Unexpected genetic and structural relationships of a long-forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase)

(nonphosphorylated dihydronicotinamides/hydride transfer/flavoprotein/polycyclic aromatic hydrocarbons)

QINJIAN ZHAO, XIAO LING YANG, W. DAVID HOLTZCLAW, AND PAUL TALALAY*

Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205

Contributed by Paul Talalay, December 20, 1996

ABSTRACT A mammalian cytosolic FAD-dependent enzyme that catalyzes the reduction of quinones by N-ribosyl- and N-alkyldihydronicotinamides, but not by NADH, NADPH, or NMNH (reduced nicotinamide mononucleotide), was isolated from bovine kidney more than 30 years ago [S. Liao, J. T. Dulaney and H. G. Williams-Ashman (1962) J. Biol. Chem. 237, 2981–2987]. This enzyme is designated here as quinone reductase type 2 (QR₂). Bovine QR₂ is a homodimer that migrates on SDS/PAGE at ≈22 kDa. Three tryptic peptides of bovine QR₂ (representing 39 amino acids) showed 43% identity to human NAD(P)H:quinone reductase (DT-diaphorase; EC 1.6.99.2), here designated QR1 and 82% identity to a related human cDNA clone [called hNQO₂ by A. K. Jaiswal, P. Burnett, M. Adesnik and O. W. McBride (1990) Biochemistry 29, 1899-1906], and designated here as hQR₂. The protein encoded by the latter cDNA did not show OR activity when tested with conventional nicotinamide nucleotides. The unexpected high homology between the old flavoenzyme and hQR₂ prompted us to clone and overexpress hQR_2 . The properties of hQR_2 were identical to those of the flavoenzyme described by S. Liao and H. G. Williams-Ashman, thus establishing their genetic identity. Recombinant human QR₂: (i) reacts with N-ribosyl- and N-alkyldihydronicotinamides, but not with NADH, NADPH, or NMNH; (ii) is very weakly inhibited by dicumarol or Cibacron blue; (iii) is very potently inhibited by benzo[a]pyrene. The x-ray crystal structure of rat QR₁ shows that the 43 amino acid C-terminal tail of QR₁ provides the binding site for the hydrophilic portions of NADH and NADPH. In the absence of this binding site in QR₂, the enzyme retains the essential catalytic machinery, including affinity for FAD, but cannot bind phosphorylated hydride donors.

In the early 1960s Liao and Williams-Ashman (1–4) described the purification and properties of a previously unknown mammalian cytosolic FAD-dependent flavoprotein that catalyzes the oxidation of reduced *N*-ribosyl- and *N*-alkylnicotinamides by menadione and other quinones (Scheme I), but not by NADH, NADPH, and NMNH.

Although this enzyme was highly purified from bovine kidney, and its kinetics, substrate, and inhibitor specificities were determined (4), it has been completely ignored for more than 3 decades, and no information on its structure is available. For reasons to be explained, we here designate this flavoprotein as quinone reductase type 2 (QR₂).[†] Liao *et al.* (4) pointed out that QR₂ has substrate and inhibitor specificities that are strikingly different from those of the more widely known NAD(P)H:(quinone acceptor) oxidoreductase or DT- diaphorase (EC 1.6.99.2)[‡]

PNAS is available online at http://www.pnas.org.

R = Ribosyl, Alkyl or Phenyl

Scheme I

(here designated QR type 1 or QR₁). For example, (*i*) QR₂ does not react with NADH, NADPH, or NMNH, all of which are hydride donors for QR₁; (*ii*) QR₂ is very weakly inhibited by dicumarol, whereas QR₁ is exquisitely sensitive to this anticoagulant; (*iii*) QR₂ is potently inhibited by polycyclic aromatic hydrocarbons and by the estrogens 17β -estradiol, equilenin, and diethylstilbestrol, which only weakly inhibit QR₁; and (*iv*) QR₂ is only modestly, if at all, inducible, whereas QR₁ is induced by a wide variety of structurally distinct compounds (6, 7). Despite these differences, we show in this paper that QR₁ and QR₂ are closely related in sequence and structure.

Our laboratory has had a long-standing interest in QR_1 because this enzyme is highly inducible by a variety of Michael acceptors and other electrophiles, and its induction is associated with the protection of animals and their cells against electrophile toxicity and chemical carcinogenesis (8). By virtue of its unusual and obligatory 2-electron reduction mechanism (9), QR_1 diverts quinones from participating in oxidative

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Copyright @ 1997 by The National Academy of Sciences of the USA 0027-8424/97/941669-62.00/0

Abbreviations: MALDI-MS, matrix-assisted laser desorption ionization mass spectrometry; NMNH, reduced nicotinamide mononucleotide; QR₁, quinone reductase type 1; QR₂, quinone reductase type 2; bQR, bovine QR; hQR, human QR; rQR, rat QR; TFA, trifluoroacetic acid.

^{*}To whom reprint requests should be addressed. e-mail: ptalalay@welchlink.welch.jhu.edu.

[†]Our interest in the old flavoenzyme described more than 30 years ago by Liao *et al.* (4) arose from the fact that it catalyzed the same QR reactions as the well-known NAD(P)H:quinone reductase (DTdiaphorase), whereas it has distinct hydride donor requirements and inhibitor specificities. To our surprise and satisfaction, high homology (82% identity) between this old flavoenzyme from bovine kidney and a human cDNA clone, serendipitously cloned by Jaiswal *et al.* (5) during the cloning of hQR₁, unequivocally established the genetic relationship between these two types of oxidoreductases. Therefore, we have named this old flavoenzyme QR₂.

