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Abstract
The hypothetical scanning (HS) method is a general approach for calculating the absolute entropy,
S, and free energy, F, by analyzing Boltzmann samples obtained by Monte Carlo (MC) or molecular
dynamics (MD) techniques. With HS applied to a fluid, each configuration i of the sample is
reconstructed by gradually placing the molecules in their positions at i using transition probabilities
(TPs). With our recent version of HS, called HSMC-EV, each TP is calculated from MC simulations,
where the simulated particles are excluded from the volume reconstructed in previous steps. In this
paper we remove the excluded volume (EV) restriction, replacing it by a “free volume” (FV)
approach. For liquid argon, HSMC-FV leads to an improvement in efficiency over HSMC-EV by a
factor of 2–3. Importantly, the FV treatment greatly simplifies the HS implementation for liquids,
allowing a much more natural application of the method for MD simulations. Given the success and
popularity of MD, the present development of the HSMD method for liquids is an important
advancement for HS methodology. Results for the HSMD-FV approach presented here agree well
with our HSMC and thermodynamic integration results. The efficiency of HSMD-FV is equivalent
to HSMC-EV. The potential use of HSMC(MD)-FV in protein systems with explicit water is
discussed.

I. INTRODUCTION
Free energy evaluation is a central issue in atomistic modeling.1–5 When the free energy is
known, equilibrium properties can be calculated. Examples include equilibria associated with
chemical reactions, solvation processes, and conformational changes. The free energy of
binding, for example, is critical in the understanding of many important biological processes.
Using common simulation methods such as Monte Carlo (MC)6 or molecular dynamics (MD),
7,8 it is fairly straightforward to determine mechanical properties such as a system’s energy
or pressure. It is well known, on the other hand, that serious challenges are presented in the
calculation of the entropy or related quantities such as the free energy, and the chemical
potential. Existing free energy approaches are typically complicated and very computationally
expensive. Research continues in this area because feasible methodology does not exist for
many important systems.

One example of a successful approach is thermodynamic integration (TI).1–5 Here, the
evaluation of the free energy, F, is based on the integration of free energy derivatives
(calculable observables in an MC or MD simulation) to thus provide the difference in the free
energy, ΔFm,n between two states m and n. (Note that the absolute free energy for one state
would only be known if that for the other was known.) While TI is a robust approach, for
complex systems such as proteins, such an integration is feasible only if the structural variance
between the two states is very small; otherwise, the integration path can become prohibitively
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lengthy and complex. Therefore, it is important to develop methods that enable one to calculate
the absolute Fm and Fn from two samples of the states m and n. In this case, ΔFm,n = Fm −
Fn can be calculated even for significantly different states since the integration path between
m and n is avoided.

Meirovitch has proposed a unique approach for calculating the absolute free energy, where
two related approximate techniques, the local states (LS) method9–13 and the hypothetical
scanning (HS) method14–16 have been developed and applied to magnetic systems, polymers,
and peptides. In the HS method, one “analyzes” system configurations, i, in an attempt to
compute the Boltzmann probability, Pi

B, where knowledge of its value leads directly to the
absolute free energy. In practice, the calculated HS probabilities, Pi

HS, are estimates for the
true Pi

B, where various approximations are invoked to make the calculations tractable. One
general way of doing this involves a simplification the model system during the analysis. (For
instance, Pi

HS could be estimated by dropping certain details or interactions, ignoring higher
correlations, etc. See as examples, Refs. 17 and 18.) Another way is to maintain the full model
details, but to calculate Pi

HS stochastically. This is the approach used in the HSMC method,
19–26 where Pi

HS is approximated, in stages, by MC sampling. This method provides a number
of significant advantages. An important example is its ability to incorporate the effect of long
range correlations, such as in the hairpin structure of a peptide. Another important point is that
this methodology is capable, at least in principle, of yielding the exact Boltzmann probability
(and therefore the exact free energy) in the limit of infinite sampling. Recently, we have
successfully applied HSMC to liquids (argon19–21 and water20,21), peptides in vacuum,22–
24 and lattice polymers.25,26 Present efforts in our lab have been aimed at adapting this
methodology for new systems, and widening its applicability in general.

In this paper, we explore new options for the HSMC methodology for liquids, and test these
modifications on an argon system of N particles. With HS applied to a fluid, each configuration
i of a given sample is reconstructed by gradually placing the molecules in their positions at i
using transition probabilities (TPs). In our original HSMC treatment, the volume is divided
into L3 small cells. For each argon configuration, N of these cells are occupied (by atoms) and
N-L3 are vacant. The cells are visited in a predefined order and the TP of a cell (occupied or
empty) is calculated from MC simulations, where the volume reconstructed in previous steps
becomes excluded in each succeeding MC simulation. Pi

HS is obtained as a product of L3

transition probabilities (TPs) calculated for all cells. In this paper we remove the excluded
volume (EV) restriction, replacing it by a “free volume” (FV) approach, i.e., the empty cells
are not considered explicitly and only N TPs for the particles are calculated. This new approach
is shown to yield reasonably accurate results, with a noticeable improvement in computational
efficiency. Furthermore, these new modifications simplify the HS implementation
considerably. A prime goal of this work is to use these modifications to extend the methodology
for sampling with the MD technique. Thus, to introduce the HSMD method for liquids. In the
next section (Sec. II) we describe the HSMC(MD) methodology as applied to liquids, and
discuss the distinction of the various approaches. This is followed by a presentation and
comparison of results in Sec. III.

II. THEORY AND IMPLEMENTATION
A. Free energy and its fluctuation

We start by defining the free energy and discussing some of its properties. For simplicity we
consider a discrete system of configurations, i with energy Ei. (We use the notation Ei to
represent, more specifically, E(Xi), where Xi is coordinate set of configuration i.) The
Boltzmann probability, Pi

B,
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Pi
B =

exp − Ei/ kBT
Z (1)

where kB is the Boltzmann constant, T is the absolute temperature, and Z is the partition
function. Using Pi

B, the ensemble average energy, E , is given by

E =∑
i

Pi
BEi. (2)

The entropy, S, and free energy, F, can also be formally expressed as ensemble averages,

S = S = − kB∑i Pi
B ln Pi

B (3)

and

F = F =∑
i

Pi
B Ei + kBT ln Pi

B = E − TS. (4)

An extremely important property of this representation of F (but not other representations) is
that its variance vanishes, σ2(F)=0; indeed, substituting the expression for Pi

B in the brackets
[Eq. (4)] leads to a constant, −kBTlnZ for any i.16,27 This means that the exact free energy can
be obtained from a single structure i if Pi

B is known. Moreover, while F is an extensive variable,
its zero fluctuation property holds for any number of atoms N. This important property is not
shared by the entropy and the energy - their fluctuations increase as ~N½ and therefore it is
difficult to estimate them accurately for a large system.

In the HS method, evaluation of the free energy (entropy) is achieved by calculating
approximate values for Pi

B, which are denoted as Pi
HS. Note that Pi

HS calculated for a single
configuration leads to a corresponding single configuration estimate for the free energy

Fi
HS = Ei + kBT ln Pi

HS , (5)

which as discussed above, gives the free energy exactly when Pi
HS = Pi

B. Obviously, the
accuracy of Fi

HS can vary depending on the accuracy of Pi
HS, thus the values of Fi

HS are
typically averaged. More specifically, the average of ln Pi

HS, over a Boltzmann sample of
configurations, gives rise to approximate entropy and free energy functionals, SA and FA,

S A = − kB∑i Pi
B ln Pi

HS (6)

and

F A =∑
i

Pi
BFi

HS =∑
i

Pi
B Ei + kBT ln Pi

HS = E − T S A, (7)

where i runs over the entire ensemble. Using Jensen’s inequality, SA can be shown rigorously
to be an upper bound15,21 for the correct entropy S thus FA is a lower bound of F. Pi

HS is
generally a function of a set of parameters or running conditions (see for example, Refs. 17–
19), which effectively determine its accuracy. That is, for a given approximation, α, (α defines
the HS parameter set) one obtains a corresponding SA(α) and FA(α). Furthermore, the better
the approximation, the smaller is SA(α), and the larger is FA(α).

