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Abstract
We explored the use of diffuse reflectance spectroscopy in the ultraviolet-visible (UV-VIS) spectrum
for the diagnosis of epithelial precancers and cancers in vivo. A physical model (Monte Carlo inverse
model) and an empirical model (principal component analysis, (PCA)) based approach were
compared for extracting diagnostic features from diffuse reflectance spectra measured in vivo from
the dimethylbenz[α]anthracene-treated hamster cheek pouch model of oral carcinogenesis. These
diagnostic features were input into a support vector machine algorithm to classify each tissue sample
as normal (n=10) or neoplastic (dysplasia to carcinoma, n=10) and cross-validated using a leave one
out method. There was a statistically significant decrease in the absorption and reduced scattering
coefficient at 460 nm in neoplastic compared to normal tissues, and these two features provided 90%
classification accuracy. The first two principal components extracted from PCA provided a
classification accuracy of 95%. The first principal component was highly correlated with the
wavelength-averaged reduced scattering coefficient. Although both methods show similar
classification accuracy, the physical model provides insight into the physiological and structural
features that discriminate between normal and neoplastic tissues and does not require a priori, a
representative set of spectral data from which to derive the principal components.
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1. Introduction
Stratified squamous epithelial tissues (for example, the cervix, skin and oral cavity) consist of
a cellular epithelium and an underlying stroma that contains structural proteins (collagen) and
blood vessels. Cancers that originate in the stratified squamous epithelia accounted for more
than 50% of all diagnosed cancers, and more than 300,000 cancer deaths in 2006 [1]. Early
detection of these cancers is crucial to minimize cancer morbidity and mortality. Detection of
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stratified squamous epithelial cancers usually consists of visual inspection of the surface of the
organ, followed by tissue biopsy and histological evaluation. A diagnostic method that is more
reliable than visual inspection alone could potentially increase the likelihood that diseased
tissue is biopsied, and potentially reduce unnecessary tissue biopsies.

Diffuse reflectance spectroscopy is a non-invasive optical technique that could augment the
current standard of cancer diagnosis, and provide real-time feedback on the optimal biopsy
location before tissue is removed. The diffuse reflectance spectrum reflects the absorption and
scattering properties of the tissue. The absorption coefficient (μa) is directly related to the
concentration of absorbers in the tissue, and the primary absorbers in epithelial tissues in the
ultraviolet–visible (UV-VIS) spectral region are oxygenated and deoxygenated hemoglobin.
The reduced scattering coefficient (μs') reflects the size and density of scatterers in tissue, such
as collagen fibers, cells and nuclei. Diffuse reflectance spectra can be collected rapidly and
remotely from tissue via a fiber-optic probe coupled to a spectrometer. This technology is fast,
quantitative and sensitive to alterations in tissue structure and biochemistry. Several studies
have demonstrated that diffuse reflectance spectroscopy can diagnose early epithelial cancers
with high sensitivity and specificity [2-4].

A number of previous studies have used empirical methods to extract features from diffuse
reflectance spectra that are diagnostic of disease. One approach is to subjectively select spectral
features such as intensities and intensity ratios [2,5,6], or use chemometric methods such as
Principal Component Analysis (PCA) to reduce the entire spectra with minimal information
loss into a few orthogonal principal components [7,8]. The extracted features of each sample
are then input into a classification scheme for tissue diagnosis. Empirical methods for feature
extraction do not relate the measured spectra to the physically meaningful information
contained in the diffuse reflectance spectrum. Moreover, a method like PCA requires a
representative set of spectra from the different tissue types to be available in order to extract
the principal components. Extracting physically meaningful information from the diffuse
reflectance measurements using a physically based model will improve our understanding of
the physiological and structural features that differentiate normal and neoplastic epithelial
tissues. This approach exploits the entire spectral data content to quantify tissue absorption and
scattering and enables identification of specific wavelength ranges where the optical properties
are most diagnostic. In addition, this approach does not require a priori, a set of spectral data
for feature extraction.

Several groups have used analytical and numerical models to extract the absorption and
scattering coefficients of stratified squamous epithelial tissues from in vivo measurements of
diffuse reflectance spectra in the UV–VIS [3,4,9-15]. These approaches include empirical
calibration to a set of reference phantoms [10,14], diffusion theory modeling [3,4,9,12,13,
15], and Monte Carlo modeling of measured diffuse reflectance spectra [11]. Although there
are obvious advantages to using a physical model based rather than an empirical based analysis
of diffuse reflectance spectra, there have been no studies that systematically compare the
classification accuracy achieved with these two different feature extraction approaches for the
diagnosis of epithelial pre-cancers and cancers in vivo.

