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Abstract

Background: An important question is whether evolution favors properties such as mutational
robustness or evolvability that do not directly benefit any individual but can influence the course of
future evolution. Functionally similar proteins can differ substantially in their robustness to
mutations and capacity to evolve new functions, but it has remained unclear whether any of these
differences might be due to evolutionary selection for these properties.

Results: Here, we use laboratory experiments to demonstrate that evolution favors protein
mutational robustness if the evolving population is sufficiently large. We neutrally evolve
cytochrome P450 proteins under identical selection pressures and mutation rates in populations
of different sizes, and show that proteins from the larger and thus more polymorphic population
tend towards higher mutational robustness. Proteins from the larger population also evolve greater
stability, a biophysical property that is known to enhance both mutational robustness and
evolvability. The excess mutational robustness and stability is well described by mathematical
theory, and can be quantitatively related to the way that the proteins occupy their neutral network.

Conclusion: Our work is the first experimental demonstration of the general tendency of
evolution to favor mutational robustness and protein stability in highly polymorphic populations.
We suggest that this phenomenon could contribute to the mutational robustness and evolvability
of viruses and bacteria that exist in large populations.

Background

Proteins are quite tolerant of mutations, allowing evolu-
tion to produce highly diverged sequences that fold to
similar structures and perform conserved biochemical
functions [1,2]. However, proteins with nearly identical
structures and functions can differ in their robustness to
mutation [3-5], as well as in their capacity to acquire new

functions [5]. The fact that mutational robustness and
evolvability can vary among the functionally equivalent
proteins produced by natural sequence divergence makes
these properties important hidden dimensions in evolu-
tion - direct selection for protein function is blind to
them, yet they can play a crucial role in enabling future
evolution. Whether the evolutionary process somehow
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promotes the acquisition of mutational robustness and
evolvability therefore remains a major question [6-8].

Previous experiments have identified several specific evo-
lutionary conditions that can affect mutational robust-
ness. For example, genetic complementation decreases the
mutational robustness of viruses [9], while high mutation
rates favor mutational robustness in simulated digital
organisms [10]. However, theory [11] makes the much
broader - and previously experimentally untested - pre-
diction that extra mutational robustness will arise quite
generally in sufficiently large populations. This prediction
cannot be understood in the standard framework of
Kimura's neutral theory [12], because one of the usual
assumptions of the neutral theory is that mutational
robustness is constant. (Although Takahata [13] treated
the consequences of stochastically fluctuating neutrality
on the molecular clock, he did not describe how muta-
tional robustness might change systematically during evo-
lution.) However, changes in mutational robustness can
be described by envisioning evolution as occurring on
neutral networks, or sets of functionally equivalent pro-
teins that are connected by single mutational steps [14-
17]. In a seminal theoretical analysis of evolution on neu-
tral networks, van Nimwegen and coworkers [11] pre-
dicted that the extent of mutational robustness should
depend on the degree of population polymorphism. Here,
we briefly summarize their reasoning, as it motivates our
experimental work. We also refer the reader to chapter 16
of Wagner [8], which contains an excellent explanation of
the densely mathematical work of van Nimwegen and
coworkers [11].

If an evolving population is mostly monomorphic, then
each mutation is either lost or goes to fixation before
another mutation occurs. The population is therefore usu-
ally clustered at a single genotype and rarely experiences
mutations, meaning that selection does not distinguish
between genotypes of different mutational robustness.
The evolving population can be envisioned as a single
walker on the neutral network, and although the popula-
tion is less likely to move to poorly-connected nodes of
the neutral network, when it does reach such nodes it will
tend to remain "stuck" at them for long periods of time
(the population behaves as in the "blind ant" walk
described in [11]). As a result, a mostly monomorphic
population occupies all neutral network nodes with equal
probability [11]. By contrast, a highly polymorphic popu-
lation is always spread across many nodes of the neutral
network. When mutations occur, the members of the pop-
ulation at highly connected nodes have a better chance of
surviving, causing them to be favored by evolution and
increasing the average mutational robustness [11,17-20].
Specifically, a highly polymorphic population occupies
each node with a probability proportional to its eigenvec-
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tor centrality [11,17], a measure of how connected it is to
other connected nodes (a variant of eigenvector centrality
is used by Google's PageRank algorithm to rank a web-
page's importance in the network of internet links [21]).
Figure 1A illustrates how mostly monomorphic and
highly polymorphic populations are predicted to occupy
a neutral network. The preference of highly polymorphic
populations for more connected neutral network nodes
leads to an increase in the average mutational robustness,
as a node's connectivity is proportional to its robustness
to single mutations.

For proteins, this preference for excess mutational robust-
ness in highly polymorphic populations can also be seen
in the stabilities of the evolved proteins [22]. The basic
idea is that selection for protein function imposes a
roughly threshold requirement on protein stability, with
proteins able to perform their biochemical functions if,
and only if, they are more stable than some minimal
threshold. Extra stability beyond the threshold confers no
direct benefit on a protein's function, but it does increase
the protein's mutational robustness by allowing it to tol-
erate a wider range of destabilizing mutations (as has
been experimentally verified for three different enzymes
[3-5]). The preference for protein mutational robustness
in highly polymorphic populations is therefore predicted
to be manifested by higher average stability of proteins
evolving in such populations [22]. Figure 1B illustrates
how proteins from highly polymorphic populations are
predicted to be more stable than their counterparts from
mostly monomorphic populations. Note that the extent
of polymorphism depends on the product of the muta-
tion rate and population size, meaning that proteins from
populations of different sizes are predicted to evolve to
different levels of mutational robustness and stability
even if they experience the same mutation rate.

Results and discussion

Design of neutral evolution experiment

To test whether high population polymorphism drives an
increase in mutational robustness and protein stability,
we performed laboratory evolution experiments on cyto-
chrome P450 proteins. The basic idea was to neutrally
evolve P450s under a constant selection pressure in pop-
ulations that were either monomorphic or highly poly-
morphic, and observe whether the proteins evolved to
different levels of mutational robustness and stability. The
evolution experiments started with a P450 BM3 heme
domain that had been engineered to hydroxylate 12-p-
nitrophenoxydodecanoic acid (12-pNCA) [23]. We
imposed the selection criterion that Escherichia coli cells
expressing the P450 had to yield lysate with enough active
enzyme to hydroxylate a specified amount of 12-pNCA in
40 min. This criterion roughly corresponds to the case in
which an enzyme must catalyze a biochemically relevant
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Theoretical views of the evolution of protein muta-
tional robustness and stability. (A) Theory predicts that
a mostly monomorphic population is equally likely to occupy
any node of its neutral network, while a highly polymorphic
population will prefer more connected nodes [| I]. Node
sizes are drawn proportional to the occupation probabilities.
(B) Proteins evolving in a highly polymorphic population are
predicted to be more stable than their counterparts in a
mostly monomorphic population [22]. The histograms illus-
trate the distributions of stabilities for the two cases. The
increased stability is a biophysical manifestation of excess
mutational robustness, as more stable proteins are more
mutationally robust [3-5].

reaction at some minimal level in order for its host to sur-
vive. Note that other properties such as stability and
expression level can vary freely, provided that the criterion
for total activity is met.
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The properties of a neutrally evolving protein eventually
"equilibrate," much as the properties of an isolated phys-
ical system under some macroscopic constraint tend
towards the values that maximize the system's internal
entropy. For proteins, this usually means that stability,
expression, and activity drift towards their lowest tolera-
ble values, as the vast majority of random sequences do
not encode stable, well expressed enzymes (that is, natural
selection must work against sequence entropy to maintain
a functional protein) [22,24]. The initial P450 had been
engineered for maximal activity [23], meaning that it was
not equilibrated to the more mild selection criterion of
the experiments. We therefore neutrally evolved this ini-
tial P450 for 16 generations, introducing random muta-
tions with error-prone PCR and retaining all mutants that
met the selection criterion for total activity on 12-pNCA.
The procedure used for this equilibration evolution was
similar to that used for the polymorphic neutral evolution
described below. As expected, expression, stability, and
activity all dropped during the equilibration evolution. At
the end of the equilibration evolution, we chose a single
sequence as the parent for the neutral evolution experi-
ments. The gene encoding this parent sequence contained
29 nucleotide mutations and 13 amino acid mutations
relative to the initial P450 (Additional file 1).

We used this parent gene to begin three parallel sets of
neutral evolution experiments, which we named "mono-
morphic," "polymorphic,” and "unselected" (Figure 2).
The monomorphic experiments capture the case where
the population moves as a single entity, the polymorphic
experiment captures the case where the population
spreads across many sequences, and the unselected exper-
iments show how the gene evolves in the absence of selec-
tion for protein function. In all experiments, at each
generation we used error-prone PCR to introduce an aver-
age of 1.4 nucleotide mutations per P450 gene (Table 1).
The mutant genes were ligated into a plasmid and trans-
formed into E. coli [25], and transformants were selected
using the plasmid's antibiotic resistance marker. For the
unselected case, we randomly picked one of the mutants,
recovered the mutant gene with a plasmid mini-prep, and
used this mutant as the template for the next generation
of error-prone PCR. We performed four independent rep-
licates of unselected evolution, evolving each for 12 gen-
erations.