[‡]This enzyme, which is officially designated NAD(P)H:(quinone acceptor) oxidoreductase (EC 1.6.99.2), has been referred to by a bewildering array of pseudonyms and acronyms, including: DT-diaphorase; QR, quinone reductase; NMOR, NAD(P)H:menadione oxidoreductase; QAO, quinone acceptor oxidoreductase; NQO, nicotinamide nucleotide-quinone oxidoreductase; menadione reductase; phylloquinone reductase; and vitamin K reductase. Because we have consistently used the term QR for this enzyme, we have designated EC 1.6.99.2 as QR₁. The prefixes h, r, and b refer to the species of origin of the enzymes human, rat, and bovine, respectively.

cycling that can generate reactive oxygen species and from depleting intracellular glutathione (8). QR_1 is also involved in the reductive activation of certain chemotherapeutic quinones such as mitomycins and aziridylbenzoquinones (10). The enzyme is therefore of dual importance for cancer research: it plays roles in both chemical protection against cancer and in the bioactivation of certain cancer chemotherapeutic agents.

The recent report by Friedlos *et al.* (11) that QR_1 could use simple reduced quaternary nicotinamides, such as *N*-methyldihydronicotinamide and *N*-ribosyldihydronicotinamide, as hydride donors in place of NADH or NADPH, raised the question whether QR_1 and QR_2 might be structurally and possibly even functionally related. We examined this possibility in the hope that the three-dimensional crystal structure of rat QR_1 (rQR₁), recently determined by x-ray diffraction to 2.1-Å resolution (12), might explain the differences in reactivity of the two enzymes with various substituted dihydronicotinamides.

Therefore, we purified bQR₂ from bovine kidney by modern improvements of the procedure of Liao *et al.* (4). We then sequenced three tryptic peptides obtained from bQR₂ (consisting of 8, 11, and 20 amino acids) and found that they were highly homologous (82% identical) to the sequence of a cloned human cDNA isolated by Jaiswal and colleagues (5, 13) and designated by these authors as hNQO₂. Jaiswal *et al.* (5, 13) serendipitously isolated the cDNA for hNQO₂ during the cloning of human QR₁ (hQR₁). The deduced amino acid sequences of the two cDNAs coding for hQR₁ and hNQO₂ were very similar, but no known function was assigned to hNQO₂.

The unexpected high homology (82% identity) of the peptides of bOR₂ with the amino acid sequence deduced from the human cDNA clone of Jaiswal et al. (5) suggested to us that these enzymes might be genetically identical. Therefore, we cloned the cDNA for hNQO2 and overexpressed and purified the protein that it encodes. This purified protein (which we designate here as QR_2) has enzymatic properties identical to those of the flavoprotein isolated by Liao and Williams-Ashman 30 years ago (1-4). The homodimeric subunits of QR_2 comprise 231 amino acids, whereas those of QR1 contain 274 amino acids.[§] The amino acid sequences of OR₁ and OR₂ can be aligned without insertions or deletions, but QR₂ lacks 43 of the C-terminal residues. Examination of the x-ray crystal structure of rQR1 (12) clarifies the reasons for the differences between the electron donor specificities of QR2 and QR1, since the 43 amino acid carboxyl tail of QR_1 , which is absent in QR_2 , provides the binding site for the pyrophosphate-riboseadenine moiety of NADH and NADPH. This finding also explains the recent observation that QR1 can use not only NADH, NADPH, and NMNH as hydride donors, but also a variety of synthetic reduced N-alkylnicotinamides (11).

EXPERIMENTAL PROCEDURES

Materials. Protein sequence grade trifluoroacetic acid (TFA) (25%), ammonium sulfate, NADH, NADPH, NMNH, and buffer salts were purchased from Sigma. *N*-Methylnicotinamide iodide (3-carbamoyl-1-methylpyridinium iodide), sodium hydrosulfite, menadione (vitamin K₃), benzo[*a*]pyrene, and dicumarol were obtained from Aldrich. Cibacron blue was crystallized as the choline salt from methanol (14). All solvents were obtained from J.T. Baker. Centriprep-10 cartridges were from Amicon. Phenyl-Sepharose 6 (fast flow; high substitution), Q-Sepharose Fast Flow, Mono-Q ion exchange column, Superose-12 HR 10/30 gel filtration column, and the fast protein liquid chromatography apparatus were from Pharmacia. The synthesis of oligonucleotides and automatic sequencing of plasmid DNAs were carried out at the Genetic Core Facility of The Johns Hopkins University School of Medicine.

Preparation of *N*-**Methyldihydronicotinamide.** *N*-Methyldihydronicotinamide was prepared from *N*-methylnicotinamide iodide according to Rafter and Colowick (15) and stored in 10 mM sodium bicarbonate buffer at pH 10.5 (16). The concentrations of *N*-methyldihydronicotinamide solutions were determined by use of the molar absorption coefficient ($\varepsilon_{\rm m}$) of 7000 M⁻¹·cm⁻¹ at 360 nm (15).