It is important to stress that unlike the correct Boltzmann probability distribution, the
distribution of Pi

HS values (for any given approximation, α) does not give rise to the zero
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fluctuation property observed in Eq. (4) for the correct free energy. In other words, one observes
a non-zero fluctuation, σA, in FA, due to the fact that the quantity, Fi

HS (averaged in Eq. (7))
is not the same for all i. This fluctuation, which is defined by

σA = ∑
i

Pi
B F A − Fi

HS 2 1/2 = ∑
i

Pi
B F A − Ei − kBT ln Pi

HS 2 1/2, (8)

is however expected to decrease as the approximation improves, meaning that for very good
approximations of Pi

HS, the free energy can be very accurately determined by averaging
Fi

HS over just a handful of configurations (or even a single one21). The HSMC and HSMD
methods can provide this accuracy, and very good values for the free energy have been obtained
from a small number of configurations.

B. Other free energy functionals
In this section we will briefly introduce a number of other free energy functionals that will be
reported in the results. A more thorough discussion of these quantities is available in Ref 21.

We have shown above that the Boltzmann average of Fi
HS in Eq. (7) is a lower bound estimate

(FA) for the correct free energy, F. Averaging Fi
HS instead over the approximate distribution,

Pi
HS, produces a corresponding free energy upper bound denoted by FB,15,28

F B =∑
i

Pi
HSFi

HS =∑
i

Pi
HS Ei + kBT ln Pi

HS . (9)

(It is noted that the superscript, B, in FB, is not meant to represent the word Boltzmann as it
does in the case of Pi

B.) The minimum free energy principle states that FB as a function of P
satisfies FB(P)≥ F, becoming minimal for Pi

B, FB(Pi
B) = F [Eq. (1)]. It is necessary to rewrite

Eq. (9) such that FB can be estimated by importance sampling from a (Boltzmann) sample of
configurations generated with Pi

B (rather than Pi
HS). The resulting expression is

F B =
∑
i

Pi
B exp Fi

HS/ kBT Fi
HS

∑
i

Pi
B exp Fi

HS/ kBT
(10)

In practice FB is estimated as the ratio of simple arithmetic averages, which are accumulated
for each of the quantities, exp[Fi

HS / kBT][Fi
HS] and exp[Fi

HS/ kBT]. It should be noted,
however, that the statistical reliability of this estimation (unlike the estimation of FA) decreases
sharply with increasing system size, because the overlap between the probability distributions
Pi

B and Pi
HS decreases exponentially [see discussion in Ref. 12].

Another way to estimate FB is by using a “reversed-Schmidt procedure”13,16 which enables
one to extract from the given unbiased sample of size n generated with Pi

B an effectively
smaller biased sample generated with Pi

HS. Thus, the configurations of the unbiased sample
are treated consecutively. If a configuration i was accepted to the biased sample, the next
configuration j would be accepted with a transition probability, Aij =min{1, exp[(Ej − Ei)/
kBT]Pj

HS / Pi
HS}, where Aij is a generalized MC procedure, which satisfies the detailed balance

condition and is carried out with random numbers. The acceptance rate R provides a measure
for the effective size of the accepted biased sample,

R = naccept/ n, (11)

where naccept is the number of accepted configurations. The effectiveness of this procedure is
again limited by the overlap of the distributions, Pi

B and Pi
HS. R is a useful gauge of the
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reliability of FB. The closer is R to 1, the better is the overlap between Pi
B and Pi

HS, the closer
is FB to F, and the smaller is the sample size required to estimate FB reliably.

In order to overcome some of the statistical limitations in the evaluation of FB, we introduced
in Ref. 21 a potentially more efficient way to estimate the upper bound. This estimate is
appropriate for cases were the Fi

HS values exhibit a Gaussian distribution about FA, a condition
that is typically satisfied for the stochastic HSMC and HSMD methods. This (Gaussian)
approximation of the upper bound, is denoted by FG

B, and is given by the simple expression,

FG
B =

(σA)2
kBT + F A. (12)

We see that FG
B depends only on FA and the fluctuation, σA. This is an advantage of FG

B

because these quantities are typically easier to estimate than FB from Eq. (10).

With values for both a lower bound, FA, and an upper bound FB or FG
B, the averages, FM and

FG
M, are defined by

F M = (F A + F B)/ 2 (13)

and

FG
M = (F A + FG

B) / 2 = F A + 1
2

(σA)2
kBT (14)

respectively. These averages often become a better approximation than either of the bounds
individually. This is true, provided that their deviations from F (in magnitude) are
approximately equal, and that the statistical error in FB (or FG

B) is not too large. Typically,
several sequentially improving approximations for FA, FB (FG

B), and FM (FG
M) are calculated

as a function of α, and their convergence enables one to determine the correct free energy with
high accuracy.

In addition to the bounds, FA and FB (FG
B), it is also possible to define a functional (denoted

by FD) corresponding to an exact expression for the correct free energy F. This is given by

F D = kBT ln ( 1
Z ) = kBT ln ∑

i
Pi

B exp Fi
HS/ kBT . (15)

Contrasting again with the simple average of Fi
HS(∑iPi

BFi
HS), which gives the upper bound

FA, it is seen that averaging exp[Fi
HS / kBT] leads to the free energy directly. It should be noted

however, that calculating reliable values for FD in practice, can be limited by insufficient
overlap of the probability distributions Pi

B and Pi
HS (as in the case for FB).

The expressions defining the entropy and free energy functionals in this and the previous
section are technically appropriate for deterministic probabilities, while those defined by
HSMC and HSMD are stochastic bearing some noise. In the Appendix of Ref. 21 we rigorously
prove that all of these functionals also apply to HSMC and HSMD, in particular, SA is an upper
bound, FA is a lower bound, FB and FG

B are upper bounds, and FD is exact.

The noise in the HSMC and HSMD probabilities results from statistical noise in the counts
used to determine the transition probabilities (described in forthcoming sections). This
counting noise is actually fundamental in its effects on the free energy and entropy estimates.
The shorter the HSMC (or HSMD) simulations (which, for these methods, defines the
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approximation α), the greater the noise in the probabilities, and as shown in Ref. 21, this effect
manifests itself in an average sense by overestimating the entropy (i.e. SA) and underestimating
the free energy (i.e. FA). We note further that the effect of stochastic probabilities, and
subsequent noise in the resulting Fi

HS (= [Ei + kBT ln Pi
HS]) values, implies an appropriateness

for the Gaussian approximation for FG
B, a condition that would not necessarily be expected

for general deterministic cases.

C. Statistical Mechanics of the liquid model
In this paper we study a liquid model for argon represented by the standard Lennard-Jones
potential with the parameters ε/kB=119.8 K and σ =3.405 Å. We consider N atoms enclosed
in a box of volume, V, at temperature, T [(NVT) ensemble]. The configurational partition
function is given by

ZN = ∫ exp − E(x N ) / kBT d x N , (16)

where E(xN) is the potential energy, xN is the set of Cartesian coordinates and dxN is the
corresponding differential. The integration is carried out over the configurational space, VN.
Using the Boltzmann configurational probability density ρ(xN),

ρ(x N ) = exp − E(x N )/ kBT / ZN , (17)

the total entropy, S, is

S = SIG + Se = SIG − kB∫ρ(x N ) ln V Nρ(x N ) d x N , (18)

where SIG is the entropy of the ideal gas at the same temperature and density, and Se is the
excess entropy. The corresponding excess Helmholtz free energy is,

Fe = ∫ρ(x N )(E(x N ) + kBT ln V Nρ(x N ) )d x N = E − T Se (19)

where E  is the average potential energy. To be consistent with the literature (and our previous
works) we will report our results as the configurational free energy, Ac, 29 defined by

Ac = − kBT ln ( ZN
N ! σ3N ) = Fe − kBT ln ( V N

N ! σ3N ), (20)

where σ is the van der Waals parameter from the Lennard-Jones potential. We note that in the
discussion of the results, we often quote deviations as percentages of the correct value. This
would not be a very meaningful measure of algorithmic performance if the constant comprising
the second term in Eq. (20) were large. For our particular system, Ac is dominated by the
nontrivial term, Fe, which comprises more than 75% of its numerical value.

D. Ideal HS strategy for liquids
In this section we will outline the basic strategy for HS applied to liquids, where we explain
the methodology in terms of an exact (or “ideal”) HS treatment appropriate for an NVT argon
system with periodic boundary conditions. This will also allow us to address the distinction
between the (previous) EV and (present) FV architectures. The difference between “ideal HS”
and the actual implementations (such as HSMC or HSMD) is simply in how the value of
Pi

HS is calculated. These details will be explained in later sections.
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Though liquid systems are typically simulated by MC or MD, it should first be pointed out that
each argon configuration, in principle, could have been generated by an alternative exact build-
up procedure, where argon atoms are added step-by-step to the initially empty volume (box)
using transition probabilities (TPs). With the HS method the given MC or MD sample is
assumed to have been generated by this exact build-up procedure, and thus each configuration
is reconstructed with this procedure, the TPs are calculated, and their product leads to ρ(xN)
and to the absolute entropy ~lnρ(xN).