The goal of the study presented here is to compare an empirical versus physical model based
technique for extracting features from in vivo diffuse reflectance spectra of epithelial tissues.
The physical model used was a scalable Monte Carlo model of diffuse reflectance developed
by our group [16]. This physical model is valid for high absorption in the UV-VIS, does not
require specific fiber-optic probe geometries, and requires only a single phantom study for
calibration. The empirical model used was PCA. Features extracted using both approaches
were input into a classification algorithm based on support vector machine algorithms (SVM)
and a leave one out method was used to obtain an unbiased estimate of the sensitivity and
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specificity. The results of this small, preliminary study demonstrate that classification based
on the physical model achieves similar classification accuracy (90%) compared to the empirical
model (95%) for in vivo diagnosis of neoplasias in a stratified squamous epithelial tissue model.
While both approaches are diagnostically similar, the physical model has the advantage of
extracting physically meaningful parameters, which offer insight into the underlying
physiological processes responsible for the differences in tissue spectra (and thus, wavelengths
of interest), and does not require a representative spectral data set from the different tissue
types to extract features from each spectrum.

2. Materials and methods
2.1 DMBA-treated hamster cheek pouch model of oral cancer

A total of 10 male Golden Syrian hamsters (152 ± 14 g) were examined in this study. This
study was approved by the Institutional Animal Use and Care Committee and meets NIH
guidelines for animal welfare. The dimethylbenz[α]anthracene (DMBA) treated hamster cheek
pouch model was selected for this study because it has been shown to mimic the dysplasia-
carcinoma sequence in the human oral cavity [17-19] and different stages of epithelial pre-
cancer and cancer can be examined over a relatively short period of time. For each hamster,
the right cheek pouch was treated three times per week with 0.5% DMBA in mineral oil
(DMBA-treated cheek), and the left cheek pouch was treated with mineral oil only (control
cheek) for 16 weeks. The treatment procedures were established from previous studies
[20-22].

2.2 In vivo diffuse reflectance spectroscopy
Diffuse reflectance spectra of epithelial tissues in the hamster cheek pouch were measured
using a fiber optic probe coupled to a multi-wavelength optical spectrometer. The spectrometer
and fiber optic probe have been described in detail in previously published studies [23,24].
Briefly, the optical spectrometer consists of a 450 W xenon lamp, a scanning double excitation
monochromator, a bifurcated fiber-optic probe, a filter wheel, an imaging spectrograph, and a
CCD camera. The common end of the fiber-optic probe (that is in contact with the tissue) has
a central illumination core of 19 fibers (overall diameter 1,180 μm) and a ring of 4 collection
fibers. The distance between the center of illumination of the core and the center of each
collection fiber is 735 μm. The sensing depth of the fiber optic probe was evaluated using
Monte Carlo simulations in a previous study, and indicated penetration depths of ∼0.5 to 2 mm
for a wide range of tissue optical properties in the UV-VIS [24] and in this application will be
predominantly sensitive to the stromal layer of the tissue [20].

At 18-22 weeks after the commencement of DMBA treatment, diffuse reflectance spectroscopy
was performed on the control and DMBA-treated cheek pouch of each animal, as previously
described [20]. Each hamster was anesthetized with an intraperitoneal injection of a mixture
of 200 mg/kg of ketamine and 5 mg/kg xylazine, the cheek pouch was everted and stretched
over a metal post, and diffuse reflectance spectroscopy measurements were made from the
control cheek and then the DMBA-treated cheek within each animal.

Diffuse reflectance spectra from each site were recorded over a wavelength range of 350–600
nm with an integration time of 0.01 seconds. The slit widths of the excitation monochromator
and imaging spectrograph were chosen to provide bandpasses of 3.5 and 7.9 nm, respectively.
Each intensity-wavelength point in the spectrum was sampled at a wavelength increment of
0.26 nm and then binned to result in an increment of 5 nm.

The background spectrum, which was measured with the probe immersed in distilled water
using the same experimental setup as the tissue measurements, was first subtracted point-by-
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point from each tissue spectrum prior to further calibration. Each diffuse reflectance spectrum
was calibrated for the wavelength-dependent response and throughput of the system by
normalizing it to the diffuse reflectance spectrum measured with the fiber optic probe inserted
into an integration sphere (DRACA-30I, Labsphere, Inc.).

