fixed s, Mi(s, ·) is not a martingale though it still satisfies
E{Mi(s, t)} = 0 for every t. The next step is to have an alternative expression for Ai(s, t) such
that Λ(·) appears with an argument of t instead of ɛi(v). With ɛij−1(v) = ɛi(v)I{Sij−1 < v ≤ Sij}
on I {Y i

†(v) = 0}, this is achieved as follows:

Ai(s, t; Λ0( ⋅ ), α, β) = ∫0sYi
†(v)ρ Ni

†(v − ); α ψ(Xi(v)β)I {ɛi(v) ≤ t}λ0 ɛi(v) dv

= ∑
j=1

Ni
†(s−)

∫sij−1

sij Yi
†(v)ρ Ni

†(v − ); α ψ(Xi(v)β)I {ɛij−1(v) ≤ t}λ0 ɛij−1(v) dv +

∫S
iNi

†(s−)

s Yi
†(v)ρ Ni

†(v − ); α ψ(Xi(v)β)I {ɛ
iNi

†(s−)
(v) ≤ t}λ0 ɛiNi

†(s−)
(v) dv.

(4.16)

Letting

ϕij−1(v; α, β) =
ρ Ni

†(v − ); α ψ(Xi(v)β)

ɛ ′ij−1(v)
I {Sij−1 < v ≤ Sij},
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and defining the new ‘at-risk’ process

Yi(s, t; α, β) = ∑
j=1

Ni
†(s−)

I {t ∈ (ɛij−1(Sij−1 + ), ɛij−1(Sij) }ϕij−1 ɛij−1
−1 (t); α, β +

I {t ∈ (ɛ
iNi

†(s−)
(S

iNi
†(s−)

+ ), ɛ
iNi

†(s−)
(s ∧ τi) }ϕ

iNi
†(s−)

ɛ
iNi

†(s−)
−1 (t); α, β ,

(4.17)

then, after a variable transformation w = ɛij−1(v) for each summand in (4.16), we obtain an
alternative form of Ai(s, t) given by Ai(s, t; Λ0( ⋅ ), α, β) = ∫0

tY i(s, w; α, β)Λ0(dw). The
utility of this alternative form is that Λ0(·) appears with the correct argument for estimating it.
If, for the moment, we assume that we know α and β, by virtue of the fact that Mi(s; t; α, β)
has zero mean, then using the idea of Aalen (1978), a method-of-moments ‘estimator; of
Λ0(t) is

Λ̂0(s * , t; α, β) = ∫0t I {S0(s * , w; α, β) > 0}
S0(s * , w; α, β) ∑

i=1

n
Ni(s * , dw), (4.18)

where S0(s, t) = ∑i=1
n Y i(s, t; α, β). This ‘estimator’ of Λ0(·) could be plugged into the

likelihood function over [0, s*] to obtain the profile likelihood of (α, β), given by

L P(s * ; α, β) = ∏
i=1

n
∏
j=1

Ni
†(s*) ρ( j − 1; α)ψ Xi(Sij)β

S0(s * , ɛi(Sij); α, β
dNi

†(sij). (4.19)

This profile likelihood is reminiscent of the partial likelihood of Cox (1972) and Andersen and
Gill (1982) for making inference about the finite-dimensional parameters in the Cox
proportional hazards model and the multiplicative intensity model. The estimator of (α, β),
denoted by (α̂, β̂) is the maximizer of the mapping (α, β) ↦ LP(s*; α, β). Algorithms and
software for computing the estimate (α̂, β̂) were developed in Peña et al. (2006). The estimator
of Λ0(t) is obtained by substituting (α̂, β̂) for (α, β) in Λ̂0(s * , t; α, β) to yield the generalized
Aalen-Breslow-Nelson estimator

Λ̂0(s * , t) = ∫0t I {S0(s * , w; α̂, β̂) > 0}
S0(s * , w; α̂, β̂) ∑

i=1

n
Ni(s * , dw). (4.20)

By invoking the product-integral representation of a survivor function, a generalized product-
limit estimator of the baseline survivor function S0(t) is
Ŝ0(s * , t) = ∏w=0

t 1 − Λ̂0(s * , dw) .

Peña et al. (2006) also discussed the estimation of Λ0(·) and the finite-dimensional parameters
(α, β, ξ) in the presence of gamma-distributed frailties. The ML estimators of these parameters
maximizes the likelihood L(s*; Λ0(·), α β, ξ) in (4.14), with the proviso that the maximizing
Λ0(·) jumps only at observed values of ɛi(Sij)s. An EM algorithm finds these maximizers and
its implementation is described in detail in Peña et al. (2006). We briefly describe the basic
ingredients of this algorithm here.