D.1 Ideal excluded volume HS treatment (EV)—We explain first how the HS transition
probabilities can incorporate an explicit consideration of the small (unoccupied) spaces
between the particles in a liquid. It will be shown that once (the probabilities for) these spaces
have been treated, these small volumes are then “excluded” from further consideration. This
is the strategy that has been employed in our previous HSMC (and other HS) approaches17,
19–21 for liquids. In practice, the box is divided into L3 = L × L × L cubic cells with a maximal
size that still guarantees that no more than one center of a spherical argon atom occupies a cell.
(See Refs. 30–32 for other examples of cell approaches for fluid free energies.) During the
analysis of configuration i, the cells are visited orderly line-by-line layer-by-layer starting from
one corner of the box until all of them have been treated.

The (exact) calculation of TPk for the target cell k [which could be a vacant (−) or a populated
cell (+)] is outlined as follows. At step k of the process, Nk atoms (i.e., occupied cells) and k
−1− Nk vacant cells have already been treated, i.e., their TPs have been calculated. These Nk
atoms are now positioned at their coordinates of configuration i and together with the already
visited vacant cells they define the (frozen) “past”; the L3-(k−1) as yet unvisited cells (including
target cell k) define the “future volume”. To determine the TP of target cell k two future
canonical partition functions are calculated, Z− (k) and Z+(k) for vacant and occupied cell k,
respectively, by scanning all of the possible configurations of the remaining Nf = N−Nk (future)
atoms in the future volume, while the past volume is excluded, and for Z−(k), the target cell
k is excluded as well. It is stressed that while the previously treated Nk atoms are fixed, their
interactions with the future atoms are included in the calculation of Z−(k) and Z+(k).

The sum, Z+(k)+Z−(k), covers all possible future atomic arrangements at step k, therefore if
cell k is vacant the TPk is, p(k,−)=Z−(k)/[Z+(k)+Z−(k)]. If on the other hand, cell k is occupied,
then the future partition function, Z+(k,x′), is calculated where one of the future atoms is fixed
at the position, x′, the exact location (inside the target cell k) at which an atom was exhibited
in configuration i. Z+(k,x′) thus covers a portion of the total configurational volume spanned
by Z+(k). TPk for an occupied cell is the probability density, Z+(k, x′)/{[Z+(k)+Z−(k)]}. After
cell k has been treated it becomes a past cell, empty or occupied according to configuration i.
For a periodic system, this means that the images of cell k are also becoming part of the fixed
past and will thus affect the TPs of the L3-k remaining future cells. In this HS procedure all the
L3 TPs are calculated exactly and their product leads exactly to ρ(xN) [Eq. (16)]. (In practice,
of course, scanning the entire conformational space in order to systematically calculate the
exact future partition functions is unfeasible because of the exponential growth in
computational time with particles and grid-points used to approximate the continuum.
Therefore we have referred to this exact procedure as the “ideal HS” method.)

D.2 Ideal free volume HS treatment (FV)—In the above excluded volume (EV) treatment,
the liquid volume was divided into cells, and if these cells were unoccupied, an explicit
probability was calculated for them to be empty. As the reconstruction proceeds, the remaining
future atoms are not “allowed” to range through these previously treated empty cells. One can
instead determine a different set of TPs where the remaining future atoms are considered to
range throughout these very same regions. In this “free volume” (FV) treatment, only the atoms
themselves become fixed, and the consideration of cells is dropped altogether. We note for
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clarity, however, that in the FV method there will always be volume which is “effectively
excluded” by virtue of the repulsive Lennard-Jones potential; this corresponds to regions with
very low Boltzmann weight. This, however, is not the case for all empty cells in EV. We note
further that while the individual EV and FV TPs will be different, their overall products must
result in the same value, specifically, the overall probability density in Eq. (16).

In the FV procedure there is a total of N reconstruction steps (compared to L3 steps for EV),
where a single transition probability is calculated for each atom. (The FV treatment does not
involve calculating TPs for empty cells.) At step k of the process there will be Nk = k−1 fixed
(past) atoms, and Nf = N−(k−1) future atoms. (As k ranges [1, N], Nk and Nf will range [0, N
−1] and [N, 1], respectively.) The transition probability density must be determined for a future
atom to be located at the target position x′ (the position of the kth atom in the configuration),
given the Nk fixed atoms and there images, and given that the Nf future atoms can range
anywhere in the liquid volume, V. This TP density can be expressed as

ρk(x Nk, x ′) =
∫
V

exp − E(x
Nk, x ′; x

N f −1
) / kBT d x

N f −1

∫
V

exp − E(x
Nk; x

N f ) / kBT d x
N f

, (21)

where xNk, xNf, and xNf−1 represent the coordinate sets for Nk, Nf, and Nf−1 atoms, respectively.
The integral in the denominator is carried out for all Nf future atoms over the entire volume,
V, and with Nk atoms fixed at xNk. In the numerator, integrations are carried out for Nf−1 atoms
with one atom fixed at the position, x′ (in addition to the Nk atoms fixed at xNk). Note that the
numerator and denominator in Eq. (21) are analogous to Z+(k,x′) and [Z+(k)+Z−(k)]
(respectively) from the discussion of EV above. In the case of EV, however, the integration
region is slightly more complex, where the future atoms will range in a (smaller) future volume,
Vf, that covers the future cells (only) at step k in the reconstruction.

In “ideal HS”, the FV-TP in Eq. (21) would be evaluated by calculating the partition functions
in the numerator and denominator exactly. That is, by appropriately scanning all possible
positions of the future atoms over the entire volume, V. This procedure is carried out for all
N steps, and clearly the overall product of TPs of the form in Eq. (21) will lead to the probability
density in Eq. (17). In principle, the order of the reconstruction procedure (i.e., the order in
which the atoms are treated (and then become fixed)) is immaterial. Again, the individual TPs
will be different but the product will be the same. There are, however, important considerations
when the HS procedure is implemented in practice. For reasons that will be discussed more
fully below, we choose to treat the particles in a spatially organized progression. Specifically,
we treat the atoms in any particular configuration in the same sequence that they would have
been treated in the EV method (in a “line-by-line, layer-by-layer” sequence). This has the effect
of grouping the fixed (past) atoms into a reasonably consolidated region.

E. The HSMC and HSMD simulation methods
Because the “ideal HS” methods are unfeasible, we have developed an HS simulation approach
(HSMC or HSMD), where instead of calculating exact future partition functions, the future
atoms are simulated at each reconstruction step by MC or MD. Here, the TPs are obtained by
simply counting events, such as an atom being found near the target position, x′, or atom counts
inside the target cell, etc. Initially, approximate boundary conditions were used and only part
of the future was treated.19 More recently however,20,21 the HSMC method was developed
so as to include the entire future at each HS step (i.e., all the future atoms are simulated) and
the periodic boundary conditions are taken into account as well. This method (including all
variants studied here) is capable, in principle, of yielding the “ideal HS” result (described
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above) in the limit of infinite future MC or MD sampling. For finite sampling, HSMC(MD)
provides approximations Pi

HS for the Boltzmann probability Pi
B, that improve as the sampling

is increased, thus giving rise to narrowing rigorous bounds for F and S (e.g., SA, FA, and FB)
as discussed earlier. The basic procedures for the previously reported HSMC-EV method, and
the new HSMC-FV and HSMD-FV methods are now outlined in the following subsections.

E.1 HSMC-EV—We describe first the basic implementation of HSMC for the case of an
explicit treatment of excluded volume (HSMC-EV) as applied in our previously reported
results.20,21 At step k, the previously defined Nk atoms, as well as their associated images, are
held fixed in their assigned positions (in configuration i), while all the remaining Nf = N−Nk
future atoms are allowed to move. An MC trajectory is generated for the Nf future atoms, and
the TP is determined from atom counts in the target cell k. As the HS treatment proceeds from
the first to the last cell, it is evident that the number of moveable future atoms decreases, and
the fully mobile system at the beginning, becomes gradually “frozen down” into the exact
configuration i. The MC simulation is performed in accordance with the usual procedures for
liquid simulations under periodic boundary conditions,33 with the important exceptions that
there are fixed atoms, and that regions inside previously defined cells are excluded. Any trial
move that would place a future atom into this previously assigned volume is rejected. A two-
dimensional representation of the main simulation box is given in Fig. 1. Note the heavy lines
that divide the accessible future volume from the excluded past volume. (Here, for EV, the
centers of the moveable atoms are not allowed above these lines.)