For the monomorphic and polymorphic populations, we
imposed the selection criterion that the P450s hydroxy-
late 12-pNCA with at least 75% of the total activity of the
original parent gene. We expressed the P450s in E. coli,
and then assayed the cell lysates for activity in a high-
throughput 96-well plate format. The total amount of
product produced by 80 pl of clarified lysate in 40 min
was compared to the median of four control wells con-
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taining the original parent P450 to determine if the
mutant met the selection criterion. The only difference
between the monomorphic and polymorphic experi-
ments was the size of the evolving populations. In the
monomorphic limit, each mutation is either lost or goes
to fixation before the next occurs. We enforced this evolu-
tionary dynamic by holding the population size to a sin-
gle protein sequence. At each generation, we assayed a
single mutant. If this mutant met the selection criterion,
then it was carried over to the next generation, corre-
sponding to a neutral mutation going to fixation. If the
mutant failed the selection criterion, then the population
stayed at the previous sequence for the next generation,
corresponding to a mutation lost to selection. The fact
that we retained the previous sequence when a nonfunc-
tional mutant was screened is critical, as it made the pro-
tocol correspond to the case of a mostly monomorphic
population where the genotype is unchanged if a non-
functional mutant is produced (if instead a functional var-
iant was selected at each generation, the protocol would
then correspond to the "myopic ant" walk of [11], and
would no longer reproduce the behavior of a mostly mon-
omorphic population). If all of the mutants assayed had
zero or one mutations, then this protocol would corre-
spond exactly to the "blind ant" walk of [11] or the Npu <<
1 equations of [22]. However, in order to achieve appreci-
able sequence evolution on a laboratory time scale, we
used a mutation rate that sometimes produced multiple
mutations in a generation. We mathematically describe
this situation in the Appendix; here we simply note that it
is possible to think of each generation as introducing a
single mutational event rather than a single mutation. We

polymorphic

Figure 2

monomorphic
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Table I: Error-prone PCR nucleotide mutation spectrum. The
spectrum was determined by sequencing the four final
(generation 12) sequences from the unselected population, as in
these sequences the mutations accumulate without constraint.
As has been previously noted for error-prone PCR with Taq
polymerase [3,5,27], the nucleotide error spectrum is biased
towards certain types of mutations.

Parameter Value
Total nucleotide mutations 67
% Synonymous mutations 25
Mutation types (%)

A>T, T—>A 19.4
A->CT->G 1.5
A->GT->C 64.2
Go>AC->ST 45
G->CC—H>G 0.0
GHo>T,C—>A 1.5
Frameshift 9.0

performed 22 independent replicates of monomorphic
evolution, evolving each for 25 generations.

In the polymorphic limit, the population spreads across
many sequences. To implement this experimentally, we
assayed 435 mutants at each generation. The selection cri-
terion was used to classify each mutant as functional or
nonfunctional. In neutral evolution, all functional
mutants reproduce with equal probability. We therefore
pooled equal volumes of stationary-phase cultures of each
functional mutant and recovered the pooled genes with a
mini-prep. The polymorphic evolution experiment there-
fore approaches the equations of [11,22], again with the

unsel ected

Outline of the neutral evolution experimental procedure. For the polymorphic population, error-prone PCR was used
to generate mutant P450 genes. These genes were ligated into a plasmid and transformed into E. coli. Individual mutants (435)
were picked, expressed in E. coli, and assayed for enzymatic activity. All mutants that met the selection criterion contributed an
equal amount of plasmid DNA as template for the next generation of error-prone PCR. The monomorphic populations were
treated similarly, except only a single mutant was assayed at each generation. If this mutant met the selection criterion then it
became the template for the next generation of error-prone PCR; otherwise at the next generation another colony was picked
from the same plate. In the unselected populations a single mutant was picked and used as the template for the next generation

of error-prone PCR.
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exception that a sequence might undergo multiple muta-
tions at a single generation. We give the equations describ-
ing this situation in the Appendix. The mutational
robustness of a sufficiently large population is expected to
evolve deterministically [11,22], so we only performed a
single polymorphic replicate (evidence that the experi-
ment was near the deterministic regime is seen below
from the fact that the mutational robustness was roughly
constant). Because mutations accumulate more rapidly in
the polymorphic experiments than the monomorphic
ones, we evolved the polymorphic population for 15 gen-
erations rather than 25.

Mutations and mutational robustness

Figure 3 shows how mutations accumulated during the
course of the neutral evolution experiments (full data are
given in Table 2 and Additional file 2). Because the unse-
lected protein populations evolve without constraint,
mutations accumulate at the same rate at which they are
introduced by error-prone PCR, 1.4 nucleotide mutations
per generation. Because selection eliminates mutations
that disrupt P450 activity, mutations accumulate more
slowly in the monomorphic and polymorphic popula-
tions. Mutations accumulate more rapidly in the poly-
morphic population than in the monomorphic
populations. This difference in rates is predicted by the
equations in the Appendix to be a consequence of the fact
that the polymorphic population is more mutationally
robust, and so can tolerate more of the possible muta-
tions.

To test directly whether the polymorphic population
evolves higher average mutational robustness, we meas-
ured the fraction of 435 random mutants that met the
selection criterion. Figure 4 shows that the polymorphic
population neutrally evolved to a markedly higher muta-
tional robustness than the monomorphic populations,
with 50 + 2% of the final polymorphic population
mutants continuing to function versus 39 + 2% for the
final monomorphic populations (Chi-square P-value of
10-3 that these values are the same). The only difference
between the two types of populations was their size, so
evolution has clearly favored mutational robustness in the
larger and thus more polymorphic population. This find-
ing represents the first experimental support for the pre-
diction that highly polymorphic populations evolve
excess mutational robustness [11].

Figure 4 also indicates that the experiments have pro-
ceeded for a sufficient number of generations for the
mutational robustness to equilibrate to its average value.
Such equilibration is important because the populations
all started from a single parent sequence, and so will take
some number of generations to lose their "memory" of
this starting sequence. Once this memory is lost, the
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Figure 3

Accumulation of nucleotide (<mnt>) and nonsynony-
mous ((m,,) mutations in the experimentally evolved
P450 populations. For the unselected and monomorphic
populations, numbers are the average over all replicates at
the indicated generation; for the polymorphic population
they are from a random sample, with sampling standard
error shown.

mutational robustness should remain relatively constant
around its average value, as appears to be the case in Fig-
ure 4. This figure also supports the notion that the poly-
morphic population is sufficiently large to be relatively
well described by the deterministic equations given in the
Appendix, as the fluctuations in its mutational robustness
are small relative to the overall difference compared to the
monomorphic populations.

Theory predicts that the excess mutational robustness of a
highly polymorphic protein population comes from
increased protein stability [22]. Because the P450 variants
unfold irreversibly, an equilibrium thermodynamic sta-
bility AG;cannot be measured. We therefore determined
stability to irreversible thermal and chemical denatura-
tion, two highly correlated measures of P450 stability that
have previously been shown to contribute to mutational
robustness [5] (see Additional files 3, 4, 5). Figure 5 shows
that proteins from the polymorphic population were in
fact more stable than their counterparts from the mono-
morphic population (statistical tests showing that this dif-
ference is significant are given in the figure legend). We
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Table 2: Neutral evolution robustness and mutation data. Each row represents a different generation, T. NA indicates that no
measurement was made. The <m_> and <m_,> are the average number of nucleotide mutations and nonsynonymous mutations,
respectively. Numbers in parentheses are total counts over the total samples. Subscripts indicate the population type: U for
unselected, P for polymorphic, and M for monomorphic. For the unselected and monomorphic populations, numbers represent

averages of all replicates. For the polymorphic population, numbers are for a random sample of functional mutants. <F>;and <F>,, are
the fraction of functional mutants out of 435 assayed.

T <mnt>U <maa>U <rnm:>P <rnua>P <n”m:>M <mau>M <|:>P <|:>M

0 0 0 0 0 0 0 0.48 (210/435) 0.48 (210/435)
| NA NA NA NA 0.1 (3/22) 0.3 (6/22) 0.48 (208/435) NA

2 NA NA NA NA 0.4 (9/22) 0.8 (17/22) 0.49 (215/435) NA

3 5.0 (20/4) 3.5 (14/4) 2.7 27/10) 1.4 (14/10) 1.0 (23/22) 0.4 (9/22) 0.49 (215/435) NA

4 NA NA NA NA 1.5 (32/22) 07 (15/22)  0.48 (208/435) NA

5 NA NA NA NA 2.2 (48/22) 1.1 (25/22) 0.45 (197/435) 0.43 (185/435)
6  9.8(39/4) 7.5 (30/4) 5.5 (55/10) 2.1 (21/10) 2.6 (58/22) 1.4(31/22)  0.46 (198/435) NA

7 NA NA NA NA 3.1 (69/22) 1.8(39/22)  0.52 (227/435) NA

8 NA NA NA NA 3.4 (74/22) 1.8 (40/22) 0.46 (200/435) NA

9 13.0(52/4) 103 (41/4) 6.7 (61/9) 3.1 (28/9) 3.7 (82/22) 2.1 (46/22)  0.47 (203/435) NA

10 NA NA NA NA 42 (92/22) 24 (52/22)  0.46 (199/435) 0.40 (175/435)
|| NA NA NA NA 46(102/22)  25(56/22)  0.48 (207/435) NA

12 168 (67/4) 125 (50/4) 7.8 (70/9) 3.3 (30/9) 49(107/22)  2.6(58/22)  0.52 (228/435) NA

13 NA NA NA NA 50(110/22)  27(60/22)  0.52 (227/435) NA

14 NA NA NA NA 53(116/22) 2.9 (64722)  0.50 (216/435) NA

5 NA NA 103 (227/22)  3.8(83/22)  5.6(123/22)  3.0(67/22)  0.50(219/435)  0.39 (171/435)
16 NA NA NA NA 5.8 (127/22) 3.0 (67/22) NA NA

