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Abstract

Current level-set based approaches for segmenting a large number of objects are computationally
expensive since they require a unique level set per object (the N-level set paradigm), or TlogoN1
level sets when using a multiphase interface tracking formulation. Incorporating energy-based
coupling constraints to control the topological interactions between level sets further increases the
computational cost to O(N2). We propose a new approach, with dramatic computational savings,
that requires only four, or fewer, level sets for an arbitrary number of similar objects (like cells)
using the Delaunay graph to capture spatial relationships. Even more significantly, the coupling
constraints (energy-based and topological) are incorporated using just constant O(1) complexity.
The explicit topological coupling constraint, based on predicting contour collisions between
adjacent level sets, is developed to further prevent false merging or absorption of neighboring
cells, and also reduce fragmentation during level set evolution. The proposed four-color level set
algorithm is used to efficiently and accurately segment hundreds of individual epithelial cells
within a moving monolayer sheet from time-lapse images of in vitro wound healing without any
false merging of cells.

1 Introduction

High-throughput content screening using cell image-based assays offers a powerful new tool
for understanding the chemical biology of complex cellular processes and offers
opportunities for identifying new targets in drug discovery [1]. Image-based live-cell assay
experiments need to image and analyze hundreds of thousands of images collected over a
short period of time using automated high speed microscopy data acquisition [2]. Since tens
of thousands of cells typically need to be screened, highly reliable image analysis algorithms
are of critical importance. One fundamental task of automated screening systems is accurate
cell segmentation that often precedes other analyses such as cell morphology, tracking and
behavior. Since cells undergo complex changes during the cell division process, identifying
and segmenting hundreds of closely interacting cells per frame is a challenging task. Cells
are also densely clustered due to spatiotemporal sampling and instrumentation cost trade-
offs. The accurate, scalable, and computationally efficient segmentation of closely grouped
cells, without distinct edges, that approach, touch or overlap each other and whose nuclei
become more indistinct at the start of mitosis is the focus of this paper.

Level set based image segmentation techniques [3], in comparison to other algorithms, are
well suited to segment a large (unknown) number of deformable but characteristically
similar objects (in terms of intensity variation), like cells. Level set methods, adapted to
image sequences, are versatile and able to readily adapt to indistinct cell boundaries,
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appearing or disappearing cells, complex cell shape changes over time, global illumination
or focus changes, background motion and non-stationary noise processes.

The two-phase Chan and Vese level set algorithm which segments an image into two sets of
possibly disjoint regions, by minimizing a simplified Mumford-Shah functional [4], is ideal
for the segmentation of cell image sequences or other sequences in which the intensities or
textures of all foreground objects in the images are nearly the same [5]. However, if multiple
cells are overlapping, touching or in close proximity to each other, level set methods will
tend to merge adjacent contours into a single object (as shown in Fig. 1), which leads to
difficulties when tracking individual cells. In order to prevent the merging of cells during
tracking, an implicit pair-wise region-based coupling constraint was introduced within the
level set and parametric snake-based segmentation frameworks by Zhang et al., [6], Dufour
etal., [7] and Zimmer and Olivo-Marin [8]. The critical a priori assumption that cells do not
merge (which is mostly accurate) is used to guide the curve evolution process during
segmentation. Without this coupling constraint, cells that are properly segmented in previous
frames may get merged with other cells in subsequent frames. The proposed graph vertex
coloring (four-color) level set method uses implicit active contours, so we focus our
comparison to the coupled geometric level set approach [6].

In [6], the first frame of the image sequence is segmented into N-connected components.
Each object (cell) is then assigned a unique level set leading to an N-level set paradigm.
These level sets are subsequently used to track the cells throughout the image sequence. The
energy functional, Eps(Cin, Cout» @), Used to evolve N — coupled level sets, with # =0, is
shown below [6]:

N P \2
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Here, ® ={ ¢1, 09, ..., oN } represents N —level sets associated with N cells in the image; Ci
represents the average intensities of cells for g; > 0 while ¢, is the average intensity of the
background?. The first and second terms are homogeneity measures of the foregrounds and
background of all level sets. The third term controls the lengths of interfaces ¢; = 0, and
minimizes the length of all level sets. The fourth term of the functional penalizes pair-wise
couplings or overlaps between level sets, while the last term enforces the constraint of | Vgj|
=1, thus helping us avoid explicit redistancing of level sets during the evolution process [9].
The constants win, tout, v, ¥ @nd # are weights associated with each of the terms.