The transition probabilities are calculated (from the counts) in the following way. We denote
by Mtot the total number of attempted moves in the MC simulation for any reconstruction step
k. Mcell is the number of counts for which an atom was observed in the target cell k. The
probability for the target cell to be occupied (unoccupied) by an atom is thus given by

Pocc =
Mcell
Mtot

and Punocc = 1 − Pocc . (22)

For the case where the target cell k is vacant in configuration i, the transition probability is
TPk=Punocc. For an occupied target cell, one has to calculate the probability density, ρocc, for
an atom to be located at the precise location (inside cell k) at which it is found in configuration
i. For this we define a much smaller volume (inside cell k), termed a “cube”, which is centered
at x′, the exact atom position (target position). We count the visitations of atoms within this
cube during the MC simulation and thus estimate the probability density as

ρocc = ρ
x ′,EV

= Pocc( Mcube
Mcell )( 1

Vcube ) = ( Mcube
Mtot )( 1

Vcube ) (23)

where Mcube is the number of cube counts and Vcube is the cube volume. For occupied target
cells TPk=ρocc. Note, however that the probability density is assumed to be uniform over the
cube volume. To increase the quality of the results, we actually scale ρocc by an ensemble
averaged weighting factor (see below), which serves to measure the probability density at the
atom position more accurately.

The total product of TPk over all L3 cells – a product of N transition probability densities
ρocc and L3-N transition probabilities for empty cells, gives rise to the estimate, ρHS (xN) for
the Boltzmann probability density, ρ(xN),

∏
k

TPk = N ! ρHS(x N ) ≈ N !
exp − E(x N )/ kBT

ZN
. (24)
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Notice that the counting procedure (for the TPk) does not distinguish between labeled atoms,
while in the integration leading to ZN all the labeled arrangements contribute, hence ρ(xN) [Eqs.
(17–19)] is a labeled probability density, and N! is required in Eq. (24). These points also apply
for the HSMC-FV and HSMD-FV methods below.

E.2 HSMC-FV and HSMD-FV—Most of the basic ideas underlying HSMC-FV and HSMD-
FV are the same as for the case of HSMC-EV (or at least very analogous). As before, at step
k we will again have Nk fixed atoms (and their images), and Nf = N − Nk future atoms which
are allowed to move. An MC or MD trajectory (corresponding to HSMC-FV or HSMD-FV,
respectively) is carried out for the future atoms in the presence of the Nk fixed (past) atoms,
and the appropriate atom counts are accumulated. (See comments on TP calculations below.)
However, during these simulations, there are no regions in the simulation box that the particles
are excluded from. This proves to be a particularly desirable feature for the HSMD method.
Specifically, in an HSMD-EV implementation, atoms would need to be reflected off of the
excluded volume. While this can be fairly readily applied in MC (by simply rejecting moves),
these reflections would prove to be somewhat more cumbersome for MD. For the FV case,
rather, the only forces on the future atoms come from the Lennard-Jones interactions, and thus
the future atoms will typically enter spaces between fixed atoms that would have otherwise
been unavailable with EV. (The centers of the atoms can move above the heavy lines in Fig.
1.) Indeed they must sample these regions to arrive at the correct FV-TP.

As described for the case of “ideal HS”, the FV treatment simply requires N transition
probabilities corresponding to probability densities of the form in Eq. (21). (Again, there are
no TPs for empty cells.) Thus for HSMC(MD)-FV, one simulates, for each step k, the Nf future
atoms in the presence of the Nk fixed atoms (and their images), with no explicit restrictions
placed on the range of the future atoms. The probability (density) for a future atom to be located
at the target position x′, is directly measured through raw counts, which is again done by
centering a small counting cube at x′. The resulting transition probability density, ρx′,FV =
TPk, is calculated as,

ρ
x ′,FV

= ( Mcube
Mtot )( 1

Vcube ) (25)

This is the same expression as for ρocc in Eq. (23), however the important difference is the
different simulation conditions (FV vs. EV), therefore the TP densities are different. It should
be noted that Mtot was defined above as the total number of attempted MC moves. For the case
of HSMD, we define Mtot as the total number of MD time steps taken, and Mcube as the number
of these time steps for which a future atom was found in the cube. Also, as for the case of
HSMC-EV, we correct for the assumption of uniform probability density (within the cube) by
scaling by an ensemble averaged weighting factor (see below). Finally, the HS estimate for
overall probability density of the liquid configuration, ρHS (xN), is calculated as a product of
the TPs according to Eq. (24), where here for FV, k runs from 1 to N.

The FV implementation is clearly simpler than EV, and it requires fewer HSMC(MD)
simulations (N, rather than L3); furthermore, it is also exact in the limit of infinite sampling.
However, some points should be made with regard to sampling TPs in practice. For some fixed
atom geometries, it may be practically impossible to use standard MC and MD methods to
correctly sample the probability distribution specified in Eq. (21). Open spaces that are blocked
by fixed atoms can not be accessed by the moveable future atoms. Eq. (21) requires, in principle,
that the future atoms be able to range over the entire volume, V. Therefore, if regions with
nonnegligible Boltzmann weights are not sampled in the HSMC(MD)-FV simulations, then
the calculated Pi

HS will be incorrect. The EV method is less prone to these dangers, as various
pockets get treated (and excluded) before fixed atoms might potentially block them. For this
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reason, our FV implementation follows the geometrically organized order of treatment
described at the end of Sec. II.D.2. The fixed atoms are grouped into consolidated regions (such
as the black atoms in Fig. 1), and the very low Boltzmann weight for the future atoms in such
regions (i.e., wholly among the black atoms), thus relaxes the need to sample this portion of
the liquid volume in practice.

F. Implementation details and enhancements of the method
Several enhancements to the HSMC(MD) methods have been implemented. For the case of
HSMC we apply MC preferential sampling,33–36 which imposes more frequent trial moves
for atoms which are close to the target position x′ (or to the target cell for the case of EV). In
our implementations the trial probability of each atom is proportional to 1/r2, where r is the
atom’s distance measured from x′ (or the center of the target cell). The MC acceptance criterion
is correspondingly altered so as to maintain detailed balance. To keep the trial probability from
becoming arbitrarily large at small r, the weighting becomes flat for r2 less than ~3Å2.
Additionally for the case of HSMC, it is beneficial to allow the number of MC steps at each
reconstruction step (Mtot) to decrease (on average) as the number of future atoms decreases
(i.e. with increasing k). This procedure maintains a roughly constant number of MC steps per
future atom. In particular, we allow the maximum number of steps to depend linearly on the
number of future molecules (until there are fewer than 20, in which case it is constant - see
below).

Furthermore, for both HSMC and HSMD, the total run length for any particular step k is also
based on its estimated sampling difficulty, which is determined from preliminary cube/cell
counts accumulated during the equilibration period. In other words, longer run times are given
to steps (k) that would be expected to have low transition probabilities. If, for example, very
few cube counts are accumulated during the equilibration period, then the maximum number
of steps is performed in the production run. Otherwise, for cases of higher preliminary counts,
the run length is shorter (scaled down). There are many ways to carry out this weighting. We
use several empirical settings (discrete categories) through which the number of steps is
reduced from the maximum number (by up to a factor of about 5). For the case of EV, we
further suggest treating occupied and unoccupied cells separately. As the unoccupied cells tend
to be far easier to count reliably, significantly fewer steps should be allotted to them on average.
Additional discussions of the above topics are available in Refs. 19 and 21.

Another important modification is the ensemble averaged weighting factor (mentioned above),
which gives more accurate transition probability densities. This is computed during the HSMC
or HSMD simulation in the following way. Every time an atom is found in the cube (defined
above), we calculate the resulting (hypothetical) potential energy for this atom to be
repositioned the exact location (inside the cube) at which an atom was exhibited in
configuration being analyzed, that is, the target position, x′, at the center of the cube. This is
done keeping all other atoms fixed. (In other words, all of the other Nf − 1 future atoms, and
the Nk past atoms, remain fixed.) We denote this energy as E(x′; xN−1) and compare it to E
(xN), the actual “undisplaced” potential energy of the system (as it was found in the HSMC or
HSMD simulation), where it is recognized that the only difference between these two energies
is due to the pairs involving the atom to be displaced. The ensemble average, exp[− E(x′;
xN−1) − E(xN)]/kBT cube, is computed over all cases (during the HSMC or HSMD simulation)
where an atom is found (anywhere) in the cube. The transition probability density, ρx′,EV or
ρx′,FV, [compare with Eqs. (23) and (25)] is then calculated as

ρ
x ′,EV(FV)

= ( Mcube
Mtot )( 1

Vcube ) exp − (E(x ′; x N−1) − E(x N ) ) / kBT cube (26)
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Typical values for the ensemble average (in brackets) are on the order of 1. Nevertheless, these
scaled corrections improve the overall results significantly. A detailed derivation of the
weighting factor is given in the Appendix of Ref. 19.