17 NA NA NA NA 6.0 (133/22) 3.1 (69/22) NA NA

18 NA NA NA NA 63(137/22)  32(71/22) NA NA

19 NA NA NA NA 6.3 (138/22) 3.3 (72/22) NA NA

20 NA NA NA NA 6.6 (14522) 3.4 (75/22) NA 0.37 (160/435)
21 NA NA NA NA 6.9 (152/22) 3.6 (79/22) NA NA

22 NA NA NA NA 7.1 (156/22) 3.7 (81/22) NA NA

23 NA NA NA NA 7.2 (158/22) 3.7 (81/22) NA NA

24 NA NA NA NA 7.3 (161/22) 3.8 (83/22) NA NA

25 NA NA NA NA 7.7 (169/22) 4.0 (87/22) NA 0.39 (169/435)

also observed that proteins in the polymorphic popula-
tion tended to accumulate to higher levels in E. coli (Fig-
ure 5). Elevated expression could be a byproduct of
increased stability, or it could independently increase
mutational robustness by allowing the proteins to better
tolerate mutations that decrease codon adaptation or
reduce folding efficiency. Changes in P450 catalytic effi-
ciency did not appear to be a major mechanism for the
observed differences in mutational robustness, as we did
not see any evidence of systematic differences between the
polymorphic and monomorphic populations in the
number of 12-pNCA turnovers per enzyme (see the
detailed analysis in [26] and the Methods section of the
present article). However, it is certainly possible that addi-
tional unrecognized biophysical factors contributed to the
excess mutational robustness of the polymorphic popula-
tion, although no such factors were immediately obvious.

Interpretation in terms of the P450 neutral network

The higher mutational robustness of the polymorphic
population is due to the fact that it occupies the P450 gene
neutral network differently than the monomorphic popu-
lations. Measurements from the evolution experiments

can therefore be used to infer basic properties of the
underlying neutral network of P450 genes, as originally
noted by van Nimwegen and coworkers [11]. In the
Appendix, we derive approximations for the normalized
principal eigenvalue (v), and the normalized average con-
nectivity (v), of the neutral network, where in both cases
the normalization is obtained by dividing by the network
coordination number. We obtain (v}, = 0.51 and (v), =
0.35 for the P450 gene neutral network. Our ability to
consistently estimate these two parameters from four dif-
ferent experimental measurements supports the idea that
the theory that we elaborate in the Appendix appropri-
ately describes the experiments. The difference between
(v}, and (v), is a measure of the extent to which some P450
neutral network nodes have more connections than oth-
ers. We note that (v), is approximately equal to the expo-
nential decline parameter for the asymptotic decline in
the fraction of functional mutants with increasing num-
bers of random nucleotide mutations [3,27,28] (see
Appendix). Previous studies looking at this exponential
decline have reported (v), = 0.7 for subtilisin [27], (v), =
0.7 for 3-methyladenine DNA glycosylase [28], and (v), =
0.7-0.8 for TEM1 B-lactamase [3]. These comparisons
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Polymorphic populations neutrally evolve a higher
average mutational robustness than monomorphic
populations. The fraction functional was determined by
assaying 435 mutants (average of 1.5 nucleotide mutations
per gene). Error bars show binomial standard error. For the
monomorphic population, numbers are the average over all
replicates.

suggest that P450 has a sparser neutral network (smaller
{v),) than these other proteins. We suspect, however, that
these earlier studies (one of which is our own) overesti-
mate (v), due to insufficient equilibration of the starting
sequence. We believe that the approach of the current
work is a more accurate method for determining (v),,
because the measurements are made after many muta-
tions have equilibrated the initial sequence. This
approach could be used in future experiments to compare

http://www.biomedcentral.com/1741-7007/5/29

the neutral network connectivities of proteins from differ-
ent families.

Conclusion

We have demonstrated that neutral evolution favors more
mutationally robust proteins when the evolving popula-
tion is highly polymorphic. Strikingly, the excess muta-
tional robustness is due only to population
polymorphism, and so will arise in any population of suf-
ficiently large size. Our work is the first experimental dem-
onstration of this phenomenon, which is predicted to
occur quite generally in neutrally evolving proteins and
nucleic acids [11]. Furthermore, we were able to identify
one of the biophysical factors underlying the increase in
mutational robustness by showing that proteins from the
highly polymorphic population are more stable. We rec-
ognize, however, that evolution in a biological context
will be more complex. In our experiments, fitness was
considered to be the P450's ability to be expressed in
active form by bacteria grown to saturation in an environ-
ment with plentiful nutrients. Biological fitness, however,
depends on numerous additional and subtle effects such
as the metabolic costs of protein synthesis or the burdens
imposed by misfolded molecules. Some mutations that
are neutral in the experiments might therefore have dele-
terious effects in a biological setting [29]. The experiments
nonetheless capture the overriding constraint that pro-
teins retain their biochemical functions. Our success in
quantitatively explaining the results supports the notion
that important aspects of protein evolution can be
described simply in terms of mutational effects on stabil-
ity [22,29].

An obvious question is whether evolution in nature favors
mutational robustness by the process we have demon-

polymorphic T
6 - monomorphic We—:"

number

38 40 42 44

0.4 0.6

Figure 5

[urea]so (M)

140
percent parental expression

0.8 1.0 20 60 100

More mutationally robust proteins are more stable. The P450s from the polymorphic population neutrally evolved
higher stability and expression levels than their counterparts from the monomorphic populations. The histograms show the
distributions for the final protein from all monomorphic replicates and for the same number of randomly chosen proteins from
the final polymorphic population. The plots show (left to right) the temperature at which half the protein irreversibly dena-
tured after 10 min (T5), the urea concentration at which half the protein denatured after 4 h ([urea]s(), and the expression
level relative to that of the original parental P450. The means are significantly different, with unequal variance t-test P-values of

0.02, 0.005, and 0.04, respectively.
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strated. Whether natural populations will evolve excess
mutational robustness in their proteins depends on
whether they are sufficiently polymorphic, which will be
the case if the product of their effective population size N
and per protein per generation mutation rate p is much
greater than one [11,12]. Accurately estimating Ny, which
is closely related to the widely used parameter 6 in popu-
lation genetics, for natural populations is difficult [30,31]
(note that as mutational robustness is a protein-wide
property, the relevant mutation rate is per protein, which
is ~ 102 to 103 larger than the per codon mutation rate).
For humans and other multicellular organisms, Nu is
probably too small [32] for their proteins to neutrally
evolve mutational robustness. But estimates [32,33] place
Nu~ 10 to 100 for typical-length proteins in bacteria, and
it is probably much higher for many viruses [34,35]. It
therefore is likely that many viral and some bacterial pro-
teins have evolved extra mutational robustness. It is
important to note that this type of mutational robustness
is due to changes in the internal properties (such as stabil-
ity) of the proteins, and is limited by the "entropic force"
caused by the constant rain of destabilizing mutations
[22,24] rather than by any direct organismal fitness cost of
maintaining the mutational robustness. By contrast, some
other mechanisms of mutational robustness (such as gene
redundancy) impose direct organismal fitness costs, and
so will not necessarily be favored in large populations
[36].

The fact that evolution favors protein mutational robust-
ness in sufficiently large populations might also contrib-
ute to adaptive evolution. Experiments have shown that
extra stability increases a protein's evolvability by allow-
ing it to tolerate a wider range of functionally beneficial
but destabilizing mutations [5]. A similar phenomenon
seems to occur in natural evolution, where functionally
neutral but stabilizing mutations can play a key role in
adaptive evolution by counterbalancing the destabilizing
effects of other functionally beneficial mutations [37].
Viruses and perhaps bacteria might thus benefit from
large population sizes and high mutation rates that drive
an increase in the mutational robustness and stability of
their proteins, which in turn enhances the capacity of
these proteins to rapidly change their sequences and
evolve new functions.

Methods

Equilibration evolution of the P450 protein

We began with a 21B3 P450 peroxygenase that had been
engineered for highly efficient hydroxylation of 12-pNCA
[23] (see Additional file 6). This P450 was not well equil-
ibrated to the constant selection criterion that we planned
to impose, because it had substantially higher total activ-
ity. We therefore neutrally evolved it for 16 generations in
order to create P450s that were better equilibrated to the
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selection criterion. We evolved two parallel populations,
which we named R1 and R2. The procedure was exactly
identical to that described below for the polymorphic evo-
lution with the following exceptions.

Starting sequence
The starting sequence for the equilibration evolution was
the 21B3 sequence.

Population size

Each of the two equilibration evolution populations had
a size of 174 sequences rather than the 435 used for the
polymorphic evolution.

Selection criterion
The sequences were required to have at least 75% of the
total activity of the 21B3 P450.

Mutation rate

The mutation rate for the equilibration evolution was
much higher than for the polymorphic evolution. The
error-prone PCR protocol used 200 pM manganese chlo-
ride (MnCl,), rather than the 25 pM used for the polymor-
phic evolution. We estimate that this error-prone PCR
protocol introduced ~ 4 nucleotide mutations per P450
gene at each generation during the equilibration evolu-
tion.

We performed 16 generations of equilibration evolution,
and then randomly selected 23 functional mutants from
each of the R1 and R2 populations (see Additional file 7).
We picked one of these mutants, R1-11, for use as the par-
ent for the neutral evolution experiments.