Enzyme Assays. Enzyme activities were determined spectrophotometrically at 25°C, in cuvettes of 1.0-cm light path containing in final volumes of 3.0 ml or 1.0 ml: 60 µM menadione, 80 µM N-methyldihydronicotinamide, 50 mM Tris·HCl buffer (pH 8.50), 0.1% (vol/vol) Triton X-100, and 100 μ M dicumarol. The menadione was added as a 30 mM stock solution in ethanol, and the N-methyldihydronicotinamide was added as an 80 mM stock solution (pH 10.5). The absorbance of the reaction mixture was monitored at 360 nm. Minor nonenzymatic decreases in absorbance at 360 nm were subtracted from the total rates to yield the initial enzymatic reaction velocities. The specific activity of the enzyme was calculated on the basis of molar absorbance coefficients ($\varepsilon_{\rm m}$) of 7000 M^{-1} ·cm⁻¹ for *N*-methyldihydronicotinamide and 1000 M⁻¹·cm⁻¹ for menadione at 360 nm. The oxidized form of *N*-methylnicotinamide and reduced menadione do not absorb significantly at 360 nm. Specific activities were expressed with respect to protein concentrations measured by the method of Bradford (17) with crystalline BSA as standard.

Purification of QR₂ from Bovine Kidney. The procedures were modified from those described by Liao et al. (4). Bovine kidneys were obtained from the slaughterhouse and quickly frozen. All subsequent operations were carried out at 4°C, unless otherwise noted. One bovine kidney was dissected free from fat and connective tissues and chopped into small pieces. The tissue (420 g) was homogenized in 1 liter of 0.25 M sucrose/3 mM sodium bicarbonate solution. The homogenate was centrifuged at $16,300 \times g$ for 40 min. The supernatant fluid was fractionated with ammonium sulfate, and the fraction precipitating between 40 and 70% saturation was collected, dissolved in 190 ml of 20 mM sodium phosphate buffer (pH 6.8), and dialyzed against water for 24 h. Then, solid KH₂PO₄ was added to a final concentration of 0.1 M and the pH was adjusted to 4.2 with acetic acid. This solution was heated for 10 min at 38°C to denature most of the QR_1 activity, while minimizing the loss of the desired QR_2 activity (4). The partially purified material was precipitated with 70% saturated ammonium sulfate, redissolved, and loaded onto a phenyl-Sepharose column in 10 mM Tris acetate (pH 7.5), containing 500 mM sodium chloride, and eluted with a linear gradient from 100% 10 mM Tris acetate/500 mM sodium chloride (pH 7.5) to 100% of a mixture of equal volumes 10 mM Tris acetate (pH 7.5) and ethanol. After concentration of the pooled active fractions (Centriprep-10 cartridges) and dialysis against 5 mM Tris acetate buffer (pH 7.5), the solution was loaded onto a Q-Sepharose Fast Flow column and eluted with a linear gradient from 100% 5 mM Tris acetate (pH 7.5) to 100% 5 mM sodium phosphate/200 mM sodium chloride (pH 6.0). The fractions containing the desired activity were pooled and concentrated by centrifugation on Centriprep-10 cartridges. The proteins were rechromatographed on smaller phenyl-Sepharose and Mono-Q columns, under conditions similar to those described above. Gel filtration was then carried out on a Superose-12 column (10×300 mm) in 5 mM sodium phosphate (pH 6.5), containing 200 mM sodium chloride. The column was calibrated with molecular weight markers: BSA (66 kDa), ovalbumin (44 kDa), carbonic anhydrase (29 kDa), trypsinogen (24 kDa).

Homogeneity of the Purified bQR₂ and Its Amino Acid Sequence. Purified bQR₂ was subjected to SDS/PAGE on 17% gels according to Laemmli (18). A Waters HPLC system and a Waters Delta Pak $5-\mu m C_4$ column ($3.9 \times 150 \text{ mm}$) were used to analyze the protein and prepare the sample for tryptic digestion and protein sequencing. Two solvent systems were used: (A) 0.1% TFA in water and (B) 0.1% TFA in 85%

[§]Both rQR₁ and hQR₁ contain 274 amino acids according to their cDNA sequence. The purified rQR₁, however, contains 273 amino-acids; the N-terminal methionine residue is absent (see ref. 12).

acetonitrile in water (19). The enzyme was eluted (2.0 ml/min) with a linear gradient from 50% A: 50% B to 30% A: 70% B over a 40-min period at 25°C, monitored at 215 nm. Protein sequencing, amino acid analysis, tryptic digestion, and HPLC separation of peptides, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) (20) of peptides, and Edman sequencing were carried out at the Harvard Micro-Chem Facility (Cambridge, MA).

Cloning of hQR₂ Gene. Total cellular RNA was isolated from normal human liver by use of guanidine isothiocyanatesodium sarkosyl-2-mercaptoethanol, centrifuged through cesium chloride (21), and quantitated by UV absorption. The human liver RNA was reverse transcribed with oligo(dT). The reaction mixture (20 µl) contained: 2 µg RNA, 0.5 µM oligo(dT), 0.5 mM dNTP mixture, 62.5 mM Tris·HCl (pH 8.3), 11.5 mM DTT, 11.25 mM MgCl₂, and 12.5 units of reverse transcriptase (avian myeloblastosis virus). The cDNA was then amplified for 30 cycles of 95°C for 1 min, 65°C for 1 min, and 72°C for 1 min in a thermocycler (Ericomp, San Diego), and followed by a final 5-min extension at 72°C. The PCR mixture (50 μ l) contained 2 μ l of reverse transcriptase cDNA product, 10 mM Tris·HCl (pH 8.3), 1.5 mM MgCl₂, 50 mM KCl, 0.2 mM dNTP mixture, 0.2 µM of sense and antisense primers corresponding to the N terminus (primer 1) and the C terminus (primer 2) of the 693 bp open reading frame of the reported cDNA sequence (5), and 2.5 units of Taq DNA polymerase (Boehringer Mannheim).