Provided that the ensemble averaged weighting factor is used, implementations with different
values for Vcube will always yield the correct free energy, F in the limit of infinite sampling.
However, for finite length runs the quality of the free energy bound, FA, is affected by the size
of Vcube. Generally, the ensemble averaged weighting factor (which is a function of cube size)
will converge more readily as Vcube is made smaller, but a cube that is too small will lead to
statistically unreliable cube counts. Thus, cube sizes at either extreme (too large or too small)
will give rise to higher fluctuations and lower (poorer) values of FA.

The following points should be considered when choosing Vcube. The probability density is
most sensitive to repulsive van der Waals overlaps; therefore, Vcube should be small on a scale
of the molecular size. Still, a considerable range of Vcube values can give acceptable
performance. For example, defining VvdW = (4/3)π(σ/2)3 as the molecular size of argon, we
have found that values of Vcube/VvdW ranging from 5×10−5 to 1×10−2 work reasonably well.
Though we have not done a systematic optimization, the results reported in this work were
generated using Vcube/VvdW values of about 2×10−3.

G. Simulation details
The argon system (also studied in Refs. 20 and 21) is comprised of 64 atoms at T=96.53K and
reduced density, ρ*=Nσ3/V=0.846. In all cases the interactions were spherically truncated at a
distance equal to half the box length, and the long-range energy (tail) corrections were added
to the results.33 The box length for this system is 14.4 Å. The length and volume of the counting
cube are 0.3429 Å and 0.04032 Å3, respectively. The cell length and volume (for the EV case)
are 2.40 Å and 13.8 Å3, respectively.

The sample configurations (which are analyzed in the HSMC and HSMD procedures) were
generated using the usual Metropolis MC simulation method 6 in the (NVT) ensemble under
periodic boundary conditions. Thus, at each MC step an atom is selected at random and a
random translational trial move is generated within a small Cartesian cube around the atom
position. Step sizes were chosen to give ~40–50% acceptance. Configurations were recorded
at long enough intervals to give an uncorrelated sample.

The MC simulations of the future molecules during the HS reconstruction process (HSMC-
EV and HSMC-FV) are very similar to the standard MC simulations. The exceptions (which
were discussed above) are: the system is only partially mobile (Nk atoms are fixed), the atoms
are selected preferentially for trial moves based on their proximity to the target position (or
cell), and for the EV case, the moveable future atoms are excluded from the previously treated
regions. Additionally, the number of MC steps (Mtot) for HS reconstruction step k was not
constant but varied with the number of future molecules and other criteria outlined in Sec. II.F.
The results (Table I) are therefore given as a function of the average number of MC steps per
atom, per reconstructed configuration. This is denoted by Mα

MC, and thus defines the level of
approximation, α; the longer the HSMC simulations (larger Mα

MC), the better the
approximation. A single HSMC (or HSMD) reconstruction is performed on each sample
configuration, and the overall results are determined by averaging over a total sample size of
n configurations. (e.g., an arithmetic average of Fi

HS is taken for FA, etc.). The results for
HSMC-EV are taken from Ref. 21.

The MD simulations of the future molecules (HSMD-FV) are also very similar to standard MD
liquid simulations, with again the exception that Nk of the atoms are held fixed. The trajectories
are integrated with the velocity form of the Verlet algorithm.37 Most of the simulations were
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performed with a time step of 5 fs, however a time step of 10fs was also used. The temperature
was maintained with an Andersen bath,38 where all velocities (of the moveable future atoms)
were reassigned from a Maxwell-Boltzmann distribution at time intervals of 2.5 ps. As for
HSMC, the run lengths at each HS reconstruction step k varied depending on the estimated
sampling difficulty, and therefore we report HSMD results as a function of the average number
of MD steps per reconstructed configuration, denoted Mα

MD. We note finally that atom counts
for the case of HSMD were actually accumulated in a sphere centered at x′, rather than a cube.
The volume of this sphere is the same as the volume of the cube (above) used in HSMC. As
observed from shorter test runs, the difference in these choices is small.

Several studies of the free energy of argon 29,31,32,39–43 have been published, most of them
for systems that differ in size (as well as other modeling details) from the present one.
Therefore, for an objective evaluation of our results, we also calculated the free energies for
our particular system of argon using thermodynamic integration (TI). The Lennard-Jones
interactions were scaled using the shifted scaling potential of Zacharias et al.44 A more detailed
description of our TI calculations is available in Ref. 17.

Free energy results are presented in Table I. All values correspond to the configurational free
energy, Ac [Eq. (20], per atom, and in energy units of ε (i.e., Ac/εN). Shown here are the free
energy estimates FA, FB, FG

B, FM, FG
M, and FD, and the fluctuation in FA, σA. These free

energy estimates are given as a function of either Mα
MC or Mα

MD (for HSMC or HSMD,
respectively). As described above, Mα

MC (or Mα
MD) defines the level of approximation (α),

where the largest values correspond to the best approximations. The free energy determined
by TI for this particular argon system is −4.100 (+/− 0.001). We take this as the correct value.

III. RESULTS AND DISCUSSION
A. Results for HSMC-EV

We will first briefly summarize the results for HSMC-EV which were presented previously
(Ref. 21). This will provide an acquaintance with the behavior of the various free energy
functionals and aid in our comparisons with the new results for the FV treatment. The lower
bound, FA [Eq. (7)], clearly shows the expected trends where the values steadily increase
(improve), and approach convergence, as Mα

MC is increased. FA for the largest Mα
MC deviates

from the TI value by less than 0.05%. (The statistical error in the TI result is ~0.02%.) The
worst approximation, based on 40 times smaller Mα

MC still leads to a free energy estimate that
is only ~0.8% lower than the TI value. The fluctuation, σA, in FA [Eq. (8)] also shows the
expected trends, as its values consistently decrease as the approximation improves. (i.e., σA
tends toward zero as FA approaches the correct value.) This behavior in the fluctuations reflects
the reliability of the various free energy estimates. σA is particularly important for FG

B and
FG

M (discussed below), as their calculation is derived directly from its value.

We noted in Ref. 21 the excellent quality (statistical reliability) of the other free energy
estimates. The free energy upper bound FB [Eqs. (9, and 10)] steadily decreases (improves) as
Mα

MC is increased. The FB value for the best approximation agrees with the TI result within
the statistical uncertainty. The worst approximation deviates by only 0.9%. The Gaussian upper
bound estimate FG

B is in very good agreement with FB and thus shows similar converging
behavior as the approximation improves. Highly accurate results are obtained for FM and
FG

M [Eqs. (13) and (14)], which are the averages of the lower (FA) and upper bounds (FB or
FG

B). Similar accuracy is also observed for the direct free energy estimate FD [Eq. (15)]. The
best three approximations (Mα

MC) lead to values of FM, FG
M and FD that match the TI value

within the statistical uncertainty. In all cases FM, FG
M and FD provide a better value for the

free energy than the corresponding bound estimates FA, FB, or FG
B at the same Mα

MC. As
mentioned in Sec. II.B, the statistical reliability of FB and FD can be limited by insufficient

White and Meirovitch Page 13

J Chem Phys. Author manuscript; available in PMC 2007 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



overlap of the distributions, Pi
B and Pi

HS. The values of the acceptance rate, R, [Eq. (11)] for
the “reversed-Schmidt procedure”12,15 (given in the table) provide a convenient gauge of this
overlap, the larger is R, the better the overlap. The smallest R (~0.1) for the worst approximation
is considered to be adequate (for the sample size, n), and it is seen that R steadily increases as
the approximation improves.