However, the coupled level set algorithm of Zhang et al., is computationally expensive and
scales as the square of the number of objects (cells) in the frame. Since each frame may have
hundreds to thousands of cells, speed of the algorithm for high-throughput screening studies
is extremely important. Trying to evolve thousands of level sets by solving thousands of
separate partial differential equations with millions of coupling interaction terms is currently
impractical or too expensive even using specialized hardware or parallel processing
computing clusters. The number of level sets can be reduced from N to lNogoN1using a

IThe region exterior to all level sets indicates the background.
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multiphase Vese and Chan level set segmentation algorithm, as described in [10]. However,
there appears to be no mechanism to define spatial coupling constraints between the multiple
phases. Each phase segments a set of objects with similar gray-level intensities. So, if two
cells touch or overlap each other they will be associated with the same phase, and hence
would get merged.

2 Four-Color Level Set Algorithm with Coupling Constraints

In order to improve computational efficiency, we want to take advantage of the fact that
objects of interest (i.e., cell nuclei) have similar intensity characteristics. In addition, each
object has only a limited number of neighbors compared to the total number of objects in the
frame. We want to divide the N objects into k independent sets (or k-colors ) such that
objects within each set are not neighbors, and for a given object its clique of neighbors do
not share the color of the given object (i.e., are in different independent sets). Hence, in
order to prevent cell merges, the first task is to assign cells into a small number of
independent sets (i.e., separate colors or level sets). In this scenario:

What is the minimum number of “colors”, k, that need to be assigned, so that no
two neighboring cells have the same “color”?

Representing a segmentation as a graph in which cells are vertices, and the adjacency
relationships are edges, the problem can be computationally solved using graph-vertex
coloring (i.e., graph chromaticity or k-coloring). For general graphs finding the minimum
value of k is an NP-complete problem. However, for planar graphs, the famous “Four-Color
Theorem” states that at most k = 4; any planar graph can be colored with at most four colors
such that no two neighboring vertices are assigned the same color [11,12,13]. Although for
some graphs k = 2, or 3, for most applications including biological cell segmentation
typically k = 4. Since four level sets are sufficient for 2D cell imaging studies, we setk =4
and do not search for a graph’s chromatic number.

Hence, we can now use Eq. 1, with N = 4 and make the coupled level set functional
independent of, N, the number of objects (i.e., cells) in the image. This reduces the number
of coupling terms from O(N 2) to O(1) (i.e., a constant number of six coupling terms, per
level set, in the energy functional shown in Eqg. 1).

Using the realistic a priori assumption that all cells in the image have very similar
characteristics, enables us to assign a single average intensity cjy to all of them (i.e., Vi,

cjﬁ”:cm). This is identical to the two-phase Chan and Vese level set algorithm with just one
foreground [4], and more efficient than [6] which requires computing N average intensities.

The four Euler-Lagrange evolution equations associated with the minimization of Eq. 1 are
as follows (i=1, 2, 3, 4):

doi 9 4
%= — 5(¢1) { pin(T=CL) —tourI—Cou)* Il (1-Hgp)
J=1j#

vain (387) 47 3, e | on i (35)
Jj=i+1 (2)

where, A is the Laplacian operator. In our implementation of the energy functional shown in
Eqg. 1, we use regularized Heaviside and Dirac-delta functions [4].
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Computing a single average cjy for all objects helps us in randomly associating cells with
different level set functions, subject to the four-color criterion being satisfied. Thus, cells
associated with a “red” level set in a previous frame, can be associated with a “blue” level
set in a subsequent frame. It is necessary to “re-color” the cells at the beginning of the
iteration process, as positions of cells may change during the evolution process.

In addition to the energy-based coupling term of Eq. 1 to penalize overlaps between level
sets, we also use an explicit topological technique to penalize such overlaps. First, we
compute d(pj); i € [1,4]. As we use a narrow-band approach (i.e., d(¢i) > Sthresh ) t0 Update
the level set curves, we check the saliency of d(g;) i.e., d(pi) > d(gj); j # i to identify pixels
on the front of the current level set that overlaps the narrow-band fronts of other level sets.
A pixel on the front of a current level set is updated only if its saliency is highest.
Topological “collisions” between adjacent cells are detected in this manner and the
evolution of the associated level sets near the colliding fronts are stopped (see Fig. 3).

The four-color level set segmentation algorithm is given below:

1. Initialize the segmentation process using level lines [14], and applied to the starting
image. Isolate cells that may be touching or very close to each other to produce the
segmentation mask (used in step 4).

2. Apply steps 3 to 8 for each frame f=1...N

3. To speed up convergence project the segmentation mask (i.e., converged level set)
from the previous frame as an initial estimate (c.f. [14,15]).

4. Use the binary segmentation mask to extract connected components, their
centroids, and associated (planar) adjacency or neighborhood graph such as the
Delaunay triangulation (c.f. [16]). Apply a graph-vertex coloring algorithm (c.f.
[17]) to partition the cells into four independent sets and produce a colored
segmentation mask.

5. Associate one level set function with each mask color, and calculate the signed
distance functions for each of the four initial zero level sets (i.e., ¢! at evolution
time t=0).