2.3 Histopathology
After the optical spectroscopy measurements were carried out, the biopsy was placed in
buffered formalin and submitted for histopathology. The tissue biopsies were prepared and
read by a certified pathologist (AGF). Diagnosis was based on established criteria [25]. The
diagnosis assigned to each sample was based on the most severe diagnosis of the entire
corresponding biopsy sample, consistent with our previous studies [20-22].

2.4 Extraction of tissue absorption and scattering properties with a Monte Carlo based
physical model

A Monte Carlo based inverse physical model developed by our group [16] was used to extract
the absorption and scattering properties of the hamster cheek pouch from the measured diffuse
reflectance spectra. In the forward model, a set of absorbers are presumed to be present in the
medium, and the scatterer is assumed to be single-sized, spherically shaped and uniformly
distributed. The wavelength dependent absorption coefficients of the medium are calculated
from the concentration of each absorber and the corresponding wavelength dependent
extinction coefficients. The wavelength dependent scattering coefficients and anisotropy factor
are calculated from scatterer size, density and the refractive index of the scatterer and
surrounding medium using Mie theory for spherical particles. The absorption and scattering
coefficients are then input into a scalable Monte Carlo physical model of light transport to
obtain a modeled diffuse reflectance spectrum. In the inverse model, the modeled diffuse
reflectance is adaptively fitted to the measured tissue diffuse reflectance. When the sum of
squares error between the modeled and measured diffuse reflectance is minimized, the
concentrations of absorber, the scatter size and density are extracted. A detailed description of
this physical model is provided elsewhere [16].

The free parameters in the inversion process are the scatterer size, the scatterer density and the
concentrations of the absorbers. The fixed parameters in the model were the refractive index
mismatch between the scatterers and the surrounding medium, the type of absorbers (in this
study, the absorbers were assumed to be oxygenated and deoxygenated hemoglobin) and the
extinction coefficient of the absorbers. The refractive index mismatch was assumed to be 1.4
for the scatterers and 1.36 for the surrounding medium, which is a reasonable assumption
[16]. The extinction coefficients for oxygenated (oxy) hemoglobin and deoxygenated (deoxy)
hemoglobin for the hamster are available for the 400-460 nm wavelength range [26]. It was
previously shown that hamster hemoglobin extinction coefficients cannot be replaced with that
of human hemoglobin [27]. Thus, the wavelength range used in the analysis was dictated by
the available extinction coefficients of hamster hemoglobin (400-460 nm), consistent with a
previous hamster spectroscopy study from our group [27]. The fits for the inversion were run
20 times, with random initial guesses for the free parameters. The converged values with the
lowest sum of squared errors were output. This provides better assurance that the global
minimum has been reached. The range of initial guesses was 0.35 to 1.5 μm diameter for the
scatterer size, 3 to 25 cm−1 for the mean (wavelength averaged) μs', and 0 to 20 cm−1 for the
maximum μa [20,28,29].

A series of experiments were conducted to ensure that the hamster cheek pouch, which is
approximately 3 mm thick, could be approximated as semi-infinite over the 400–460 nm range
[27]. Diffuse reflectance measurements were made from the cheek pouch for two different
cases. In the first case, aluminum was placed beneath the cheek pouch. In the second case,
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black felt was placed beneath the cheek pouch. It is expected that aluminum will reflect any
transmitted light, while the felt will absorb it. The percent difference between the integrated
diffuse reflectance intensity (over the 400-460 nm wavelength range) of the felt and aluminum
covered base was 7% [(Integrated intensity (felt)-Integrated intensity (aluminum)) / Integrated
intensity (felt)*100]. When the diffuse reflectance spectra from the aluminum and felt trials
were input into the physical model, the percent difference between the modeled aluminum
spectra and the modeled felt spectra [(Integrated intensity (modeled felt)-Integrated intensity
(modeled aluminum)) / Integrated intensity (modeled felt)*100] was also 7%. This was
repeated for two more trials to give a similar result. This indicates that the hamster cheek pouch
can be assumed semi-infinite.