B. Results for HSMC-FV
Before discussing the results for the new FV treatment (HSMC(MD)-FV). It should be noted
that we have found it beneficial to eliminate a small fraction of the configurations from the
sample. That is, we consider 95% of the reconstructed configurations, where those that resulted
in the most deviant Fi

HS values (from the average, in either direction) were eliminated. This
was not done in the EV results, and thus we will more fully discuss below why this is done for
the case of FV. It is stressed however, that cutting this number of configurations from the
sample has minimal effects on FA (which is the most reliable and important estimate). In no
case was the change in the calculated FA more than 0.05%. This is comparable, for example,
to the statistical error in the TI calculation (0.02%).

Starting with the results for HSMC-FV (Table I), we again see the expected general behavior
for the various free energy functionals. The lower bound, FA, consistently increases and its
fluctuation, σA, decreases as the approximation improves. The FA values for the two largest
Mα

MC agree (within the uncertainty) with the TI result (−4.100). Similarly, the upper bounds,
FB and FG

B, consistently decrease as Mα
MC increases. Their values for the best approximation

deviate from the correct value by only ~ 0.1%, however, this deviation is larger than for the
best approximations in the case of HSMC-EV. For the three lowest approximations, the
averages of the lower and upper bounds, FM or FG

M, clearly provide a better value for the free
energy than the corresponding bound estimates FA, FB, or FG

B, where the maximum deviation
from the correct value is less than 0.1%. FD is similarly superior to the bounds in these cases.
In the case of the two highest Mα

MC, on the other hand, FM, FG
M and FD deviate by more than

does FA. The maximum deviation is still less than 0.08% however. (A discussion of the
difference in accuracy of EV and FV at the highest approximations will be deferred until after
the HSMD results have been presented.)

We noted that a potential advantage of HSMC-FV is that it requires fewer simulations because
TPs for empty cells are not calculated. It is therefore interesting to compare the efficiency of
HSMC for the cases of EV and FV. A good way to do this is to compare the tightness of the
free energy bounds as a function of computational time. In Fig. 2 we give the lower and upper
bounds for the first four approximations of HSMC-EV and HSMC-FV. (The lower bound is
FA, while the upper bound is the average of FB and FG

B. Computational times are given on
the x-axis in CPU hours per configuration on an AMD 2400.) The difference in the tightness
of the bounds is quite striking, with the values for FV appearing well inside those for EV. As
an example, the bounds for the second approximation of HSMC-FV (requiring 0.5 hrs./config.)
are very comparable (similar separation and average value) to the bounds for the third
approximation of HSMC-EV (requiring 1.44 hrs./config.). This implies an increase in
efficiency for HSMC-FV by a factor of two or three over the previous EV treatment.

C. Results for HSMD-FV
We now summarize the results for the HSMD-FV method. It is noted that the approximations
go as Mα

MD in the first five rows of HSMD results in Table I, however, Mα
MD = 20 ×107

appears a second time in the sixth row. This is the highest approximation which was run using
a 10 fs time step (rather than 5 fs). The HSMD-FV results also show well the expected general
behavior for the free energy functionals. FA consistently increases and σA decreases as the
approximation improves. The FA result for the best approximation agrees with the TI value
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(−4.100) within the statistical uncertainty, while the worst approximation gives an FA value
that is only ~1% lower. The upper bounds, FB and FG

B, consistently decrease as Mα
MD

increases, with values for the best approximation deviating from the correct value by only
~0.2%, but more so, than for HSMC-EV. Similar to HSMC-FV, FM, FG

M and FD for the three
lowest approximations, are much closer to the correct free energy than the corresponding bound
estimates FA, FB, or FG

B, while they deviate more than FA in the case of the two highest
approximations. Again, the results for FM, FG

M and FD for the best approximations are still
very good, deviating by only ~0.1% or less.

It is worth noting that we find no dependence of our results on the choice of time step (5 or 10
fs). As mentioned, the best approximation was calculated using the larger 10 fs time step.
Furthermore, we have obtained additional results (not given) using a 10 fs time step for the
case of Mα

MD = 5 ×107 steps (sample size, n = 160 configurations). The results for all of the
free energy functionals and the fluctuations are the same as the tabulated results for Mα

MD =
10 ×107 (using a 5 fs time step) within their statistical errors.

We now compare the efficiency of HSMD-FV to that of the previous HSMC-EV method.
Again we assess the tightness of the lower and upper free energy bounds for the four lowest
approximations as a function of computational time. These values are plotted in Fig. 3. (The
HSMD times have been scaled for a 10 fs time step. The upper bound is again the average of
FB and FG

B.) The trend lines trace each other fairly well. Therefore the efficiency of the two
methods (HSMD-FV and HSMD-EV) is about the same. This does imply however, that this
HSMD-FV implementation is not as efficient as HSMC-FV. This is most likely attributable to
the MC preferential sampling performed in the latter. As described above, atoms that are close
to the target position are chosen for MC moves more frequently. This is a highly beneficial
modification given the observables we wish to track in the simulation (i.e. counts at the target
position). Indeed the implementation of preferential sampling gave rise to substantial
improvements during the initial development of HSMC.

D. Discussion of the FV treatment
One of the similarities of HSMC-FV and HSMD-FV is the fact that the lower bound values
(FA) for the highest approximations actually reach the TI value, while the functionals, FM,
FG

M and FD, (which at times should be considered more accurate) are greater than this value
(lying outside the statistical uncertainty). This is not exhibited in the HSMC-EV results. Here,
the FM, FG

M and FD values become highly accurate for the three best approximations. (Note
also that the fluctuations and R values for FV do not become quite as low and high respectively
as they do for EV at the highest approximations.) For the FV treatment, there thus appears to
be a slight skewing of the results, pushing the free energies to slightly higher values. These
effects, for example, start to become visibly apparent by the fourth approximation in Figs. 2
and 3. It is further noted that beyond the fourth approximation, the bounds actually become
tighter for EV. In general, the FV treatment does not provide the high accuracy ultimately
provided by EV.

Though the skewing of the FV results is small (0.1% or less), it is important to analyze this
shortcoming in terms of the assumptions of the method. In particular, we pointed out in Sec.
II.D.2 that the TPs are based on a configuration space (for the future atoms) that covers the
entire liquid volume, V. In practice, with MC or MD sampling, the future atoms do not visit
the entire volume due to repulsive interactions from the fixed atoms. Therefore we rely on the
assumption that any region that can not be accessed with the usual sampling/simulation
methods, does not need to be accessed, due to a low Boltzmann weight for that region. Problems
will arise however if fixed atoms block future atoms from accessing regions with non-
negligible weight. This is why we reconstruct the configuration in a way that groups the fixed
atoms together. In other words, we try to make a reasonably contiguous region of low
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Boltzmann weight that does not need to be sampled by the future atoms. Inevitably, there will
be some cases where pockets are formed among the fixed atoms that can not be accessed. (The
EV treatment can treat and exclude these pocket regions before they get blocked off.) Thus for
FV, these occasional situations will affect the counts for the TP, and therefore the calculated
free energy.

One can make some rough arguments for the direction that these sampling problems will push
the results. We note that at the beginning of every HSMC(MD) simulation we start from the
exact coordinates of configuration i. (This is for both fixed and future atoms.) It is important
to point out that the future atoms must be well equilibrated before the counting begins, because
this would otherwise skew the results by consistently giving “bonus counts” at the beginning
of the simulation, due to the fact that a future atom always starts at the target position, x′. Now,
if we have at some reconstruction step k, a situation where there is a non-negligible region that
can not be accessed by the future atoms, the actual sampling is thus restricted to a smaller
configuration space. Furthermore, because this restricted space contains geometries with an
atom at/near the target position, it will likely favor these geometries. Said another way: If the
simulation always starts from a region of configuration space that is at least partially defined
by an atom at/near x′ and a matching geometry of future atoms surrounding it, then sampling
bottlenecks serving to keep the system in that region should typically lead to erroneously high
counts at the target position. This implies that the TP would be too high, making the overall
probability estimate, Pi

HS, too high, and thus Fi
HS [Eq. (5)], and the resulting free energy

functionals, will be too high.

Because these sampling problems are related to particular fixed atom geometries (that cause
the sampling barriers), it is very reasonable to guess that certain configurations are more prone
to give skewed free energy estimates (Fi

HS) when analyzed with an FV treatment. Indeed, this
is the case. We have found for example, that very often the most drastically deviant (high)
Fi

HS values come from the same handful of configurations. This is regardless of the method,
HSMD-FV or HSMC-FV, or the particular level of approximation. (The various HSMC and
HSMD runs are always performed using the same file of sample configurations.) Adjusting
the order of the build up procedure would likely improve the results for some of these structures,
however for other “well behaved” structures, it could make the results worse.