With θ = (Λ0(·), α, β ξ), in the expectation step of the algorithm, expressions for E{Zi|θ, Fs*}
and E{log Zi|θ, Fs*}, which are easy to obtain under gamma frailties, are needed. For the
maximization step, with EZ|θ(0) denoting expectation with respect to Z when the parameter
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vector θ equals θ (0) = (Λ0
(0)( ⋅ ), α (0), β (0), ξ (0)),  we require Q(θ θ(0), Fs*) = EZ|θ(0){log

LC(s*; Z, θ(0)}, where LC (s; Z, θ) is in (4.12). This Q(θ; θ(0), Fs*) is maximized with respect
to θ = (Λ0(·), α, β, ξ). This maximization could be performed in two steps: first, maximize with
respect to (Λ0(·), α, β) using the procedure in the case without frailties except that S0(s, t; α,
β) is replaced by S0(s, t; Z , α, β) = ∑i=1

n ZiY i(s, t; α, β); and second, maximize with respect
to ξ a gamma log-likelihood with estimated log Zi and Zi. To start the iteration process, a seed
value for Λ0(·) is needed, which could be the estimate of Λ0(·) with no frailties. Seed values
for (α, β, ξ) are also required. Through this EM implementation, estimates of (Λ0(·), α, β, ξ)
are obtained and, through the product-integral representation, an estimate of the baseline
survivor function S0(·).

5 Illustrative Examples
The applicability of these dynamic models still needs further and deeper investigations. We
provide in this section illustrative examples to demonstrate their potential applicability.

Example
The first example deals with a data set in Kumar and Klefsjo (1992) which consists of failure
times for hydraulic systems of load-haul-dump (LHD) machines used in mining. The data set
has six machines with two machines each classified into old, medium, and new. For each
machine the successive failure times were observed and the resulting data is depicted in Figure
3. Using an effective age process ɛ(s) = s − SN†(s−) this was analyzed in Stocker (2004) (see
also Stocker and Peña (2006)) using the general class of models when the baseline hazard
function is postulated to be a two-parameter Weibull hazard function Λ0(t; θ1, θ2) = (t/θ2)θ1,
and in Peña et al. (2006) when the baseline hazard function is nonparametrically specified. The
age covariate was coded according to the dummy variables (X1, X2) taking values (0, 0) for the
oldest machines, (1, 0) for the medium-age machines, and (0, 1) for the newest machines. The
parameter estimates obtained for a nonparametric and a parametric baseline hazard function
specifications are contained in Table 1 where the estimates for the parametric specification
were from Stocker (2004). The estimates of the baseline survivor function Ṡ0( ⋅ ) under the
nonparametric and parametric Weibull specifications are overlaid in Figure 4. From this table
of estimates, observe that a frailty component is not needed for both nonparametric and
parametric specifications since the estimates of the frailty parameter ξ are very large in both
cases. Both estimates of the β1 and β2 coefficients are negative, indicating a potential
improvement in the lengths of the working period of the machines when they are of medium
age or newer, though an examination of the standard errors reveals that we could not conclude
that the β-coefficients are significantly different from zeros. On the other hand, the estimate
of α for both specifications are significantly greater than one, indicating the potential
weakening effects of accumulating event occurrences. From Figure 4 we also observe that the
two-parameter Weibull appears to be a good parametric model for the baseline hazard function
as the nonparametric and parametric baseline hazard function estimates are quite close to each
other. However, a formal procedure for validating this claim still needs to be developed. This
is a problem in goodness-of-fit which is currently being pursued.

Example
The second example is provided by fitting the general class of models to the bladder cancer
data in Wei et al. (1989). A pictorial depiction of this data set can be found in Peña et al.
(2006), where it was analyzed using a nonparametric specification of the baseline hazard
function. This data set consists of 85 subjects and provide times to recurrence of bladder cancer.
The covariates included in the analysis are X1, the treatment indicator (1 = placebo; 2 =
thiotepa); X2 , the size (in cm) of the largest initial tumor; and X3, the number of initial tumors.

Peña Page 11

Stat Sci. Author manuscript; available in PMC 2007 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In fitting the general model in (3.5) we used ρ(k; α) = αk. Furthermore, since the data set does
not contain information about the effective age, we considered two situations for demonstration
purposes: (i) perfect intervention is always performed (εi(s) = s − S

iNi
†(s−)

); and (ii) minimal

intervention is always performed (ɛi(s) = s). The parameter estimates obtained by fitting the
model with frailties, and other estimates using procedures discussed in the literature are
presented in Table 2. The estimates of their standard errors (s.e.) are in parentheses, with the
s.e.s under minimal repair intervention model obtained through a jacknife procedure. The other
parameter estimates in the table are those from the marginal method of Wei et al. (1989), the
conditional method of Prentice et al. (1981), and the Andersen and Gill (1982) method, which
were mentioned earlier (cf., Therneau and Grambsch (2000)). Estimates of the survivor
functions at the mean covariate values are in Figure 5.