The accuracy of the model used has been previously verified using phantom studies for the
350-850 nm wavelength range [16] and the 400-460 nm wavelength range [27]. Briefly, the
phantoms consisted of polystyrene spheres (07310-15, Polysciences, Inc., Warrington, PA)
and human hemoglobin (H0267, Sigma Co., St. Louis, MO) dissolved in water. Five phantoms
were prepared, having reduced scattering coefficients ranging from 10.9 - 16.4 cm−1 and
absorption coefficients ranging from 0 - 17.5 cm−1. The optical properties were extracted from
each of these phantoms using the model described above, and compared to known values to
determine the error in extracting the optical properties. The model was used to extract the
optical properties from the diffuse reflectance spectrum of each phantom using every other
phantom as the reference measurement (i.e., all possible combinations of target-reference
phantoms were considered). The root mean square (RMS) error for extracting the optical
properties of the phantoms, averaged across wavelengths and phantoms was then calculated
to evaluate the accuracy of this model. It was found that the errors for the limited wavelength
range (mean RMS error in μs' and μa of 1.5 ± 0.7 % and 1.4 ± 0.7 %, respectively) were
comparable to those of the full wavelength range (mean RMS error in μs' and μa of 2.5 ± 0.8
% and 3.1 ± 1.5 %, respectively).

Prior to fitting to the inverse physical model, each tissue diffuse reflectance spectrum was
divided point by point by the diffuse reflectance spectrum of a reference tissue phantom with
known optical properties (absorption coefficient of 1.3-9.4/cm and reduced scattering
coefficient of 13.9-14.6/cm over wavelength range of 400-460 nm; reference phantoms with
a lower concentration of hemoglobin or no hemoglobin added as an absorber resulted in similar
extracted tissue optical properties). Each modeled diffuse reflectance spectrum was calibrated
in a similar manner (simulated reflectance spectrum with the same optical properties).

The outputs from the inverse Monte Carlo physical model were the concentrations of
oxygenated and deoxygenated hemoglobin, and the scatterer size and density (note there was
no interaction between the free parameters). The parameters used for further analysis were the
absorption and reduced scattering coefficients over the wavelength range 400-460 nm, the total
hemoglobin concentration (oxygenated plus deoxygenated hemoglobin), and the hemoglobin
saturation (oxygenated hemoglobin concentration divided by total hemoglobin concentration).
The reduced scattering coefficient was used rather than the scatterer size or density because
different values of scatterer diameter and density can yield similar values for the reduced
scattering coefficient using Mie theory, and the reduced scattering coefficient is the value
typically reported in the literature.

2.5 Extraction of principal components using an empirical model (PCA)
A second feature extraction method, principal component analysis (PCA) [30], was used to
represent the measured diffuse reflectance spectra with a few principal components (PCs),
which account for most of the variance of the original spectral data set while significantly
reducing the data dimension. Prior to this analysis, the measured diffuse reflectance spectra
were pre-processed by normalizing each spectrum to the same reference phantom that was used
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for normalization in the Monte Carlo analysis (see above). The “phantom-normalization”
method was chosen so that the physical model and empirical (PCA) based analysis methods
could be compared on spectra that were pre-processed the same way. All of the principal
components that accounted for 100% of the spectral variance were extracted (13 PCs). The
details of this analysis are described in a previous publication [20].

2.6 Classification
A Wilcoxon rank-sum test [31] was employed to identify the parameters extracted from the
physical model that showed statistically most significant differences (p<0.05) between normal
and neoplastic epithelial tissues. The parameters obtained from the physical model that were
identified as diagnostically most significant were incorporated into a non-parametric support
vector machine (SVM) [32] algorithm to classify each tissue sample as normal or neoplastic.
A “leave one out” cross-validation [33] was then carried out to obtain an unbiased estimate of
the classification accuracy of the algorithm. This was repeated for the statistically most
significant principal component scores (p<0.05) obtained from the empirical (PCA) analysis.

3. Results
Of the 20 cheek pouches evaluated in this study, 10 were diagnosed as normal (the 10 control
cheeks), 4 with dysplasia, 2 with carcinoma in situ (CIS) and 4 with squamous cell carcinoma
(SCC). For the purposes of statistical analyses, all tissues diagnosed with dysplasia, CIS and
SCC were combined into one “neoplastic” tissue category.

3.1 Results from physical model analysis
Figure 1 shows the measured diffuse reflectance spectra of a normal and neoplastic (SCC)
tissue sample measured in vivo from within the same animal and the corresponding fits to the
physical model. There is excellent agreement between the measured and fitted spectra and this
is representative of the quality of fits obtained in this study.