The primers had the following sequences: Primer 1: 5'-GCATATGGCAGGTAAGAAAGTACTC-3' (sequence for an added *NdeI* site and the initiation of translation is underlined) and Primer 2: 5'-<u>CTATTA</u>TTGCCCGAAGTGC-CAGTG-3' (antisense sequence of two stop codons TAA and TAG is underlined).

After excision of the \approx 700-bp band obtained from reverse transcription-PCR from a low melting point agarose gel, the fragment was ligated into the TA cloning vector (Invitrogen). Colonies with inserts were selected by plating Escherichia coli DH5 α cells, which had been transformed with the ligation mixture on an LB (Luria broth) plate containing ampicillin and 5-bromo-4-chloro-3-indolyl β -D-galactoside. Over 90% of the white colonies contained the desired insert. The plasmid DNA was isolated by use of a Qiagen (Chatsworth, CA) Miniprep Kit, and restriction analysis of the fragment with NdeI, EcoRI, and BamHI identified the inserts in the desired orientation. The cDNA coding for the QR₂ protein has a single BamHI restriction site. The complete sequence of the insert from both strands was determined by automatic sequencing and was found to be identical with that reported by Jaiswal et al. (5). The hQR₂ gene was cut by NdeI/EcoRI digestions and then ligated into a pET-22 expression vector (Novagen), which had been linearized by NdeI/EcoRI digestions. The ligation mixture was then used to transform E. coli DH5 α . PCR with primers 1 and 2 of hQR₂, with the colonies dispersed in a small amount of LB solution as templates, showed that 9 of 10 colonies carried the desired transformation of the hQR₂ gene. The pET-22 vector with hQR2 insert was then transformed into E. coli BL21(DE3) pLys S or BL21(DE3) (Novagen) for overexpression after Miniprep of DNA from the DH5 α culture.

Overexpression of Recombinant hQR₂ and Its Catalytic Activity. The *E. coli* strain carrying the hQR₂ gene was grown at 30°C to an absorbance of 0.8–1.0 at 600 nm. Then, 1 mM of isopropyl- β -D-thiogalactopyranoside was added to induce the protein expression, and the bacteria were allowed to grow to the stationary phase. Protein concentrations were determined by the method of Bradford (17) on the cell lysate and on the partially purified hQR₂ (40–75% saturated ammonium sulfate).

Inhibition of hQR₂ and rQR₁ by Benzo(*a*)pyrene, Dicumarol, and Cibacron Blue. Inhibition of partially purified recombinant hQR₂ (specific activity 15 μ mol per min/mg of protein) was compared with rQR₁ purified from livers of azo-dye-induced rats with a specific activity 1875 μ mol per min/mg of protein (22). The stock solutions of the inhibitors were prepared in ethanol. Appropriate concentrations of inhibitors were obtained by diluting stock solutions prepared in ethanol and adding 10 μ l of these solutions to the reaction mixture containing 50 mM Tris·HCl buffer at pH 8.5, 30 μ M menadione, and 80 μ M *N*-methyldihydronicotinamide in a total volume of 1.0 ml. The reactions were carried out at 25°C and monitored at 360 nm for both QR₁ and QR₂, since *N*-alkyldihydronicotinamides are also good hydride donors for QR₁ (11).

RESULTS AND DISCUSSION

Purification of Bovine Kidney QR₂. The enzyme was purified by successive ammonium sulfate fractionation, heat treatment, and hydrophobic (phenyl-Sepharose) and ion-exchange chromatographies, as described in Experimental Procedures. These steps resulted in a 3100-fold increase in specific activity to give a final product that catalyzed the oxidation of 30 μ mol of Nmethyldihydronicotinamide per min/mg of protein with menadione as electron acceptor, which is comparable to the specific activity reported by Liao et al. (4) with N-propyldihydronicotinamide as substrate. The rates of reaction of bQR₂ with Nmethyl- and N-propyldihydronicotinamide are similar (4). SDS/ PAGE of the purified enzyme displayed a single band migrating at the position corresponding to \approx 22 kDa (Fig. 1). We believe that this value underestimates the true molecular weight, since QR₂ is very hydrophobic, as indicated by its tight binding to phenyl-Sepharose (this work) and its exceedingly potent inhibition by polycyclic aromatic hydrocarbons and phenolic steroids (2, 4). It is well known that hydrophobic proteins tend to bind higher quantities of SDS and consequently migrate more rapidly than do most common proteins (23).

The homogeneity of the purified enzyme was further corroborated by the presence of a single sharp peak on reverse-phase HPLC in 0.1% TFA in water/acetonitrile (Fig. 1). The bright yellow solutions of the purified enzyme showed an absorption spectrum in the range of 350–550 nm, which is characteristic of flavoproteins, as reported earlier by Liao *et al.* (4), who identified the flavin as FAD. The flavin appears to be very tightly bound to the protein, since extensive chromatographic procedures (ionexchange and hydrophobic chromatography in the presence of small amounts of ethanol, as well as gel filtration) failed to remove FAD from the active site, and the activity of the purified enzyme was not further increased by added FAD.

Amino Acid Sequence of Tryptic Peptides of bQR_2 . The fractions containing the purified bQR_2 that had been subjected to reverse-phase HPLC in TFA/acetonitrile were evaporated

FIG. 1. Reverse-phase HPLC (*Left*) and SDS/PAGE (*Right*) of purified bovine kidney QR₂. The single band observed on the SDS/ PAGE migrates at 22.0 kDa. The molecular weight standards are β -galactosidase (11.6 kDa), RNase (13.7 kDa), trypsinogen (24 kDa), ovalbumin (44 kDa), and BSA (66 kDa). The HPLC of purified bQR₂ shows a single absorption peak at 215 nm.