Observe from this figure that the thiotepa group possesses higher survivor probability estimates
compared to the placebo group in either specifications of the effective age process. Examining
Table 2, note the important role the effective age process provides in reconciling differences
among the estimates from the other methods. When the effective age process corresponds to
perfect intervention, the resulting estimates from the general model are quite close to those
obtained from the Prentice et al. (1981) conditional method; whereas when a minimal
intervention effective age is assumed, then the general model estimates are close to those from
the marginal method of Wei et al. (1989). Thus, the differences among these existing methods
could perhaps be attributable to the type of effective age process used. This indicates the
importance of the effective age in modelling recurrent event data. If possible, it therefore
behooves to monitor and assess this effective process in real applications.

6 Open Problems and Concluding Remarks
There are several open research issues pertaining to this general model for recurrent events.
First is to ascertain asymptotic properties of the estimators of model parameters under the frailty
model when the baseline hazard rate function Λ0(·) is nonparametrically specified. A second
problem, which arise after fitting this general class of models, is to validate its appropriateness
and to determine the presence of outlying and/or influential observations. This is currently
being performed jointly with Jonathan Quiton, a PhD student at the University of South
Carolina. Of particular issue is the impact of the sum-quota accrual scheme, leading to the issue
of determining the proper sampling distribution for assessing values of test statistics. This
validation issue also leads to goodness-of-fit problems. It might for instance be of interest to
test the hypothesis that the unknown baseline hazard function Λ0(·) belongs to the Weibull
class of hazard functions. In current research we are exploring smooth goodness-of-fit tests
paralleling those in Peña (1998b,a) and Agustin and Peña (2005) which build on work by
Neyman (1937). This will lead to notions of generalized residuals from this general class of
models. Another problem is a nonparametric Bayesian approach to failure time modelling. Not
much has been done for this approach in this area, though the comprehensive paper of Hjort
(1990) provides a solid contribution for the multiplicative intensity model. It is certainly of
interest to implement this Bayesian paradigm for the general class of models for recurrent
events.

To conclude, this article provides a selective review of recent research developments in the
modelling and analysis of recurrent events. A general class of models accounting for important
facets in recurrent event modelling was described. Methods of inference for this class of models
were also described, and illustrative examples were presented. Some open research problems
were also mentioned.
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Figure 1.
Pictorial depiction of the recurrent event data accrual for a unit illustrating the window of
observation [0, τ], intervention performed after an event occurrence, an unobserved frailty Z,
the presence of a vector of covariates X, the inter-event times Tjs, and the calendar times of
event occurrences Sjs.
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Figure 2.
An example of an effective age process, ɛ(s), for a unit encountering successive occurrences
of a recurrent event.
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Figure 3.
Pictorial depiction of the LHD data set from Kumar and Klefsjo (1992) which shows the
successive failure occurrences for each of the six machines. Machines 1 and 2 have (X1; X2)
= (0; 0), machines 3 and 4 have (X1; X2) = (1; 0), and machines 5 and 6 have (X1; X2) = (0; 1).
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Figure 4.
Estimates of the baseline survivor function S0(t) under a nonparametric and a parametric
(Weibull) specification for the LHD hydraulic data of Kumar and Klefsjo (1992).
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Figure 5.
Estimates of the survivor functions evaluated at the mean values of the covariates. The solid
curves are for the perfect intervention effective age process, whereas the dashed curves are for
the minimal intervention effective age process.
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Table 1
Parameter estimates for the LHD hydraulic data for a nonparametric and a parametric (Weibull) specification of
the baseline hazard function. The values in parentheses in the third column are the approximate standard errors.

Parameter Estimated With a Nonparametric Specification of
Λ0(t)

With a Parametric Specification λ0(t) = (t/θ2) θ1

α 1.03 1.03 (.01)
β1 −0.09 −0.14 (.20)
β2 −0.05 −0.08 (.20)
ξ1 1:54 × 1063 164198 (1307812)
θ1 NA 0.97 (.075)
θ2 NA 0.006 (.001)
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Table 2
Summary of estimates for the bladder data set from the Andersen-Gill (AG), Wei, Lin and Weissfeld (WLW),
and Prentice, Williams and Peterson (PWP) methods as reported in Therneau and Grambsch (2000), together
with the estimates obtained from the general model using two effective ages corresponding to ‘perfect’ and
‘minimal’ interventions.

General Model
Cova Para AG WLW Marginal PWP Cond*nal Perfect Minimal

log N(t−) α - - - .98 (.07) .79 (.13)
Frailty ξ - - - ∞ .97

rx β1 −.47 (.20) −.58 (.20) −.33 (.21) −.32 (.21) −.57 (.36)
Size β2 −.04 (.07) −.05 (.07) −.01 (.07) −.02 (.07) −.03 (.10)

Number β3 .18 (.05) .21 (.05) .12 (.05) .14 (.05) .22 (.10)

Stat Sci. Author manuscript; available in PMC 2007 September 28.