Table 1 shows the values for the reduced scattering coefficient (μs') and the absorption
coefficient (μa) at 20 nm increments between 400 nm and 460 nm, averaged across all normal
and all neoplastic samples. The neoplastic μs' is significantly lower than the normal μs' at all
wavelengths (p<0.05). The neoplastic μa is significantly lower than the normal μa at 400, 420
and 460 nm (p<0.05), and the normal and neoplastic μa are approximately equal at 440 nm
(p>0.05). The mean (wavelength averaged) reduced scattering coefficient (mean μs') decreases
with neoplasia compared to normal (p<0.05). There is no significant change in the mean
(wavelength averaged) absorption coefficient of normal and neoplastic epithelial tissues
(p=0.089). The lack of significance in the wavelength-averaged absorption coefficient is due
to the lack of significant differences between the normal and neoplastic μa in the 425-450 nm
range (p>0.05) (significant differences between normal and neoplastic μa exist between
400-420 nm and 455-460 nm, p<0.05). The results of paired comparisons are similar (data not
shown).

There were no significant differences in the total hemoglobin concentration for normal (42 ±
7 μM, n=10) versus neoplastic (35 ± 13 μM, n=10) tissues (p>0.05). However, there was a
significant decrease in the hemoglobin saturation for neoplastic (17 ± 16 %, n=10) compared
to normal (42 ± 20 %, n=10) tissues (p<0.05).

Figure 3 shows a scatter plot of the values for the absorption and reduced scattering coefficient
at 460 nm extracted from the measured diffuse reflectance spectra using the physical model
based analysis. These two variables provided equal or better classification accuracy, sensitivity
and specificity in the cross-validated set than any other two variables included in Table 1, the
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hemoglobin saturation or the total hemoglobin concentration (data not shown). The physical
model based analysis provides good discrimination between the normal and neoplastic
samples, with only one normal and one neoplastic (CIS) sample misclassified in the cross-
validated set (Table 2). The addition of a third feature did not significantly improve the
classification accuracy of the cross-validated set, consistent with a previous study [24].

3.2 Results from empirical (PCA) based analysis
Only the first two PCs extracted from the phantom-normalized diffuse reflectance spectra, PC1
and PC2, showed statistically significant differences between normal and neoplastic samples
(p<0.05). These PCs accounted for a total of 96.3% of the spectral variance in the measured
normal and neoplastic diffuse reflectance spectra (Table 3).

Figure 4 shows the average phantom normalized spectra for normal (n=10) and neoplastic
(dysplasia/CIS/SCC, n=10) tissues, and spectral re-projections of PC1 + PC2 for normal (n=10)
and neoplastic (n=10) tissues. The difference between the re-projected spectra and the
phantom-normalized spectra are shown as residuals for normal and neoplastic tissues. The
spectral re-projections from the PC subspace onto the normalized spectral data space were
calculated by linearly combining the principal components weighted by their corresponding
PC scores. The re-projected and phantom-normalized spectra are similar to each other (there
are no significant differences between the phantom-normalized and re-projected spectra at any
wavelength for normal or neoplastic tissues, p>0.05), with residuals similar to that of the
physical model (Fig. 1). There are statistically significant differences between the phantom-
normalized spectra of neoplastic and normal epithelial tissues from 430-460 nm (p<0.05) and
between the re-projected spectra from 425 – 460 nm (p<0.05).

Figure 5 shows a scatter plot of the scores for PC1 and PC2 extracted from phantom-normalized
diffuse reflectance spectra using the PCA analysis. The empirical model based analysis showed
a similar cross-validated accuracy (Table 4) to the physical model based analysis (Table 2). In
the empirical model based classification, 1 normal sample was misclassified in cross-validation
(different normal samples were misclassified in the empirical and physical model based
classification). The addition of a third PC did not significantly improve the classification
accuracy of the cross-validated set, consistent with a previous study [24].

4. Discussion
The results of this study indicate that a physical model based method (Monte Carlo model)
achieves similar classification accuracy, sensitivity and specificity compared to an empirical
method (PCA) for the analysis of diffuse reflectance spectra for in vivo detection of neoplasias
in stratified squamous epithelial tissue. The physical model provides biologically relevant
endpoints that may reveal the physiological and structural features underlying the diagnosis.
However, the empirical model provides little insight into tissue physiology or structure. Unlike
the empirical model, the physical model does not require a priori, a representative set of spectral
data from normal and neoplastic tissues in order to extract diagnostic features.