Detailed protocol for evolution experiments

We began with the R1-11 P450 BM3 heme domain variant
(see Additional file 1) cloned into the pCWori [25] plas-
mid with a 5' BamH1 and 3' EcoR1 site as described in [5].
The cloning primers were pCWori_for (5'-GAAACAG-
GATCCATCGATGCITAGGAGGTCAT-3") and
pCWori_rev_clone (5'-GCTCATGTTTGACAGCITAT-
CATCG-3'). We wused error-prone PCR to generate
mutants, taking great care to make the error-prone PCR
protocol repeatable by using a relatively small number of
thermal cycles. This was both to control the mutation rate
by ensuring that the reaction did not saturate the reagents,
which would cause the number of doublings to become
sensitive to the initial template concentration, and to
avoid the PCR-based recombination events that can occur
during with the last few thermal cycles of PCR reactions
[38,39]. The PCR reactions were 100 pl in volume, and
contained ~ 13 ng of plasmid template (corresponding to
~ 3 ng of template gene), 7 mM MgCl,, 1 x Applied Bio-
Systems PCR Buffer II without MgCl,, 25 uM MnCl,, 0.5
uM pCWori_for primer, 0.5 uM pCWori_rev primer, 200
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uM of dATP and dGTP, 500 um of dTTP and dCTP, and 5
units of Applied Biosystems AmpliTaq polymerase. The
reactions were run on the BLOCK setting of a M] Research
PCR machine with a program of 95°C for 2 min, then 15
cycles of (95°Cfor30s, 57°Cfor30s, 72°Cfor90s), and
then cooling to 4°C. This protocol yielded roughly 1-1.5
pg of product gene (as quantified by gel electrophoresis
versus a known standard), for a PCR efficiency of = 0.5.
Sequencing the unselected populations at the end of the
experiment indicated that this protocol introduced an
average of 1.4 + 0.2 nucleotide mutations, with the nucle-
otide error-spectrum shown in Table 1. Because the
number of PCR doublings is large compared the average
mutation rate, the distribution of mutations among
sequences should be well described by the Poisson distri-
bution [40,41].

The mutant genes from the error-prone PCR were purified
over a ZymoResearch DNA clean and concentrator col-
umn, and digested at 37°C with EcoR1 and BamH1. The
digested genes were then purified from an agarose gel with
ZymoResearch DNA gel extraction columns, and ligated
into pCWori plasmid that had been digested with BamH1
and EcoR1 and dephosphorylated. The ligations were
transformed into  electro-competent  catalase-free
Escherichia coli [25] (the catalase is removed because it
breaks down the hydrogen peroxide utilized by the P450
peroxygenase), plated on Luria Broth (LB) plates contain-
ing 100 pg/ml of ampicillin to select for the plasmid's
antibiotic resistance marker, and grown at 37° C. Transfor-
mation of a control ligation reaction without any digested
gene yielded at least 100-fold fewer colonies, indicating
that the rate of plasmid self-ligation was less than one per-
cent.

Individual mutant colonies from the plates were picked
into 96-well 2 ml deep-well plates containing 400 pl of LB
supplemented with 100 pg/ml ampicillin. Each plate con-
tained four parental control wells with cells carrying the
parent R1-11 gene, four null control wells with cells carry-
ing the pCWori plasmid without a P450 gene, and a non-
inoculated well to check for contamination. For the poly-
morphic population, we picked five such plates with all
87 other wells containing different mutants for a total
population size of 5 x 87 = 435 mutants. For the 22 mon-
omorphic populations (we began with 24 populations
but two had to be discarded due to contamination), we
picked a single colony for growth and screening. For the
unselected populations we picked a single colony for
growth without screening. The LB deep-well plates were
grown for 16-20 h at 30°C, 210 rpm, and 80% relative
humidity in a Kuhner humidified shaker. To express the
P450 mutants, we prepared 2 ml deep-well plates contain-
ing 400 pl per well of terrific broth (TB) supplemented
with 200 uM isopropyl B-d-thiogalactoside (IPTG), 100
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pg/ml ampicillin, and 500 uM of 8-aminolevulinic acid.
We used a pipetting robot to inoculate these TB plates
with 100 pl from the LB plates. We stored the LB deep-well
plates at 4°C, and grew the TB deep-well plates in the
humidified shaker at 30°C, 210 rpm, and 80% relative
humidity for 22-24 h. After this growth, the cells were
harvested by centrifuging the TB deep-well plates at 4 000
g for 5 min and discarding the liquid. The cell pellets were
flash-frozen in liquid nitrogen to aid in cell lysis.

To lyse the cells for the assays, we resuspended the cell pel-
lets in 300 pl of 100 mM [4-(2-hydroxyethyl)-1-pipera-
zinepropanesulfonic acid] (EPPS) (pH 8.2) with 0.5 mg/
ml lysozyme and 4 units/ml of deoxyribonuclease by
pipetting 40 times with the pipetting robot. We then incu-
bated the plates at 37°C for 30 min, again resuspended
with the pipetting robot, and put back at 37°C for an
additional 30 min. We then pelleted the cell debris by cen-
trifugation at 6 000 g for 5 min at 4 °C. The pipetting robot
was used to dispense 80 pl of the clarified lysate into 96-
well microtiter plates (Rainin). We prepared a 6 x stock of
1.5 mM 12-pNCA in 36% dimethyl sulfoxide (DMSO)
and the EPPS buffer (the 12-pNCA was stored in the
DMSO solution and combined with the buffer immedi-
ately before use). We used a multichannel pipette to add
20 pl of this substrate stock to each well of the microtiter
plate. We briefly mixed the plates using the shake setting
of a 96-well plate spectrophotometer, and read an absorb-
ance baseline at 398 nm. We then immediately added 20
pl of a freshly prepared solution of 24 mM hydrogen per-
oxide in the EPPS buffer to initiate the reaction, and
mixed again. The final reaction conditions were therefore
the EPPS buffer with 6% DMSO, 4 mM hydrogen perox-
ide, and 250 uM 12-pNCA. After 40 min we quantified the
amount of enzymatic product by the increase in absorb-
ance at 398 nm. This absorbance increase is due to the 4-
nitrophenolate molecule released after the P450 hydroxy-
lates the twelfth carbon of the 12-pNCA molecule [23]. To
score the mutants as functional or nonfunctional, we
compared their gain in absorbance minus the median null
control reading to that of the median parental control
reading minus the median null control reading. All
mutants that had at least 75% of the parental gain were
scored as functional, all other mutants were scored as
nonfunctional.

We used the information from these assays to select the
parents for the next generation. For the unselected popu-
lation we did not require the mutants to be functional, so
the selected mutant was used to start a 4 ml culture of LB
with 100 pg/ml ampicillin, and the plasmid DNA was har-
vested with a mini-prep. This plasmid DNA was used as
the template for the next round of error-prone PCR. There-
fore, after the first generation the four unselected repli-
cates diverged into four separate error-prone PCR
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reactions. These unselected replicates were evolved for a
total of 12 generations, and were sequenced at every third
generation.

For the polymorphic population, all mutants that were
functional contributed an equal amount of plasmid DNA
as template for the next generation. In order to do this, we
collected 50 ul of the culture from the LB deep-well plate
for each mutant that was scored as functional. All of these
LB aliquots were pooled, and then the plasmid DNA was
collected with a mini-prep. The pool of plasmid DNA was
used as template for the next generation's error-prone PCR
reactions. We performed 15 generations of evolution for
this polymorphic population. Note that at each genera-
tion we are assaying 435 mutants as part of the evolution-
ary procedure, so this provides information on
mutational robustness. At every third generation, we also
selected a random sample of functional mutants for
sequencing. After 15 generations, we randomly selected
22 mutants for stability measurements and sequencing
analysis. The random selections were made from all func-
tional mutants with the Python computer language ran-
dom number generator.

For the monomorphic populations, at each generation we
assayed just a single mutant. If that mutant was nonfunc-
tional, then at that generation the population stayed at its
original sequence. In that case, for the next generation we
simply picked a new mutant from the previous genera-
tion's plate of transformed mutants. If the mutant we
screened was functional, then that mutant represented the
new population. We therefore grew a 4 ml LB culture with
100 pg/ml of ampicillin, and collected the plasmid DNA
with a mini-prep. That plasmid DNA was then used as the
template for the next generation's error-prone PCR reac-
tion. We thus had 22 (originally 24, two were subse-
quently contaminated) independent monomorphic
populations that were being evolved in parallel. Each was
evolved for 25 generations, and at the end of these 25 gen-
erations we measured the stability of the final sequence of
each population. Each time an assayed mutant was func-
tional, we sequenced the new P450 gene. We also meas-
ured the average mutational robustness of the
monomorphic populations at every fifth generation. To
do this, we did a pooled mini-prep of equal volumes of LB
cultures of all 22 replicates to obtain a equal mix of plas-
mid DNA. We then performed error-prone PCR on this
mix, and assayed 435 mutants to measure the fraction
functional (see Additional file 2).

Test for recombination during error-prone PCR

During the polymorphic population evolution, we per-
formed error-prone PCR on a mix of different plasmids. It
is common for PCR on mixed templates to lead to recom-
bination events during the reaction [38,39]. We
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attempted to reduce this recombination by using a small
number of thermal cycles. However, in order to test for
recombination, we analyzed the sequences of the final 22
selected members of the polymorphic population. There
are a variety of statistical tests to detect recombination in
a set of sequences. A comparison of these tests by Posada
[42] found that the Max-Chi2? method developed by John
Maynard Smith [43] performs well. A publicly available
implementation of this method [44] is available from
[45]. We used this implementation to analyze the 22 final
polymorphic sequences, and the resulting P-value was
0.29 after 100 random permutations, indicating that there
is not significant recombination.