We discussed above the effects of sampling barriers on the value of Fi
HS and how it serves to

lower the free energy estimates. Again, the effect is relatively small, only being a problem for
certain configurations (or individual reconstruction steps k). However, a handful of deviant
Fi

HS values can have a strong effect on certain free energy functionals. Good examples of this
are FD and FB [Eqs. (10) and (15)]. Their calculation depends on an exponential average of
Fi

HS, that can easily become dominated by a single configuration with an unusually high
Fi

HS. FG
B is also effected, because the fluctuations are sensitive to very deviant values. This

sensitivity is why we only consider 95% of the Fi
HS values in calculating the FV results. It

should be noted however, that the straightforward arithmetic average of Fi
HS (FA) is the least

affected by deviant Fi
HS values. (We mentioned above that FA never changed by more than

0.05% when deviants were eliminated.) This is an important point because FA (which
converges more rapidly than any of the other free energy functionals) will often be the primary
estimate in many practical investigations where only a small sample (e.g. n ≈ 5 – 20) is analyzed.
(Note that these situations can still be augmented by a (rough) estimate for σA, and therefore
an estimate for FG

B, which can be used as a guide in bracketing the correct value.)

It follows that the utility of the FV treatment as compared to EV depends largely on the desired
accuracy for any particular investigation. If one requires highly accurate results, EV should be
used. However, one might more typically desire an accuracy around 0.5% or less. Here, FV is
clearly the better choice. The implementation is much simpler, and for the case of HSMC-FV,
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it is more computationally efficient. Furthermore, this level of accuracy is very attainable with
the lower bound functional FA alone, which (as discussed above) is only mildly affected by
the FV treatment.

IV. SUMMARY AND CONCLUSIONS
In this paper we have introduced the HSMD method for liquids. In order to do this we have
modified our previous HS treatment which explicitly calculated the transition probabilities for
excluded (empty) volumes (EV) and thus introduced a new free volume (FV) treatment. The
FV approach was tested first as a variant of HSMC (HSMC-FV) and then successfully applied
for molecular dynamics as HSMD-FV. Both the HSMD-FV and HSMC-FV results agree well
(within 0.1% or better) with our TI results, as well as our previous HSMC-EV results. The
efficiency of HSMD-FV is equivalent to that of HSMC-EV, while the efficiency of HSMC-
FV has improved on HSMC-EV by more than a factor of two. We have discussed some of the
differences between the EV and FV treatments, including a slight skewing of the results that
occurs for FV due to sampling difficulties posed by fixed atoms in the simulations. This
deviation is not expected to be troublesome in most practical applications.

Though the HSMC(MD) methods continue to be improved, at this time they are still less
efficient than TI. The TI run for this argon system required 1.2 hours on an AMD 2400. A
single reconstruction using HSMC-FV with Mα

MC = 72 ×105 requires 1 hour, and will yield
essentially the same free energy value, but with a statistical uncertainty that is 10 times larger.
(Still this is only +/−0.3%). The precision can be improved by reconstructing several more
configurations and averaging Fi

HS. Furthermore, unlike other methods, the fluctuation (σA)
can be estimated for this very small sample giving rise to a rough upper bound estimate
(FG

B) that can be used to bracket the correct value, thus the giving the methodology its own
“self-checking” mechanism. While with TI, an ideal gas is integrated by gradually changing
the potential energy parameters to their final values, the HSMC(MD) methods, on the other
hand, are quite different. The absolute free energy is obtained, in principle, by reconstructing
a single configuration, i.e., placing its molecules gradually into their positions using transition
probabilities. Therefore, the HSMC(MD) methods constitute new research tools independent
of TI and related methods, which enables one to calculate F by analyzing a given MC or MD
sample. HSMC(MD) is general and can be applied to a variety of systems. However, clearly
the implementation of HSMC(MD) is somewhat more complex than TI.

This methodology is expected to be useful in particular for protein systems. Thus, peptides and
segments of proteins such as surface loops are typically flexible populating several microstates
in thermodynamic equilibrium (a microstate is defined by the local conformational fluctuations
around a structure such as the α-helical structure of a peptide). Calculating the free energies
(hence the relative populations) of such microstates is important in structural biology, however,
it becomes an extremely difficult task to achieve with the conventional methods. HSMC(MD)
has been applied successfully to peptides in vacuum and a recent study has shown that
differences ΔFm,n = Fm −Fn between microstates can be obtained with high accuracy already
for limited computational investments (small Mα

MD values) due to the fact that systematic
errors in Fm and Fn are similar and they are cancelled in Δ Fm,n. We intend to apply HSMD to
a loop capped with water molecules where the system is simulated by MD. In this case the loop
is reconstructed initially in the presence of moving waters, and the configuration of the water
molecules is reconstructed next in the presence of a “frozen” loop structure. The latter
reconstruction can be carried out by HSMC(MD)-FV described here. Because our main interest
is in free energy differences we expect the required computer time for calculating Δ Fm,n for
water to be significantly smaller than that that would be required for a reasonable accuracy of
the absolute values, Fm and Fn themselves.

White and Meirovitch Page 17

J Chem Phys. Author manuscript; available in PMC 2007 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgements

This work was supported by NIH grants R01 GM61916 and R01 GM66090

References
1. Beveridge DL, DiCapua FM. Annu Rev Biophys Biophys Chem 1989;18:431. [PubMed: 2660832]
2. Kollman PA. Chem Rev 1993;93:2395.
3. Jorgensen WL. Acc Chem Res 1989;22:184.
4. Straatsma TP, McCammon JA. Annu Rev Phys Chem 1992;43:407.
5. Meirovitch, H. Reviews in Computational Chemistry. Lipkowitz, Kenny B.; Boyd, Donald B., editors.

12. Wiley; New York: 1998. p. 1
6. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. J Chem Phys 1953;21:1087.
7. Alder BJ, Wainwright TE. J Chem Phys 1959;31:459.
8. McCammon JA, Gelin BR, Karplus M. Nature 1977;267:585. [PubMed: 301613]
9. Meirovitch H. Chem Phys Lett 1977;45:389.
10. Meirovitch H. Phys Rev B 1984;30:2866.
11. Meirovitch H, Vásquez M, Scheraga HA. Biopolymers 1987;26:651. [PubMed: 3593889]
12. Meirovitch H, Koerber SC, Rivier J, Hagler AT. Biopolymers 1994;34:815. [PubMed: 8054467]
13. Chorin AJ. Phys Fluids 1996;8:2656.
14. Meirovitch H. J Phys A 1983;16:839.
15. Meirovitch H. Phys Rev A 1985;32:3709. [PubMed: 9896540]
16. Meirovitch H. J Chem Phys 1999;111:7215.
17. Szarecka A, White RP, Meirovitch H. J Chem Phys 2003;119:12084.
18. Meirovitch H. J Chem Phys 2001;114:3859.
19. White RP, Meirovitch H. J Chem Phys 2003;119:12096.
20. White RP, Meirovitch H. Proc Natl Acad Sci USA 2004;101:9235. [PubMed: 15197270]
21. White RP, Meirovitch H. J Chem Phys 2004;121:10889. [PubMed: 15634040]
22. Cheluvaraja S, Meirovitch H. Proc Natl Acad Sci USA 2004;101:9241. [PubMed: 15197271]
23. Cheluvaraja S, Meirovitch H. J Chem Phys 2004;122:054903-1.
24. Cheluvaraja S, Meirovitch H. J Phys Chem B 2004;109:21963. [PubMed: 16853854]
25. White RP, Jason Funt, Meirovitch H. Chem Phys Lett 2005;410:430. [PubMed: 16912812]
26. White RP, Meirovitch H. J Chem Phys 2005;123:214908-1. [PubMed: 16356071]
27. Meirovitch H, Alexandrowicz Z. J Stat Phys 1976;15:123.
28. Gibbs, W. Elementary Principles in Statistical Mechanics. Chapter XI. Yale University Press; 1902.
29. Li Z, Scheraga HA. J Phys Chem 1988;92:2633.
30. Coldwell RL. Phys Rev A 1973;7:270.
31. Gosling EM, Singer K. Pure Appl Chem 1970;22:303.
32. Henchman RH. J Chem Phys 2003;119:400.
33. Allen, MP.; Tildesley, DJ. Computer simulation of liquids. Clarenden Press, Oxford; 1987.
34. Owicki, JC. Computer modeling of matter. In: Lykos, P., editor. ACS Symposium Series. 86.