The values reported for the absorption and reduced scattering coefficient of normal tissues in
the current study are consistent with a previous study from our group, which used the same
physical model to extract the optical properties of the hamster cheek pouch from in vivo diffuse
reflectance spectra measured from 400 – 460 nm [27]. The absorption and reduced scattering
coefficients reported here for the hamster cheek pouch are also in agreement with those reported
for the human cervix and oral cavity in vivo in the same wavelength region [3,4,34] using
different extraction algorithms. A previous study of the human oral cavity in vivo found that
the absorption coefficient over the UV-VIS wavelength range demonstrated large variations
in hemoglobin concentration, which were uncorrelated with disease state [4]. This lack of
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significant changes in the hemoglobin concentration is consistent with the results reported in
the current study. The absolute values of the hemoglobin concentrations reported in the current
study are also consistent with previous in vivo studies in human head and neck cancers,
measured using diffuse optical techniques [35].

The decrease in observed hemoglobin saturation is consistent with previous in vivo
measurements of normal and neoplastic cervical tissues in the NIR [36]. The decrease in
hemoglobin saturation observed in the current study is consistent with the known behavior of
neoplasias. Neoplastic lesions extract greater oxygen from the local vasculature due to
enhanced metabolic demands of the neoplastic cells relative to normal [37]. The saturation
values reported here for normal and neoplastic tissues in the oral cavity in vivo are lower than
those reported by Hornung et al in the human cervix in vivo (85 ± 3% and 77 ± 15%, for normal
and high grade squamous intra-epithelial lesions, respectively). However, tissue oxygenation
is highly dependent on anesthesia [38,39] (no anesthesia was used in the Hornung study, and
ketamine/xylazine was used for full sedation in the current study) and organ site [39]. Baudelet
et al found that the pO2 of both tumors and normal muscle tissue decreased approximately the
same percentage with ketamine/xylazine anesthesia in mice [38]. This suggests that the
decrease in hemoglobin saturation with neoplasia measured under ketamine/xylazine
anesthesia in the current study represents a similar trend that would be expected under non-
anesthetized conditions.

The decrease in the reduced scattering coefficient with neoplasia observed in this study (∼40%
decrease) is consistent with that observed in the human cervix and oral cavity in vivo in the
ultraviolet-visible (UV-VIS) wavelength region [3,4]. Previous confocal microscopy
experiments indicate a threefold increase in the epithelial scattering coefficient in highly
dysplastic tissues compared to normal tissue [40]. Microscopy experiments have also indicated
a decrease in collagen fiber density by a factor of 2 in severe dysplasia [41], and degradation
of the collagen matrix leads to decreased scattering [42]. The probe geometry used in this study
is most sensitive to changes in the stroma [20], and the scattering properties of epithelial tissues
are dominated by the highly scattering stroma [3,4,34], so the decrease in the reduced scattering
coefficient likely reflects degradation of collagen with neoplastic development.

There were significant differences between normal and neoplastic tissues at all wavelengths
between 400-460 nm for the reduced scattering coefficient, 400-420 nm and 455-460 nm for
the absorption coefficient, and 425-460 nm for the principal components. The significant
wavelengths derived from the principal components overlap with those of the reduced
scattering coefficient and minimally overlap with those of the absorption coefficient. PC2 is
not highly correlated with either the mean (wavelength averaged) reduced scattering coefficient
or the mean (wavelength averaged) absorption coefficient (correlation coefficient < 0.5 for
normal and neoplastic tissues). However, PC1 is highly correlated with the mean reduced
scattering coefficient (correlation coefficient ∼ 0.9 for normal and neoplastic tissues), and is
not correlated with the mean absorption coefficient (correlation coefficient < 0.2 for normal
and neoplastic tissues). This indicates that changes in PC1 with neoplasia are mostly due to
changes in the reduced scattering coefficient. One advantage of the physical model based
approach is that the sources of contrast can be directly determined from the absorption and
reduced scattering coefficients.

In conclusion, the study presented here demonstrates that diffuse reflectance spectroscopy can
be useful for the diagnosis of epithelial neoplasias in vivo. The analysis of diffuse reflectance
spectra was carried out using a physical model based and an empirical model based approach.
The physical model based approach appears to provide similar classification accuracy,
sensitivity and specificity as the empirical approach for the diagnosis of epithelial neoplasias
in vivo with diffuse reflectance spectroscopy. Unlike the empirical model, the physical model
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based approach provided insight into the physiological and structural features that discriminate
between normal and neoplastic epithelial tissues. The empirical model based approach also
has the disadvantage of requiring a priori, a representative set of spectra from the different
tissue types in order to extract the principal components. In the future, larger clinical studies
are needed to determine if the conclusions of this small, preliminary study are valid for clinical
applications.