Measurement of P450 stabilities

We measured the stabilities to both irreversible thermal
and irreversible urea denaturation of the final (generation
25) member of each monomorphic population, as well as
of the 22 randomly selected members of the polymorphic
population. As discussed in the supplementary informa-
tion of [5], cytochrome P450 BM3 heme domains (and
indeed most P450s) denature irreversibly, forcing us to
use resistance to irreversible denaturation to quantify pro-
tein stability. The first stability measure is the Ts,, defined
as the temperature at which half of the protein is dena-
tured after a 10 min incubation. The second stability
measure is the [urea]s,, defined as the urea concentration
at which half of the protein denatures after a 4 h room-
temperature incubation. Each set of measurements (those
of T, and [urea]s,) was performed on all of the mutants
in the same day, and each mutant was treated identically.
Therefore, it is possible to make accurate comparisons of
the relative values of the measurements within the data
set. However, the absolute values of the T, and [urea]s,
values might be less accurate. Therefore, care should be
taken in comparing the absolute value of these measure-
ments to those of other studies (such as [5]).

Both the T5;and [urea]s, measurements were performed
in clarified cell lysate. The protein was expressed using cat-
alase-free E. coli [25] containing the encoding gene on the
IPTG inducible pCWori [25] plasmid. We used freshly
streaked cells to inoculate 2 ml cultures of LB supple-
mented with 100 pg/ml of ampicillin, and grew these
starter cultures overnight with shaking at 37°C. We then
used 0.5 ml from these starter cultures to inoculate 1 litre
flasks containing 200 ml of TB supplemented with 100
pg/ml of ampicillin. The TB cultures were grown at 30°C
and 210 rpm until they reached an optical density at 600
nm of ~ 0.9, at which point IPTG and 8-aminolevulinic
acid were added to a final concentration of 0.5 mM each.
The cultures were grown for an additional 19 h, then the
cells were harvested by pelletting 50 ml aliquots at 5 500
gand 4°C for 10 min, and stored at -20°C. To obtain clar-
ified lysate, each pellet was resuspended in 8 ml of 100
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mM EPPS (pH 8.2) and lysed by sonication, while being
kept on ice. The cell debris was pelleted by centrifugation
at 8 000 g and 4°C for 10 min, and the clarified lysate was
decanted and kept on ice.

For the Ts, measurements, 125 pl of clarified lysate from
a single mutant was added to all 12 wells in a row of a 96-
well hard-shell thin-wall microplate (MJ Research). The
plate was heated for 10 min using the gradient method of
an Eppendorf Mastercycler gradient PCR machine, with
the gradient set at either 33-45°C or 46-58°C (each
mutant was exposed to both of these gradients), the
machine on the BLOCK setting, and the heated lid set to
75° Cwith the lid WAIT option. The plate was then cooled
to 4°C, removed from the PCR machine, and centrifuged
at 5 500 g and 4°C for 5 min to pellet any debris. A pipet-
ting robot was used to dispense 80 pl of the supernatent
into a 96-well microtiter plate (Rainin), and the amount
of remaining properly folded P450 was quantified from
the carbon monoxide difference spectrum as described
below. The T, values were determined by fitting sigmoi-
dal curves the percent of remaining protein (see Addi-
tional file 3). Our ability to accurately compare T, values
within the data set requires that each well in a given col-
umn of the gradient PCR machine be at the same temper-
ature. We used a thermocouple to measure the
temperature of the wells with the machine lid open, and
confirmed that the wells were within a few tenths of a
degree of the same temperature. Further evidence for the
consistency of our Ts, values comes from the fact that two
independent measurements of the Ts, for our R1-11 par-
ent yielded values that differed by only 0.1°C. However,
the absolute values of the measured temperatures are less
accurate. Thermocouple measurements indicated that,
with the machine lid open, the wells were = 1°C cooler
than the indicated temperature. We were unable to ascer-
tain the temperatures with the heated lid closed, but based
on comparisons water bath measurements, the tempera-
tures with the lid closed slightly exceeded the indicated
temperatures.

For the [urea];, measurements, 125 pul of the clarified
lysate from a single mutant was added to all 12 wells in a
row of a 96-well microtiter plate. A pipetting robot was
then used to add and mix 125 pl of a 2 x solution of urea
in 100 mM EPPS (pH 8.2) so that each subsequent col-
umn had a higher concentration of urea, and so that the
final urea concentrations were those shown in Additional
file 4. The plates were left on the bench at room tempera-
ture for 4 h, and the amount of remaining properly folded
P450 was quantified from the carbon monoxide differ-
ence spectrum as described below. The [urea]s, values
were determined by fitting sigmoidal curves to the percent
of remaining protein. Evidence for the consistency of the
[urea]s, measurements comes from the fact that two inde-
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pendent measurements of the [urea]s, for our R1-11 par-
ent yielded values that differed by only 0.01 M. In
addition, the [urea]s,and Ts, values are highly correlated
(see Additional file 5), indicating that they provide con-
sistent measures of stability.

For both the Ts, and [urea];, measurements, the folded
P450 was quantified from the carbon monoxide differ-
ence spectrum [45]. The microtiter plates containing the
P450 samples were first used to read blank spectra at 450
and 490 nm using a Tecan Safire 2 plate reader. The plates
were then incubated for 10 min in an airtight oven with
carbon monoxide. The plates were removed form the
oven and 10 pl of 0.1 M sodium hydrosulfite in 1.3 M
potassium phosphate (pH 8.0) was immediately added to
each well. After 5-10 min, spectra were again read at 450
and 490 nm. The amount of P450 is proportional to the
increase in the signal at 450 nm after this procedure
minus the change in the signal at 490 nm.

Comparison of enzymatic substrate turnovers

Another possible source of difference between the P450s
from the polymorphic and monomorphic populations is
their catalytic efficiencies, measured as the total number
of 12-pNCA substrate turnovers per enzyme. It was not
possible to directly extract accurate values for enzymatic
turnovers from the high-throughput screening procedures
used in this study, because the neutral evolution selection
criterion was set at a point where the assay readings were
just beginning to saturate the linear range (i.e., this crite-
rion was at a point where doubling the enzyme concentra-
tion led to a less than twofold increase in the assay
reading). However, we have recently completed a study
that determined accurate per enzyme turnover values for
most of the final neutrally evolved P450s from the poly-
morphic and monomorphic populations by constructing
careful standard curves to ensure that values were taken
from the fully linear range. This study analyzed the P450s
on the substrate of 12-pNCA as well as a variety of "pro-
miscuous" substrates [26]. This study measured the 12-
pNCA turnovers for 18 of the final polymorphic P450 var-
iants, and 16 of the final monomorphic P450 variants.
The mean and standard deviations for the P450s from
these two populations were 307 + 88 and 385 + 120 turn-
overs per enzyme, respectively, with experimental errors
of about 10% (see [26] for full data). Based on these meas-
urements, there do not appear to be substantial differ-
ences between the populations in the per enzyme
turnovers on 12-pNCA.

Appendix

Mathematical background

A version of this document with correctly formatted
LaTex equations in the Appendix can be found at http://
arxiv.org/pdf/0704.1885. The first purpose of this appen-
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dix is to provide mathematical equations that describe the
experiments. The second is to show how four measure-
ments from the experiments can be used to calculate two
quantities that describe the topology of the underlying
protein neutral network. We will derive two equations for
both quantitites, each in terms of a different measure-
ment. The fact that the four equations will be seen to yield
consistent results provides evidence for the accuracy of the
following calculations. Our calculations are based on a
view of neutral protein evolution as a process constrained
by a stability threshold, a view that we originally intro-
duced to explain experimental protein mutagenesis
results [3].

The calculations closely parallel our earlier work [22],
which is in turn based on a general theoretical treatment
of evolution on neutral networks by van Nimwegen and
coworkers [11]. These calculations will probably be most
thoroughly understood by first reading those works. The
primary difference between the current calculations and
[22] is that previously we assumed that the per generation
per protein mutation rate p was << 1, so that at each gen-
eration a protein was either unmutated (with probability
1-u) or experienced a single mutation (with probability
). In contrast, here we allow the mutation rate to be arbi-
trarily large, so that a protein can experience multiple
mutations in a single generation (in this sense the calcula-
tions resemble the generalization by Wilke [18] of [11]).
Specifically, let f,, be the probability that a protein experi-
ences m mutations in a single generation. Here we derive
results for arbitrary f,,, and then approximations relevant
to the form of f,, in the experiments. In the limiting case
of small mutation rate (where f,= 1-y, f; =, and f,, = 0 for
m > 1), the calculations here reduce to those in [22]. Pro-
teins evolving in nature typically experience very low
mutation rates, so [22] probably offers the best descrip-
tion of natural protein evolution. The calculations pre-
sented here are designed to specifically treat the
evolutionary dynamics of the experiments.