American Chemical Society; Washington: 1978. p. 159
35. Jorgensen WL. J Phys Chem 1983;87:5304.
36. Owicki JC, Scheraga HA. Chem Phys Lett 1977;47:600.
37. Swope WC, Andersen HC, Berens PH, Wilson KR. J Chem Phys 1982;76:637.
38. Andersen HC. J Chem Phys 1980;72:2384.
39. Torrie GM, Valleau JP. Chem Phys Lett 1974;28:578.
40. Torrie GM, Valleau JP. J Comp Phys 1977;23:187.
41. Levesque D, Verlet L. Phys Rev 1969;182:307.
42. Mezei M. Mol Simul 1989;2:201.

White and Meirovitch Page 18

J Chem Phys. Author manuscript; available in PMC 2007 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



43. Johnson JK, Zollweg JA, Gubbins KE. Mol Phys 1993;78:591.
44. Zacharias M, Straatsma TP, McCammon JA. JChem Phys 1994;100:9025.

White and Meirovitch Page 19

J Chem Phys. Author manuscript; available in PMC 2007 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 1.
A two-dimensional (2D) illustration of the main simulation box at the kth step of the HSMC-
EV reconstruction. The 2D “volume” is divided into cells, where k−1 of them have already
been considered in previous steps (starting from the upper left corner). These k−1 cells comprise
the “past volume” (the region above the heavy lines) which contains previously treated fixed
atoms that are denoted by full black circles defined by the van der Waals radius. This region
is excluded from the moveable future atoms (denoted by full grey circles) which are thus
simulated in the “future volume” below the heavy lines, while in the presence of the fixed
atoms. The future atoms can visit the target cell k (depicted by dotted lines) and their counts
in this cell lead to the transition probability of an empty cell or the transition probability density
of an occupied one. Note that for the case of an occupied target cell, counts are actually
accumulated for visitations to a smaller region, Vcube (see text) located inside the target cell
but not shown in the figure. For the case of HSMC(MD)-FV, the black atoms are again fixed,
however, the volume is not partitioned into cells, and the (centers of the) grey atoms would be
allowed to move above the heavy lines.
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Fig 2.
Free energy bounds as a function of computational time for liquid argon: comparison of HSMC-
FV and HSMC-EV. The HSMC run length on the horizontal axis is given in CPU hours of
computational time (AMD 2400) per reconstructed configuration. Shown for both methods are
the free energy lower bound FA, and the upper bound, which is the average of FB and FG

B.
The diamonds represent the results for HSMC-FV, while the triangles correspond to HSMC-
EV. Free energies are given as Ac/εN, where Ac is the configurational free energy defined in
Eq. (20), ε is the standard Lennard-Jones energy parameter, and N is the number of atoms.
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Fig 3.
Free energy bounds as a function of computational time for liquid argon: comparison of
HSMD-FV and HSMC-EV. The HSMC(MD) run length on the horizontal axis is given in CPU
hours of computational time (AMD 2400) per reconstructed configuration. Shown for both
methods are the free energy lower bound FA, and the upper bound, which is the average of
FB and FG

B. The diamonds represent the results for HSMD-FV, while the triangles correspond
to HSMC-EV. Free energies are given as Ac/εN, where Ac is the configurational free energy
defined in Eq. (20), ε is the standard Lennard-Jones energy parameter, and N is the number of
atoms.
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Table I
HSMD and HSMC free energy results for liquid argon.a

Mα
MC(MD) -FA σA -FB -FG

B -FM -FG
M -FD R n

HSMC-EV - Explicit Treatment of Excluded Volume
24 ×105 4.132 (1) 0.0330 (5) 4.064 (4) 4.046 (3) 4.098 (4) 4.089 (2) 4.096 (3) 0.11 581
48 ×105 4.117 (1) 0.0224 (5) 4.079 (4) 4.077 (2) 4.098 (4) 4.097 (1) 4.098 (3) 0.19 495
96 ×105 4.1085 (8) 0.0167 (5) 4.087 (3) 4.086 (2) 4.098 (3) 4.097 (1) 4.097 (2) 0.38 459
240 ×105 4.1046 (5) 0.0105 (5) 4.096 (2) 4.096 (1) 4.100 (2) 4.1002 (7) 4.100 (1) 0.53 371
480 ×105 4.1025 (5) 0.0078 (3) 4.097 (1) 4.0976 (6) 4.100 (1) 4.1001 (5) 4.1000 (8) 0.60 244
960 ×105 4.1019 (4) 0.0053 (5) 4.099 (1) 4.0997 (6) 4.100 (1) 4.1008 (5) 4.1007 (8) 0.76 174

-FTI 4.100 (1)
HSMC-FV - Free Volume Treatment

18 ×105 4.119 (1) 0.0231 (9) 4.084 (1) 4.076 (4) 4.1014 (8) 4.097 (2) 4.0994 (9) 0.27 531
36 ×105 4.1109 (8) 0.0177 (5) 4.090 (1) 4.086 (2) 4.1006 (7) 4.098 (1) 4.0997 (7) 0.37 484
72 ×105 4.1062 (6) 0.0135 (6) 4.0911 (7) 4.092 (1) 4.0987 (5) 4.0990 (9) 4.0987 (6) 0.40 575
180 ×105 4.1016 (5) 0.0097 (3) 4.0930 (7) 4.0941 (7) 4.0973 (4) 4.0978 (5) 4.0975 (5) 0.52 412
360 ×105 4.1003 (4) 0.0083 (3) 4.0935 (8) 4.0949 (6) 4.0969 (4) 4.0976 (5) 4.0971 (6) 0.61 414
720 ×105 4.0998 (4) 0.0071 (4) 4.0946 (8) 4.0958 (6) 4.0972 (5) 4.0978 (5) 4.0974 (6) 0.59 251

-FTI 4.100 (1)
HSMD-FV - Free Volume Treatment

1 ×107 4.146 (2) 0.036 (2) 4.082 (3) 4.04 (1) 4.114 (2) 4.094 (5) 4.106 (3) 0.15 475
2 ×107 4.122 (1) 0.0247 (5) 4.081 (3) 4.073 (2) 4.1016 (9) 4.098 (2) 4.100 (1) 0.20 464
4 ×107 4.1095 (9) 0.0189 (4) 4.086 (2) 4.081 (2) 4.0979 (9) 4.095 (1) 4.0968 (9) 0.37 471
10 ×107 4.1041 (7) 0.0144 (4) 4.089 (1) 4.088 (1) 4.0963 (7) 4.0958 (8) 4.0960 (9) 0.41 480
20 ×107 4.1017 (7) 0.0112 (5) 4.0922 (9) 4.092 (1) 4.0969 (6) 4.0967 (9) 4.0968 (7) 0.54 241
20 ×107* 4.0996 (6) 0.0097 (4) 4.0921 (7) 4.0921 (9) 4.0958 (5) 4.0959 (7) 4.0958 (6) 0.60 242
−FTI 4.100 (1)

a
N = 64 is the number of atoms, T = 96.53 K is the temperature, ρ* = Nσ3/V = 0.846, the reduced density, where V is the volume and σ is the standard

Lennard Jones distance parameter. Free energy values are given as Ac/εN where Ac is the configurational free energy [Eq. (20)] and ε is the standard

Lennard-Jones energy parameter. FTI was obtained by thermodynamic integration. FA [Eq. (7)] is a lower bound of the free energy and σA [Eq. (8)] is

its fluctuation. FB [Eq. (10)] is an upper bound and FGB [Eq. (12)] is its corresponding Gaussian approximation. FM [Eq. (13)] and FGM [Eq. (14)] are

the averages of FA with FB and FGB, respectively. FD [Eq. (15)] is the direct estimate for the free energy. R [Eq. (11)] is the acceptance rate for the

reversed-Schmidt procedure. MαMC is the average number of MC steps per atom, per reconstructed configuration. MαMD is the average number of MD
steps per configuration, where the “*” in the last row corresponds to a 10 fs time step. (The other results are for a 5fs time step.) n is the number of
configurations analyzed (the sample size), where a single HSMC(MD) reconstruction was performed on each configuration. The statistical error appears

in parenthesis; for example, 4.098(3) = 4.098±0.003. It is noted that FA and σA are reported here as per atom quantities, however, Eq. (12) as written for

FGB requires these quantities to be for the system as a whole. (See Ref. 21.) Thus the values given here must be multiplied by N before using Eqs. (12)

and (14) for FGB and FGM, respectively.
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