FIG. 2. Tryptic mapping of homogeneous beef kidney QR₂. (*Upper*) HPLC trace from a Zorbax C₁₈ column monitored at 215 nm is shown and three peptides selected for MALDI-MS and Edman sequencing are identified as A, B, and C (Table 1). Simultaneous monitoring at 277 nm and 292 nm (not shown) indicated the presence of tyrosine residues in A and B, and a tryptophan residue in C. (*Lower*) MALDI-MS (20) of peptide fragments A, B, and C. The molecular weights and Edman sequences of the peptides are given in Table 1.

to a small volume in a vacuum centrifuge. The material was then digested with trypsin and chromatographed on a Zorbax C_{18} column. UV absorption showed nearly 50 well-resolved peaks (Fig. 2). Three peaks (designated A, B, and C) were subjected to MALDI-MS (Fig. 2) and Edman sequencing (Table 1). There was excellent agreement between the calculated weights of the peptides (containing 11, 20, and 8 amino acids, respectively) and the corresponding MALDI-MS M/z(M + 1) determinations (Table 1). The three peptides derived from bQR₂ had a high degree of identity (75–91%) with the deduced sequence of hQR₂ cDNA, and a lesser yet highly significant homology to hQR₁ (5) (Table 1 and Fig. 3). On gel filtration, bQR₂ migrated at 40 kDa (not shown) indicating that this enzyme is a homodimer like QR₁.

Cloning, Sequencing, and Overexpression of hQR2. The hQR2 gene was amplified from total RNA of liver by reverse

Table 1. Comparison of sequences of tryptic peptides of bQR_2 with hQR_1 and hQR_2

Peptide (position))	Sequence	Identity with bQR ₂	Mol. wt. MALDI (calculated)	
А	bQR ₂	VLIVYAHQEPR	-	1325.7	
(6-16)	hQR_2	*******	10/11	(1324.5)	
	$(hQR_1$	A * * *L **S * RT)	6/11		
В	bQR ₂	DITGTLSNPGFFNYGVEAHK		2168.1	
(55–74)	hQR_2	**** *****EV *****T*E	16/20	(2167.3)	
	$(hQR_1$	****K*KD*AN*Q*PA*SVL)	9/20		
С	bQR ₂	MVASWAQR		949.0	
(204–211)	hQR_2	***A*S**	6/8	(948.1)	
	(hQR ₁	ILEG*KK*)	2/8		

*, amino acids identical with those of peptides of bQR₂. Mol. wt., molecular weight.

transcription-PCR with the use of two primers corresponding to the N-terminal and C-terminal sequences (see Experimental *Procedures* and ref. 5). The crude *E. coli* lysate of an overnight culture, induced with isopropyl- β -D-thiogalactopyranoside when it had reached an absorbance at 0.8-1.0 at 600 nm, had a specific activity of 1.6 µmol per min/mg of protein with N-methyldihydronicotinamide as hydride donor and menadione as acceptor. The enzyme was purified from the crude lysate as follows: nucleic acids were precipitated with 0.1%polyethyleneimine, and the supernatant fluid was then fractionated with solid ammonium sulfate. The 35-65% fraction, which contained most of the activity, was applied to a phenyl-Superose Fast Flow column and eluted with an increasing glycerol gradient. Pooled fractions were concentrated and applied to a Q Sepharose Fast Flow column, and eluted with a 0-200 mM NaCl gradient. Fractions with activity were combined and applied to a Mono Q column and eluted with a 0-175 mM NaCl gradient, and then subjected to gel filtration on a Superose 12 column. SDS/PAGE of the purified hQR_2 showed one major band with an apparent molecular weight of 24.6 kDa (calculated 25,951) and one minor higher molecular weight contaminant (Fig. 4). The specific activity of the purified enzyme was 242 μ mol per min/mg of protein.

Properties of Recombinant hQR2. In sharp contrast to the high sensitivity of QR_1 to inhibition by dicumarol ($K_i = 1-2 \text{ nM}$; ref. 24) and Cibacron blue (K_i = 0.2–0.5 μ M) (14, 22, 25), only marginal inhibition of QR_2 was observed with 10 μ M dicumarol or Cibacron blue, whereas very potent inhibition (\approx 75%) was observed with 0.1 μ M benzo(*a*)pyrene (Fig. 5). The high affinity of hQR₂ for hydrophobic ligands is in accord with the truncation of the C-terminal portion of QR₂, which binds the pyrophosphate moiety of NAD(P)H in QR_1 (see below and Fig. 6). For both types of enzymes, the affinity for FAD is very high, because the FAD is not removed by a variety of chromatographic steps. The spectrum of purified hQR₂ showed absorbances characteristic of flavins in the 350-500 nm range. However, the peak absorbances of FAD are significantly red shifted when bound to hQR₂, i.e., from 450 to 456 nm and from 375 to 392 nm for the two major peaks. Thus, the truncation does not appear to affect FAD binding. The affinity for dicumarol appears to reside in major part in the C-terminal tail, since truncation of this tail in QR_2 significantly reduces the affinity for this inhibitor.