A protein's thermodynamic stability is described by its
free energy of folding, AG; with more negative values
indicating more stable proteins. As described in several
previous papers [3,5,22], we assume that selection
requires a protein to fold with some minimal stability
AGpmin, so that a protein adequately folds if and only if AG,
< AGgmin, The amount of extra stability a protein possesses
relative to the stability threshold is given by AG#2 = AG,-
AGfmin; note that all folded proteins will have AGfema <0.
We further assume that as long as AG#~2< 0, selection is
indifferent to the exact amount of extra stability that a
protein possesses (see [22] for a discussion of the limita-
tions of this assumption). We conceptually divide the
continuous variable of protein stability into small discrete
bins of width b. Specifically, a protein is in bin i if it has
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AGfﬁx"a between (1-i)b and -ib, where i = 1, 2,.... Mutating
a protein changes its stability by an amount AAG (defined
as the stability of the mutant protein minus the stability of
the initial protein), and so can move it to a new stability
bin. In [22], we defined a matrix W with elements W;; giv-
ing the transition probabilities that a single mutation
changes a protein's stability from bin j to bin i. We noted
that W could be computed from the distribution of AAG
values for all single mutations, and argued that W remains
fairly constant during neutral evolution as the distribu-
tion of AAG values remains relatively unchanged. How-
ever, we emphasize that (as discussed in detail in [22]) the
constancy of the AAG distribution remains an assump-
tion, albeit one that has now been shown to be quite accu-
rate for lattice proteins [3,22,46] and provide a consistent
theoretical explanation for a growing body of experimen-
tal results (the current work, and [3]).

As we are allowing for larger mutation rates, and we must
consider the possibility that a protein's stability might
change due to multiple mutations at a single generation.
Therefore, we make a more general definition of W, ,, as

the probability that m random mutations to a protein in
stability bin j change its stability to bin i, and let W, be the

matrix with elements W;; ,,. Note that W, only describes

ij, m*
mutations that cause transitions from one folded protein
to another, as the stability bins i = 1, 2,... all correspond to

folded proteins. As before [22], we assume that W, is
roughly constant during evolution, meaning that the dis-
tribution of AAG values for multiple mutations is roughly
constant during neutral evolution. Note that if m = 1, then
W,, is just the matrix W that can be computed from the

distribution of single-mutant AAG values [22]. We will
now use the matrices W, to calculate the following char-
acteristics of a population that has evolved to equilib-
rium: the distribution of stabilities, the average number of
mutations (m); accumulated after T generations, and the

average fraction (¥ ) of stably folded proteins in the pop-
ulation. We then introduce a few approximations (that
should be quite accurate for the experimental work in this
paper) that greatly simplify these calculations. Finally, we
relate the calculations to properties of the underlying pro-
tein neutral network.

As described generally by van Nimwegen and coworkers
[11], the evolutionary dynamics depend on whether the
evolving population tends to be monomorphic or highly
polymorphic. When the per sequence per generation
mutation rate u is << 1, whether the population is mostly
monomorphic or highly polymorphic is determined by
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the product of the population size N and p : when Nu <<
1 the population is mostly monomorphic, and when Np
>> 1 the population is highly polymorphic. However,
with multiple mutations per generation, Nu is no longer
an appropriate parameter to distinguish between mono-
and polymorphism, because if the population size is suf-
ficiently small the population can still be monomorphic
even if there are multiple mutations per generation. Spe-
cifically, in one set of experiments we constrained the
population to be monomorphic (by maintaining a popu-
lation size of one), but still allowed the single protein in
this population to experience more than one mutation at
a generation. So we instead denote the populations as
either monomorphic or polymorphic. We indicate quan-
tities calculated for the monomorphic population by the

subscript M (i.e. (F ),,) and those calculated for the poly-
morphic population by the subscript P (i.e. (F )p).

Monomorphic limit

In the limit of a completely monomorphic population, all
of the proteins are in a single stability bin. Let p;(¢) be the
probability that the population is in stability bin i at time
t, and let p(t) be the column vector with elements p;(t). At
each generation there is a probability f, that there is no
mutation that becomes fixed in the population, a proba-
bility of 2.,,, _1%f,,2;;W;; .p; that the population experiences
a mutational event (that could be a single mutation, or
several simultaneous mutations) that moves it into bin i,
and a probability 2.,, _ *f,p;2;Wj; ,, that the population is
in bin i and experiences one or more mutations that move
it to another bin of stably folded proteins. Define v; ,, =
2;Wj; ,n to be the fraction of m-mutants of a protein in bin
i that still fold, and let V,, be the matrix with diagonal ele-
ments given by V;; , = v; , and all other elements zero. The
time evolution of p is:

p(t+1) = [+ - 1 fu(Win-Vi) IP(1) (1)

where 1 is the identity matrix. Note that mutations that
destabilize a protein beyond the stability threshold are
immediately lost to natural selection, and so leave the
population in its original stability bin. This describes the
experiments for the monomorphic populations, where we
retain the parental sequence if the single mutant we gen-
erate is nonfunctional. Equation 1 here corresponds to
Equation 1 of [22], and the "blind ant" random walk
described by van Nimwegen and coworkers [11]. Equa-
tion 1 describes a Markov process with a non-negative,
irreducible, and acyclic transition matrix, and so p
approaches a unique stationary distribution (equilibrium
value) of p,, given by the eigenvector equation:
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Pm= [I+Zm = loofm(wm' m)]pM (2)

Once p has reached equilibrium, the average fraction of
proteins that still stably fold at each generation is:

<7—- >M = e(fOI"'Zm = lwfmwm)pM (3)
where e = (1,...,1) is the unit row vector.

To calculate (m); ,, the average number of mutations
accumulated after T generations once the population has
equilibrated, we note that at each generation there is a
probability of f,p2;W;; ,, that a randomly chosen protein
is in bin j, experiences m mutations, and still stably folds.
The average number of mutations accumulated in a single
generation is simply the average of m weighted over this
probability. So summing over all values of m and j, we see
that:

<m>T, M= Tezm -0” mfmwmpM (4)

This equation corresponds to Equation 6 of [22], which
was derived using an embedded Markov process formal-
ism. Here we have foregone this formalism for the more
intuitive argument presented above, as we do not attempt
to calculate higher moments of the number of mutations.

Polymorphic limit

In the limit when the population is highly polymorphic,
at each generation there are sequences in many different
stability bins. In this case, we describe the distribution of
stabilities by the column vector x(t), with element x;(¢)
giving the fraction of proteins in stability bin i at time t. At
generation ¢, the fraction of mutants that continue to fold
is:

(F )= e(fol# Xy 1 FWin)X(1) (5)

Therefore, in order to maintain a constant population
size, each remaining protein must produce an average of

a, = (F )1 offspring. The population therefore evolves

according to:

X(t+1) = at(fOI+zm = lmfmwm)x(t)' (6)
After the population evolves for a sufficiently long period
of time, x will approach an equilibrium value of xp. At this

equilibrium, the average fraction of mutants that fold at
each generation is:

<7: >P = e(,fOI+zm = lmfmwm)XP (7)
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and the equilibrium reproduction rate is o = (F )L
Therefore:

Xp=0a (fOI+zm = locfmwm)XP (8)

Equations 7 and 8 can be combined to show that x, and

(F )pcan be calculated from the eigenvector equation:

(F Jofo)xp =2 m _*f,, WiXp 9)

with ((F )p-f,) the principal eigenvalue of the nonnegative
and irreducible matrix ¥, _ ;* f,,W,,. Equation 9 corre-

sponds to Equation 14 of [22], Equation 6 of the work by
van Nimwegen and coworkers [11], and Equation 13 of
the work by Wilke [18].

We now calculate <m>T p the average number of mutations
accumulated in T generations after the population has
equilibrated. At equilibrium, there is a probability of
fmXZiWj;, ,n that a protein is in bin j, experiences m muta-
tions, and still stably folds. Subsequently, all of these
folded proteins produce an average of a offspring. The
average number of mutations accumulated in a single
generation is simply the average of m weighted over this
probability, and then multiplied by the average reproduc-
tion rate. So summing over all values of m and j, we
obtain:

<m>T, P= 0LTeZ"m = 0Oc mmemXP = T/< 77 >P ez"m = 00O mfmmeP'
(10)

This equation is the counterpart of Equation 18 of [22],
where we have again foregone the embedded Markov
process formalism for a more intuitive derivation.

Approximations for polymorphic limit

We can dramatically simplify the results from the previous
sections with several reasonable approximations. The first
approximation is that the AAG values for random muta-
tions are roughly additive, and is supported by a number
of experimental studies of the thermodynamic effects of
mutations [47-49]. We have previously shown that this
approximation can be used to accurately describe experi-
mental protein mutagenesis data with a simple stability
threshold model [3]. Under this approximation, the dis-
tribution of net AAG values for multiple mutations can be
computed from the distribution of AAG values for single
mutations by performing convolutions of the single-
mutation AAG distribution [3], meaning that W, for arbi-
trary m can be computed solely from the distribution of
AAG values for single mutations. However, to simplify the
equations from previous sections, we need to express W,
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for arbitrary m only in terms of W (recall that W = W,). As
W only contains information about stability transitions
from folded proteins to other folded proteins, if we make
the second approximation that a protein that is destabi-
lized beyond the minimal stability threshold by one
mutation is not re-stabilized to a folded protein by a sub-
sequent mutation, then W, = Wm. This approximation
that unfolded proteins are not re-stabilized should be
quite accurate as stabilizing mutations tend to be rela-
tively rare and small in magnitude [50-53] (this is the
underlying idea behind the Markov chain approximation
that was shown to be highly accurate for lattice proteins
[46]). To summarize, if AAG values are roughly additive
and stabilizing mutations are rare, we have the approxi-
mation:

W, = Wm

m (11)
Simplifying the equations of the previous sections also
requires assigning a specific functional form to f,, the
probability that a sequence undergoes m mutations. Here
we assume that mutations are Poisson distributed among
sequences, so that:

fou= e m/m! (12)
where pu =2 _,°mf, is the average number of mutations
per protein per generation. When the mutations are intro-
duced by error-prone PCR, the Poisson distribution is an
excellent approximation to the true theoretical distribu-
tion of mutations created by error-prone PCR [40,41] pro-
vided that p is much less than the number of PCR
doublings, as is the case in all of the experiments in the
current work. We now use the approximations of Equa-
tions 11 and 12 to simplify the results given above for the
highly polymorphic limit. We begin by using these
approximations to rewrite Equation 9 as:

(F Jp-et)xp= v X, - =pm/m! Wxp. (13)
This equation makes clear that x;, is the principal eigenvec-
tor of the matrix >, _ ,*u"/m! Wm, therefore xp, must also
be the principal eigenvector of W. Now in our earlier work
[22], we defined the principal eigenvector of W as x_,
called the corresponding eigenvalue (v),, and showed that
this eigenvalue is the average fraction of single mutations
that are neutral in a population that is evolving with Nu
>> 1 and p << 1. Therefore, with the approximation of
Equation 11, xp and x, are equal, and are both defined by
the same eigenvector equation:

(V) Xp= Wxp= Wx, = (V) x. (14)

Combining Equations 13 and 14, we have:
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Flhxp=e ™S " (WI)" /m!xp

(15)
= e_“(l_m@o)Xp.
Equation 15 can be solved to yield:
(Mhe=1+In(F )p/n (16)

Similarly, we can simplify Equation 10 to:

nl p = T/[V'Dpezzzlmfmwmxp
= TeH(1-0 ) z:;:lme_“um Jm!leWw™
= Te V™ § o m(um,)" /m!
= TR e MY § ™ (L,)" /m!

=Tuwh,.
(17)

Solving this equation for (v), yields:
(Vo= <m>T o/ (Tw). (18)

Approximations for monomorphic limit
We now simplify the equations for the monomorphic
limit. This requires several further approximations. We
begin by approximating that the stability probability dis-
tribution py given by Equation 2 by the distribution p,
defined in [22] as satisfying:

0= (W-V)p,. (19)
The basic rationale behind approximating py, with p, is
that Equation 2 can be viewed as a perturbation to Equa-
tion 19 [54]. Essentially, p, is an eigenvector of the matrix
W-V while p,, is the corresponding eigenvector of the
matrix W-V+2, _,2um1/m! (Wm-V_ ). The latter matrix can
be viewed as a perturbation to the first, as the sum %, _
L oum1/m! (Wm-V_ ) is small. This smallness is due to the
fact that W™ tends to zero with large m, causing V,, to tend
towards the identity matrix. In addition, the u™/m! terms
tend to zero with large m. Therefore, the terms in the sum-
mation are all simply either a perturbation to W-V or
involve subtracting terms that are fractions of the identity
matrix. The perturbations lead to bounded changes in the
eigenvectors [54], while the identity matrix terms do not
change the eigenvectors. Below, we give a more rigorous
justification of the assumption that p,, is approximately
equal to p,,.

We need one additional approximation to make further
progress. Both Equations 3 and 4 contain terms of the
form W p,, and even if we use Equation 11 to rewrite
these terms as Wmp,, there are no further clear simplifica-
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tions. However, any probability vector that is multiplied
repeatedly by W and normalized will eventually converge
to x,, = Xp (as this is the principal eigenvector of W). We
make the approximation that this convergence is suffi-
ciently rapid to be essentially complete after a single mul-
tiplication. This approximation is supported by both
protein mutagenesis studies [3,27,28] that indicate that
proteins rapidly converge to an exponential decline in the
fraction folded (indicating the stability distribution has
equilibrated, as discussed below, and by lattice protein
studies showing the same [3,46]. Therefore, we make the
approximation that eWmp, = (v),eWmix = (v)(v) m1
where (v), = eWp, has the same definition as in [22], where
it was defined as the average fraction of functional single
mutants of a population evolving with p << 1 and Np <<
1. We use these approximations to simplify Equation 3 to:

Ty = e(fol+ 3 o) fnWm )Py
=ML+ y o W m! W,
=eMIApngy U (V)" /mi]
= ML+ B0 /D06 1+ Y (MO)" /m!)]
= ¢ M[1 + B0 /0, (Y - 1))
(20)

Solving this equation for (v),, we find:

Mo = ML((F e~ 1)/ (er{nie-1). (21)

We now use the approximations to simplify Equation 4
to:

FIEVE Tez;=0 mf,, Wi PMm
S THY St oW,
=Te™ NQ’Zqu umymt ot
=ure gy o (W)™ /m!
= (T M)
(22)

Solving this equation for (v), yields:

(V)= (m)y, yer v/ (uT) (23)

To recap, we now have equations to calculate (v),, and (v),
from experimentally measurable quantities. Equations 16
and 18 allow us to calculate (v}, from (F ), and (m)y. p,
respectively. Given this calculated value of (v),, Equations
21 and 23 then allow us to calculate (v), from (¥ ), and

<m>TV v Tespectively. The fact that we have two equations
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each for (v), and (v}, allows us to assess the self-consistency
of the approach.

Interpretation in terms of neutral networks

Throughout the preceding calculations, we have referred
to (v),, and (v), as we defined them in [22]: namely, as the
average neutrality of protein populations evolving with p
<< 1 and Ny either >> 1 or << 1, respectively. However,
van Nimwegen and coworkers [11] have shown that they
can also be interpreted in terms of the underlying neutral
network. In the experiments, we make mutations at the
nucleotide (rather than amino acid) level, so each pointin
our sequence space corresponds to a different gene. Every
gene that yields an amount of protein sufficient to hydrox-
ylate the twelfth carbon of 12-p-nitrophenoxydodecanoic
acid with at least 75% of the total activity conferred by the
original R1-11 parent gene represents a node on this neu-
tral network. We note that in the experiments (and also
usually in natural evolution), the edges on the neutral net-
work are not all completely equivalent or fully undirected,
as some mutations are more likely to occur than others
(for example, error-prone PCR with Tag polymerase is
more likely to cause an A — G mutation than an A —» C
mutation). In the analysis that follows, we ignore this
complication and assume all neutral network edges are
equivalent.

In an extremely insightful analysis, van Nimwegen and
coworkers [11] have shown that important characteristics
of a neutral network can be inferred from evolutionary
quantities. Specifically, they have shown that if a popula-
tion is evolving with p << 1 and Npu >> 1, then the average
neutrality (that we have denoted by (v),) is equal to the
principal eigenvalue of the adjacency matrix of the neutral
network, normalized by the network coordination
number (number of possible connections per node). In
addition, they pointed out that a population evolving
with pu << 1 and Nu << 1 moves like a blind ant random
walk, meaning that the average neutrality (that we have
denoted by (v),) is equal to the average connectivity of a
neutral network node divided by the network coordina-
tion number.

In our P450 experiments, we have measured the values
needed to estimate (v, and (v), using Equations 16, 18, 21,
and 23. Using the final values listed in Table 2, (¥ ), =
0.50 and (F ), = 0.39. Taking the final nucleotide muta-
tion values from Table 2, <m>T p/T =0.69 and <m>T /T =
0.31. The average mutation rate, computed from the unse-
lected population, is p = 1.4. So using Equation 16, (v), =
0.53, while using Equation 18, (v), = 0.49. The consistency
of these two values supports the idea that the calculations
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above accurately describe the evolutionary process. Tak-
ing the average value of these two measurement as (v}, =
0.51, we can then use Equations 21 and 23 to calculate
(v}, We calculate values of 0.28 and 0.43, respectively.
These estimates differ by more than those for (v),, perhaps
because additional approximations have gone into the
derivation of the relevant equations (in addition, we have
made no attempt to carry out the rather complex propaga-
tion of the sampling errors of Table 2). However, the val-
ues are still in a similar range. Taking the average of these
two values, we estimate that (v}, = 0.35. So overall, we pre-

dict that each functional P450 gene should have an aver-
age fraction of 0.35 of its sequence nearest neighbors also
encoding a functional gene, for an average of about 1,500
neighbor genes. We predict that the principal eigenvalue
of the neutral network adjacency matrix is 0.51 x 3L. The
fact that principal eigenvalue exceeds the average connec-
tivity indicates that the neutral network is not a regular
graph, but instead has some nodes more highly connected
than others.

The value for (v), calculated above can also be related to
measurements from protein mutagenesis experiments. A
number of studies [3,27,28] have observed that the prob-
ability that a protein remains functional after m mutations
falls off exponentially with the number of mutations. In
fact, the decline is not always exponential for the first few
mutations if the starting protein has especially high or low
stability [3] or activity [55], but will still converge to this
exponential form after a few mutations [3,46,56]. The sta-
bility threshold model can be used to relate this decline to
(v),, as is performed indirectly in the Markov chain
approximation of [46]. Here we make that connection
explicit. The initial protein has a stability that falls into
some stability bin i. Therefore, its stability can be
described by the column vector y,, which has element i
equal to one and all other elements equal to zero. Now
imagine constructing all single mutants of this protein.
The fraction of these single mutants that still fold is just
eWy,, and the distribution of stabilities among the single
mutants is y; = Wy, (note that the elements of y, no longer
sum to one). Similarly, after m mutations, the fraction of
mutants that still fold is eW,y,, and the distribution of
stabilities among the m-mutants is y,, = W, y,. With the
approximation of Equation 11, y,, = Wmy,. This makes it
clear that y,,, will converge to a vector proportional to x,
the principal eigenvector of W. Once this convergence is
complete, each new mutation simply reduces the fraction
of mutants that fold by a factor of (v),, the principal eigen-
value of W (and the spectral radius of the neutral network
normalized by the coordination number). Therefore,
what we have called (v}, in the present work and [22] is
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equal to what is called x in [28], g in [27], and (v) in [3].
The major difficulty that is faced in extracting (v, by the
method of those three studies [3,27,28] is that it is not
possible to directly assay mutants with m mutations, but
instead only possible to assay a set of mutants with a dis-
tribution of m. All three studies use different (and valid)
methods to account for this distribution, but this account-
ing is still difficult because most of the functional mutants
come from the low m end of the distribution. This makes
it difficult to ascertain accurate values for the fraction
functional after large numbers of mutations, as most of
the functional mutants in the set come from sequences
with few mutations. For this reason, we believe the current
method of measuring (v), is more accurate. A second cau-
tion about comparing values of (v}, from different studies
is that its value depends on the nucleotide error-spectrum
of the experiment, as different mutagenesis methods cre-
ate different distributions of nucleotide and amino acid
mutation types.