6. For each frame apply K iterations, and

a. Update cjp and coy;

b. Evolve the level set within the narrow band of a cell using Euler-Lagrange
equations;

c. Enforce an explicit coupling rule that the narrow band of a cell, ¢; cannot
overlap with the level set of any of its neighbors.

7. Generate a binary mask from the four-color segmentation and apply morphological
filtering to remove spurious fragments.

8. Apply a spatially-adaptive level line-based coarse segmentation to the background
(i.e., complement of the dilated colored segmentation mask), in order to detect
objects not present in the previous frame (i.e., new objects entering the current
frame).

3 Results and Analysis

The proposed algorithm was tested on a wound healing image sequence consisting 136
frames, with dimensions of 300x300 pixels (40umx40um). The sequence used in our
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simulations was obtained using a monolayer of cultured porcine epithelial cells, as described
by Salaycik et al., in [18]. Images were sampled uniformly over a 9:00:48 hour period and
acquired using phase contrast microscopy with a 10x objective lens, at a resolution of
approximately 0.13um per pixel. We provide two sets of results for our four-color level set
algorithm with ujn = 1, gyt = 1, v = 0.004, y = 1.0, 5 = 0.1, while the number of iterations K
is set to 10 for each frame. A qualitative comparison in Fig. 4 shows the benefit of an
explicit topological coupling constraint on two representative frames (113 and 124) where
cell merges are correctly prevented. A quantitative comparison in Table 1 shows the benefit
of using the (energy-based and explicit) coupling constraints in preventing 46 manually
verified cell merge events. Splits, merges, appearances (App.) and disappearances (Disapp.)
in Table 1 were confirmed manually, since complete ground truth for such a complex
sequence is difficult and time consuming to construct. Appearances and disappearances
indicate cells that are not associated with cells in the previous or next frame, respectively
(i.e., cells entering or leaving the frame, or cell apoptosis). Splits and merges are cells that
can be associated with multiple parents or children in the trajectory, respectively (i.e., cell
mitosis or cell clumping). However, segmentation artifacts or tracking mis-associations can
produce any of these events. Cell splits, merges, appearances or disappearances can be due
to biological events, or segmentation and tracking errors [5]. A split-merge-split cycle which
is indicative of fragmentation during segmentation leads to a high score for split and merge
events. The results shown in Table 1, confirm the advantage of using coupling in our four-
color level set algorithm.

4 Conclusions

A novel four-color level set algorithm for segmenting N cells (objects) based on graph-
vertex coloring was presented, using the “active contour without edges” level set coupled
energy functional, combined with a new explicit topological object to object coupling
constraint. The four color level set algorithm dramatically reduces the computational cost of
incorporating coupling constraints to prevent cells (objects) from merging, from O(N ) level
sets and O(N2) coupling constraints to O(1) level sets and O(1) coupling constraints for N
objects. The reduction in the number of level sets (N to 4) and energy-based coupling
constraints in the Euler-Lagrange equations (N2 — N to 12), with 12 explicit topological
checks per pixel makes the proposed algorithm highly scalable, and computationally
resource efficient for segmenting a large number of complex shaped objects.
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Fig. 1.
Neighboring regions get merged with a single level set
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Fig. 2.
Topology of neighboring regions preserved with two coupled level sets
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Fig. 3.

[Left]Narrow-band fronts of cells belonging to three different “colors”. The corresponding
zero level set curves are given by ¢1 (“red”), ¢, (“green”), and @3 (“blue”), with the narrow
bands given by the region where (i) > Sthresh- At region A, the narrow band of the “red-
colored” cell intersects with the narrow band of the “blue-colored” cell. We enforce an
explicit rule that the narrow band of a cell, ¢; that is currently being updated cannot overlap
with a different colored cell (i.e., (j)). Hence, in region A, the narrow-band of the “red-
colored” cell (i.e., d(¢1) > Sthresh does not include those areas for which @3 > 0. A similar
rule is applied when updating the “blue-colored” cell, at region B. [Right] If a “collision”
occurs between cells (i.e., d(p) = d(¢j), i # j), then depending on which order the level sets
are updated, we may get either Cq protruding into C, or vice-versa.
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Fig. 4.

The left column indicates frame numbers 113 and 124 from the wound healing image
sequence. The central column depicts segmentation results when our four level-set
functional, without any explicit control on the evolution of level set functions. The right
column indicates segmentation results when using our four level-set algorithm, with explicit
coupling. The “color” masks are different in each frame due to a “re-coloring” process
applied at the beginning of the iteration process. Images have been scaled for display
purposes. The arrows in the central and right columns show where cell merge events occur.
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Table 1

Tracking results, when using the four-color level set algorithm, with and without coupling. With coupling
indicates both energy-based (y = 1.0) and explicit coupling constraints. Without coupling indicates (y = 0) as
well as no explicit coupling.

Objects Splits Merges App. Disapp.

Uncoupled 13986 73 46 24 35
Coupled 14570 34 0 21 30
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