As reported for the mouse, rat, and bQR_2 , recombinant hQR_2 is also completely inert toward NADPH, NADH, and NMNH. That NMNH is neither a substrate nor an inhibitor of hQR_2 suggests that the introduction of only one negatively charged phosphate group abolishes binding of dihydronicotinamide derivatives to QR_2 .

Comparison of Structures and Function of QR1 and QR2. The similarities and differences of kinetic properties, hydride donor specificities, and inhibitor profiles of QR1 and QR2 are consistent with the amino acid sequences of the two enzymes and the x-ray crystal structure of QR_1 (12). The high degree of sequence homology between hQR₂ and hQR₁ legitimizes such comparisons. The crystal structure of rQR_1 (12) and proteolytic digestion experiments (26) have indicated that this enzyme consists of two domains: a major catalytic N-terminal domain (amino acids 1-220) and a much smaller C-terminal domain (residues 221-274). Truncation of QR_2 at residue 231 occurs in a loop near the juncture of the two domains between β -sheets 8 and 9 (figure 1) of ref. 12). The two-domain structure is also consistent with the observations (26) that trypsin, Staphylococcus aureus protease, and chymotrypsin cleaved rQR_1 in the same region and produced similar major truncations at K239-K240 (27.0 kDa), D229-L230 (25.9 kDa), and F228–D229 (25.7 kDa), respectively. Moreover, the proteolytic N-terminal fragments retained the dimeric form and the binding affinity for FAD (26), similar to QR_2 . The proximity to the active site of the C-terminus of QR₂, which stabilizes the adenine ring of NAD(P)H in QR₁, could explain the

hQR ₂ hQR ₁	1 VLIVY ***** MAGKKVLIVY * * *** MVGRRALIVL	AHQEPR (Pep ***** AHQEPKSFNG ** * *** AHSERTSFNY	tide A) SLKNVAVDEL * * * AMKEAAAAAL	SRQGCTVTVS * * * KKKGWEVVES	DLYAMNFEPR ****** * DLYAMNFNPI	DITGTL ***** ATDKDITGTL ***** * ISRKDITGKL
	61					
	SNPGFFNYGV	EAHK (Peptic	de B)			
hQR2	SNPEVFNYGV	ETHEAYKQRS	LASDITDEQK	KVREADLVIF	QFPLYWFSVP	AILKGWMDRV
hQR1	KDPANFQYPA	ESVLAYKEGH	LSPDIVAEQK	KLEAADLVIF	QFPLQWFGVP	AILKGWFERV
1	21					
hQR ₂	LCQGFAFDIP	GFYDSGLLQG	KLALLSVTTG	GTAEMYTKTG	VNGDSRYFLW	PLQHGTLHFC
hOR.	** FIGEFAYTYA	** * AMYDKGPFRS	* * ** *** KKAVISITTG	* ** * GSGSMYSLOG	** ** THGDMNVTLW	* * * **** PTOSGTINEC
		111101101110	10011201110	obobiiibbyo	THODINVIDA	rigodimire
1	81		MVASWAQ *** * *	R (Peptide C *) 2	31
hQR2	GFKVLAPQIS	FAPEIASEEE	RKGMVAAWSQ	RLQTIWKEEP	IPCTAHWHFG	Q
hQR	GFQVLEPQLT	YSIGHTPADA	RIQILEGWKK	RLENIWDETP	LYFAPSSLFD	LNFQAGFLMK
2	41			274		

hQR, KEVQDEEKNK KFGLSVGHHL GKSIPTDNQI KARK

FIG. 3. Sequence and location of the three tryptic peptides (A, B, and C) obtained from purified bQR₂ compared with the deduced protein sequences of hQR₂ (231 amino acids; M_r 25,952) and hQR₁ (274 amino acids; M_r 30,832). The tryptic peptides correspond to the QR sequence as follows: A, residues 6–16; B, residues 55–74; C, residues 204–211. Among the 39 amino acids of the tryptic peptides sequenced there is 82% (32 of 39) identity between hQR₂ and the purified bQR₂. Note that this similarity is much closer than 49% identity between hQR₁ and hQR₂ in the overlapping region (231 amino acids from the N terminus).

greater hydrophobicity of the active site, which favors binding of hydrophobic substrates and inhibitors.

In analogy to QR_1 (12, 27), we anticipate that QR_2 will also promote a ping-pong mechanism resulting in a two-electron reduction, because the basic enzymatic machinery appears to be the same for the two enzymes. Furthermore, (*i*) the inhibition of QR_1 by dicumarol is linearly competitive with respect to NADH, but not to quinones (25), consistent with the observation that QR_2 lacks affinity for dicumarol and is unable to use NADH or NADPH, which are competitors with dicumarol; (*ii*) the x-ray crystal structure of rat liver QR_2 showed that Cibacron blue, a potent and competitive inhibitor of QR_1 with respect to NAD(P)H (22), occupied the same site as the

FIG. 4. SDS/PAGE of purified hQR₂. The cloned, overexpressed, and purified hQR₂ migrated with a M_r 24.6 kDa. There is a trace contaminant of higher molecular weight. The standards are: RNase (13.7 kDa), soybean trypsin inhibitor (20.1 kDa), carbonic anhydrase (29 kDa), ovalbumin (44 kDa), and BSA (66 kDa).

nucleotides (12). This observation is also consistent with the ping-pong enzyme kinetics. Moreover, Cibacron blue is only a weak inhibitor of QR₂, and this enzyme does not bind to a Cibacron blue affinity column, in striking contrast to QR₁, which binds to Cibacron blue very tightly and was purified in a single step on this type of column (22); and (iii) the adenine ring of NADP⁺ and the anthraquinone ring of Cibacron blue interact with the C-terminal domain (residues 232 and higher), especially the main chain of the loop connecting strands 8 and 9 (L230-F236) (12). The binding site for the pyrophosphate moiety of NAD(P)H resides in this C-terminal tail. It is therefore of interest that the C-terminal 43 amino acids are exceedingly rich in the basic amino acid lysine (8 of 43 residues), whereas the remainder of the chain contains only 8 lysines among 231 amino acid residues. These observations suggest that QR_2 may be viewed as a C-terminal truncation analogue of QR₁, and that the absence of the carboxylterminal tail should favor the participation of smaller hydride donors as cofactors in the oxidoreduction reactions (Fig. 6).