We also briefly mention how we arrived at an estimate of
(v),, for 3-methyladenine DNA glycosylase from the data
of [28]. This paper reports that a fraction x = 0.34 of
amino acid mutations inactivate the protein. We would
like to determine the fraction <v>0O of nucleotide mutations
that do not inactivate the protein. Roughly 75% of ran-
dom mutations to a gene will be synonymous. Therefore,
m amino acid mutations should cause about 4m/3 nucle-
otide mutations. The study of [28] measures that after m
mutations, a fraction (1-x)™ of the mutants are functional.
That means that (v) 4"/3 fraction should be functional.
Equating these expressions yields (v), = exp(3/4 log(1-x)).
So using x = 0.34, we arrive at <v>oo =0.73.

Detailed justification for approximating pM by po
Here we provide a detailed justification for the approxi-
mation that py, is about equal to p,. In the monomorphic
limit, the time evolution of p is given by Equation 1, and
the stationary distribution p,, is given by Equation 2. We
assume the approximations of Equations 11 and 12 and
show that we can approximate p,, by p,, where p, is given
by Equation 19. To justify this approximation, we insert
P, into the righthand side of Equation 1 and ask to what
extent p, is left unaltered by the dynamics. If p, is found
to be stationary to good approximation then, by unique-
ness of the stationary distribution of an ergodic process,
p, would be a good approximation to py. We therefore
suppose that at some time ¢ the distribution is given by p,,
and compute, using Equation 1, the change in p, after one
generation. The new distribution at time ¢+1 is given by:
p(t+1) = [I+zm = lwfm(wm_ m)]po (24)
Using (V-W)p,, = 0, and taking components of the above
equation, we obtain:
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pi(t+1) = p0i+zm = 2°cfm [(Wm_ m)po]i (25)

Thus, p, would be an approximately stationary distribu-
tion of the dynamics if |2, _,*f,, [[W"-V_)Pol:| <<poi- We
now proceed to show that this will be the case in most sit-
uations of interest by deriving upper and lower bounds on
the second term of the righthand side of Equation 25.

Consider first the term (W™p,);, which can be written as

(WmDo)i =21, ., tom Wit Wietka Y W1 yenmPorem = 21, k(m-1)
Wit Witia UWim-2yi(m-1) Vigm-1)Pok(m-1y~ (26)

where we have used Wp,, = Vp,, in the second equality. We
now note that v, < v_ . for all k, where v, is the maxi-
mum neutrality, maximized over all bins. This leads to the
successive inequalities:

(W"Po)i < Vinax 2 i, e(m=1) Wit Wietk2 =+ Wi(m=2)k(m-1)Poke(m 1)
=Vinax y. 1,...Je(m—2) Wikt We1k2 * Wi(m=3)le(m-2)V k(m -2)Pok(m -2)
2
S Vinax D g1, egm—2) Wikt Wietk2 =+ Wi(m-2)k(m-1)Pok(m 1)

m-1
< Vmax z k1 Wik1Por

(27)
yielding the upper bound:
(W™Py)i < Minax™ MiPoi- (28)
In an identical manner, we obtain the lower bound:
(W™Py)i 2 Ninin™ Miboir (29)

where v_;, is the smallest neutrality, minimized over all
bins. Note that both inequalities above become exact
equalities when all bins have the same neutrality v, which

could be interpreted as either v ;, or v ...

Having obtained inequality constraints on (Wmp,); we
now consider the term (V,,p,);, which can be written as:

(VnPo)i = PoiVi,m
=poi y ;(W™)ji
= Poi p. ide,ie(m=1) Wikt Wik = Wi(m-1)i
= Poi y. 1, . Je(m-1) Vet Wiak2 = Wi(m-1)i
< PoiVmax Y 1, Je(m-1) Vetk2 " Wi(m-1)i

-1
s pOivgax z k(m=1) Wk(m—l)i'

that yields an identical upper bound to that on (W™p,);,
namely:
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(V™Po)i < Nimax™ MiPoi (31)

and similarly:

(V"P6)i = Nimin™ MiPos- (32)
It should again be noted that both the above inequalities
become exact equalities when all bins have a common
neutrality n.

We are now in a position to estimate bounds on the mag-
nitude of the second term of Equation 25. Using the four
inequalities of Equations 28, 29, 31, and 32 above, we
have:

m_l'vminm_l)VipoiS [(Wm_ m)po]i < (Vmaxm_l'vminm_
(33)

'(Vmax
Dvipoi

Or equivalently:

|[(Wm_ m)po]i| < (Vmaxm_l'vminm_l)vipoi/ (34)
where the inequality above becomes an exact equality
when all bins have the same neutrality. However, in this
limit, the righthand side of the above equation vanishes,
and therefore the second term of Equation 25 is identi-
cally zero in this case, giving the result that p,, is exactly
equal to p, when all bins have the same neutrality, even if
u is arbitrarily large.

We now carry out the sum over m to obtain an upper
bound on the second term of Equation 25 in the more
general and realistic case of unequal neutrality bins. Using
Equation 34 and the specific Poisson form of f,, we
obtain an upper bound on the fractional change in p; in
one generation:

|[pi(t+1) - pOi]/p0i| =V eip'zm = 28Hm/(m!) (Vmaxmil_vminmil) =
Vi et [(exp(uvmax) - 1)/Vmax - (EXp(MVmin) - 1)/Vmin]'
(35)

The above bound vanishes for small y, is an increasing
function of v, ,.-v;, and is typically much smaller than
1. An extreme estimate of the size of the fractional change
can be made when v, = 1 and v,;, = 0. In this case, using
p = 1.4 (the value in our experiments), the above inequal-
ity simplifies to:

[pi(t+1)-poil /poil < vi(1-e#-pet) ~0.41v,.  (36)
Noting that v; < 1, the fractional change in py; is therefore

reasonably controlled even in the most extreme case. For
realistic situations, the fractional change in p,, is expected
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to be much lower, thus justifying the use of p, as the sta-
tionary distribution of the dynamics of Equation 1.
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Additional material

Additional file 1

Sequence of the parent P450 used start neutral evolution. FASTA file
with sequence of the R1-11 P450 BM3 used as the neutral evolution par-
ent. This sequence was isolated after the equilibration evolution.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-5-29-S1 fasta]

Additional file 2

Information about sequences from neutral evolution experiments. The
entries give the name of the mutant, the number of nonsynonymous and
nucleotide mutations relative to the R1-11 parent, the [urea] s, value if
measured, the Ts,value if measured, the percent of the parental expression
level if measured, and then a list of all of the mutations. Amino acid muta-
tions are numbered in the standard P450 numbering scheme. The names
of the mutants indicate their origin. Names beginning with "P-G3" are
randomly chosen functional mutants from generation 3 of the polymor-
phic population, etc. Names of the form "P1," "P2,", etc. are the 22 func-
tional mutants that were randomly chosen from the final (generation 15)
polymorphic population. Numbers P5 and P12 are missing because two of
the original 24 randomly selected polymorphic population members were
randomly chosen to be discarded after it was discovered that two of the 24
monomorphic replicates were contaminated. Names beginning with "U1"
indicate that sequences are from the first unselected replicate, etc. Names
beginning "M1" indicate sequences are from the first monomorphic repli-
cate, etc. Replicates "M9" and "M10" were discarded due to contamina-
tion during the experiment. For each replicate, we sequenced each new
functional mutant. The last functional mutant after 25 generations repre-
sents the final sequence for that replicate, and is given an abbreviated
name without the generation suffix.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-5-29-S2.txt]|

Additional file 3

Thermostability measurements. Raw data from the Ty, thermostability
measurements.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-5-29-3 pdf]

Additional file 4

Urea stability measurements. Raw data from the [urea] 5, thermostabil-
ity measurements.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-5-29-S4.pdf]
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Additional file 5

Correlation of thermal and urea stabilities. The T5,and [urea] 5, values
are highly correlated.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-5-29-S5.pdf]

Additional file 6

Sequence of initial P450 used to start equilibration evolution. FASTA
file with sequence of the 21B3 P450 BM3 heme domain described in
[23]. This P450 was used as the initial parent to start the equilibration
evolution.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-5-29-S6.fasta]

Additional file 7

Mutations accumulated during equilibration evolution. The file lists
the mutations in the 46 P450 variants selected at the end of the equilibra-
tion evolution. Each line gives the name of the variant, with the prefix
indicating whether it came from the R1 or R2 population. The next entries
give the number of nucleotide and nonsynonymous mutations. All of the
individual mutations relative to 21B3 are then listed. Amino acid muta-
tions are numbered in the standard P450 numbering scheme, with the
threonine after the N-terminal methionine given the number one.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-5-29-S7 .txt|
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