There is substantial evidence that, by virtue of its obligatory two-electron reduction mechanism, QR₁ plays an important role in protecting cells against the toxicities of quinones and the reactive oxygen species that arise from oxidative cycling of quinones (8). QR_1 is highly induced in mammalian cells coordinately with other Phase 2 enzymes, resulting in protection against the toxic and neoplastic effects of electrophiles (7, 28). The role of QR_2 is much more obscure. It is only modestly inducible (5, 13) and its natural hydride donor is presumably N-ribosyldihydronicotinamide, which may arise from the hydrolytic breakdown of NADH or NADPH that occurs to varying degrees in a number of tissue extracts (3, 4). The quantitative importance of these reactions in intact tissues is not known. NMNH can be hydrolyzed by phosphatases to N-ribosyldihydronicotinamide. Significant quantities of oxidized N-ribosylnicotinamide can also arise from the enzymatic breakdown of NAD and NADP in mammalian tissues (3, 29),

FIG. 5. Striking differences between the inhibitor specificities of the two types of QR. (*Upper*) hQR₂. (*Lower*) rQR₁. Activity was measured with 30 μ M menadione/80 μ M N-methyldihydronicotinamide in 50 mM Tris·HCl buffer (pH 8.5) in the presence of 1% ethanol. Benzo(*a*)pyrene is a potent inhibitor of hQR₂, consistent with the results with rQR₂ and bQR₂ (1–4), whereas QR₁ is known to be very sensitive to inhibition by dicumarol and Cibacron blue (22, 24).

FIG. 6. Three-dimensional structure of rQR1 in complex with FAD and NADP+ (12). The C-terminal 43 amino acids (232-274) are shown in red (Left), and have been truncated at the arrow (Right). Different colors of the backbone indicate the two different subunits. It can be seen that the truncated portion of QR_2 is critical for binding of the pyrophosphate moiety of the NAD(P)H cofactor. Note that the contact regions between the enzyme and FAD are presumably preserved in QR_2 (*Right*), consistent with the tight binding of FAD. The structural comparison between rQR_1 and hQR₂ is appropriate since the homology between rQR₁ and hQR₁ is very high (85% identity).

or by enzymatic synthesis from nicotinamide in the presence of phosphoribosylpyrophosphate (for review see ref. 30). To our knowledge, however, no enzymes promoting reduction of *N*-ribosylnicotinamide have been described in animal tissues, although Kaplan and colleagues (31) have described this reaction in Pseudomonas fluorescens. A search for such enzymes in animal tissues may therefore be rewarding.

Nicotinamide is released from NAD by a number of important cellular reactions, including nicotinamide nucleotide hydrolases, ADP ribosyltransferases transferases, the extensive ADP ribosylations of proteins, and reactions involved in the formation of poly(ADP) ribose (30). Both endogenous and exogenous nicotinamide are methylated to N-methylnicotinamide in tissues, and this is a normal excretory product found in the urine. Nevertheless, there is no evidence for the occurrence of N-alkylnicotinamide reducing enzymes in animal tissues. Although the physiological significance of QR2 is unclear, the catalytic properties of QR₁ and QR₂ differ mostly in hydride donor specificity. Because QR_1 is believed to play an important role in the reductive bioactivation of quinone and nitro group-containing cytotoxic agents (10, 11, 13, 32), QR₂ may play a similar role provided the appropriate hydride donors are available.

In conclusion, an old flavoenzyme discovered more than 30 years ago, which was not even officially recognized by the International Committee on Enzyme Nomenclature, was identified as type 2 QR. Both types of QR appear to have the same catalytic machinery for FAD-mediated hydride transfer, whereas their substrate and inhibitor specificities are strikingly different as a result of truncation of the C-terminal 43 amino acid residues in QR_2 (corresponding to the C-terminal domain of QR_1).

We are grateful to Profs. S. Liao and H. G. Williams-Ashman (University of Chicago) for helpful insight into the discovery and properties of QR₂, which they described in the early 1960s. Dr. Mario A. Bianchet kindly prepared the color figures of the QR₁ structure. Mindan Huang provided helpful technical assistance. We also thank Dr. William S. Lane, Harvard MicroChem Facility (Cambridge, MA) for the sequence determinations of the purified bQR₂, and Gale Doremus for preparing the manuscript and illustrations. These studies were supported by Grant PO1 CA 44530 from the National Cancer Institute, Department of Health and Human Services and by The Burroughs Wellcome Fund (Morrisville, NC). Q.Z. was supported by a fellowship from the National Cancer Institute (5T32 CA09243).

- Liao, S. & Williams-Ashman, H. G. (1961) Biochem. Biophys. Res. Commun. 4, 1. 208 - 213.
- Liao, S. & Williams-Ashman, H. G. (1961) *Biochem. Pharmacol.* **6**, 53–54. Liao, S. (1961) Ph.D. dissertation (University of Chicago, Chicago). 2.
- 3.
- Liao, S., Dulaney, J. T. & Williams-Ashman, H. G. (1962) J. Biol. Chem. 237, 2981–2987. 4. Jaiswal, A. K., Burnett, P., Adesnik, M. & McBride, O. W. (1990) Biochemistry 29. 5.
- 1899 1906.6.
- Talalay, P., De Long, M. J. & Prochaska, H. J. (1988) Proc. Natl. Acad. Sci. USA 85, 8261–8265.
- Prestera, T., Zhang, Y., Spencer, S. R., Wilczak, C. & Talalay, P. (1993) Adv. Enzyme Regul. 33, 281–296.
 Prochaska, H. J. & Talalay, P. (1991) in Oxidative Stress: Oxidants and Antioxi-8.
- Hormanda Ties, H. (Academic, London), pp. 195–211.
 Iyanagi, T. & Yamazaki, I. (1970) *Biochim. Biophys. Acta* 216, 282–294.
 Ross, D., Siegel, D., Beall, H., Prakash, A. S., Mulcahy, R. T. & Gibson, N. W.
- 10.
- (1993) Cancer Metastasis Rev. 12, 83–101.
 Friedlos, F., Jarman, M., Davies, L. C., Boland, M. P. & Knox, R. J. (1992)
 Biochem. Pharmacol. 44, 25–31. 11.
- 12 Li, R., Bianchet, M. A., Talalay, P. & Amzel, L. M. (1995) Proc. Natl. Acad. Sci. USA 92, 8846-8850.
- 13.
- USA 92, 8840-8850.
 Jaiswal, A. K. (1994) J. Biol. Chem. 269, 14502-14508.
 Prestera, T., Prochaska, H. J. & Talalay, P. (1992) Biochemistry 31, 824-833.
 Rafter, G. W. & Colowick, S. P. (1954) J. Biol. Chem. 209, 773-777.
 Oppenheimer, N. J. (1994) Mol. Cell. Biochem. 138, 245-251.
 Bradford, M. M. (1976) Anal. Biochem. 72, 248-254.
 Laemmli, U. K. (1970) Nature (London) 227, 680-685.
 Matsudaira, P. T. (1989) A Practical Calida to Protein and Partida Durification of Particle Characteristics of Participant Characteris 14.
- 15.
- 16.
- 17.
- 18.
- Matsudaira, P. T. (1989) A Practical Guide to Protein and Peptide Purification for Microsequencing (Academic, San Diego), pp. 43–47. Chait, B. T. & Kent, S. B. H. (1992) Science **257**, 1885–1894. 19
- 20
- 21. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. (1979) *Biochemistry* 18, 5294–5299. 22
- Prochaska, H. J. (1988) Arch. Biochem. Biophys. 267, 529-538. Tung, J.-S. & Knight, C. A. (1971) Biochem. Biophys. Res. Commun. 42, 1117-23. 1121
- 24.
- Hollander, P. M. & Ernster, L. (1975) *Biochim. Biophys. Acta* 169, 560–567.
 Prochaska, H. J. & Talalay, P. (1986) *J. Biol. Chem.* 261, 1372–1378. 25.
- Chen, S., Deng, P. S. K., Bailey, J. M. & Swiederek, K. M. (1994) Protein Sci. 3, 26. 51 - 57
- 27. Hosoda, S., Nakamura, W. & Hayashi, K. (1974) J. Biol. Chem. 249, 6416-6423. 28. Talalay, P. (1992) in Cellular and Molecular Targets of Chemoprevention eds. Steele, V. E., Stoner, G. D., Boone, C. W. & Kelloff, G. J. (CRC, Boca Raton,
- 29
- 30.
- Steele, V. E., Stoner, G. D., Boone, C. W. & Kelloff, G. J. (CRC, Boca Raton, FL), pp. 193–205.
 Baum, C. L., Selhub, J. & Rosenberg, I. H. (1982) *Biochem. J.* 204, 203–207.
 Cervantes-Laurean, D., McElvaney, N. & Moss, J. (1997) in *Modern Nutrition in Health and Disease*, eds. Shils, M. E., Olson, J. A., Shike, M. & Ross, A. C.
 (Williams & Wilkins, Baltimore), 9th Ed., in press.
 Kaplan, N. O., Colowick, S. P., Neufeld, E. F. & Ciotti, M. M. (1953) *J. Biol. Chem.* 205, 17–22.
 Parell H. D. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, H. D. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. D. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. D. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. D. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. D. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. D. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. B. Marranguez, P. H. L. Putler, L. & Pagell, M. P. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. B. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. P. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. P. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. P. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. P. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, L. & Pagell, M. P. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, M. Pagell, M. Pagell, M. P. Murphy, A. M. Siegel, D. Harranguez, P. H. L. Putler, M. P. Murphy, A. M. Siegel, D. Harranguez, P. H. J. Putler, M. P. Murphy, A. M. Siegel, M. H. Putler, M. Steel, M. P. Murphy, A. M. Siegel, M. P. Murphy, A. M. Siegel, M. H. Putler, M. Steel, M. P. Murphy, A. M. Siegel, M. P. Murphy, A. M. Siegel, M. P. Murphy, A. M. Siegel, M. P. Murphy, A. M. 31.
- Beall, H. D., Murphy, A. M., Siegel, D., Hargreaves, R. H. J., Butler, J. & Ross, D. (1995) *Mol. Pharmacol.* **48**, 499–504. 32.