Acknowledgments
The authors would like to acknowledge funding from the DOD (Predoctoral Traineeship W81XWH-04-1-0330, for
M.S.) and NIH R21 CA108490.

References and links
1. American Cancer Society; 2006. Cancer Facts and Figures.
2. Nordstrom RJ, Burke L, Niloff JM, Myrtle JF. Identification of cervical intraepithelial neoplasia (CIN)

using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg. Med
2001;29:118–127. [PubMed: 11553898]

3. Georgakoudi I, Sheets EE, Muller MG, Backman V, Crum CP, Badizadegan K, Dasari RR, Feld MS.
Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am. J.
Obstet. Gynecol 2002;186:374–382. [PubMed: 11904594]

4. Muller MG, Valdez TA, Georgakoudi I, Backman V, Fuentes C, Kabani S, Laver N, Wang Z, Boone
CW, Dasari RR, Shapshay SM, Feld MS. Spectroscopic detection and evaluation of morphologic and
biochemical changes in early human oral carcinoma. Cancer 2003;97:1681–1692. [PubMed:
12655525]

5. Parekh DJ, Lin WC, Herrell SD. Optical spectroscopy characteristics can differentiate benign and
malignant renal tissues: a potentially useful modality. J. Urol 2005;174:1754–1758. [PubMed:
16217277]

6. Subhash N, Mallia JR, Thomas SS, Mathews A, Sebastian P, Madhavan J. Oral cancer detection using
diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands. J. Biomed. Opt
2006;11:014018. [PubMed: 16526895]

7. de Veld DC, Skurichina M, Witjes MJ, Duin RP, Sterenborg HJ, Roodenburg JL. Autofluorescence
and diffuse reflectance spectroscopy for oral oncology. Lasers Surg. Med 2005;36:356–364. [PubMed:
15856507]

8. Palmer GM, Zhu C, Breslin TM, Xu F, Gilchrist KW, Ramanujam N. Comparison of multiexcitation
fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003).
IEEE Trans. Biomed. Eng 2003;50:1233–1242. [PubMed: 14619993]

9. Fawzy YS, Petek M, Tercelj M, Zeng H. In vivo assessment and evaluation of lung tissue morphologic
and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung
cancer detection. J. Biomed. Opt 2006;11:044003. [PubMed: 16965160]

10. Amelink A, Sterenborg HJ, Bard MP, Burgers SA. In vivo measurement of the local optical properties
of tissue by use of differential path-length spectroscopy. Opt. Lett 2004;29:1087–1089. [PubMed:
15181994]

11. Thueler P, Charvet I, Bevilacqua F, Ghislain M, Ory G, Marquet P, Meda P, Vermeulen B,
Depeursinge C. In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering,
and phase function properties. J. Biomed. Opt 2003;8:495–503. [PubMed: 12880356]

12. Zonios G, Perelman L, Backman V, Manoharan R, Fitzmaurice M, Van Dam J, Feld MS. Diffuse
reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl. Opt 1999;38:6628–
6637. [PubMed: 18324198]

13. Finlay JC, Foster TH. Hemoglobin oxygen saturations in phantoms and in vivo from measurements
of steady-state diffuse reflectance at a single, short source-detector separation. Med. Phys
2004;31:1949–1959. [PubMed: 15305445]

Skala et al. Page 9

Opt Express. Author manuscript; available in PMC 2009 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



14. Pfefer TJ, Matchette LS, Bennett CL, Gall JA, Wilke JN, Durkin AJ, Ediger MN. Reflectance-based
determination of optical properties in highly attenuating tissue. J. Biomed. Opt 2003;8:206–215.
[PubMed: 12683846]

15. Ghosh N, Mohanty SK, Majumder SK, Gupta PK. Measurement of optical transport properties of
normal and malignant human breast tissue. Appl. Opt 2001;40:176–184. [PubMed: 18356989]

16. Palmer GM, Ramanujam N. Monte Carlo-based inverse model for calculating tissue optical properties.
Part I: Theory and validation on synthetic phantoms. Appl. Opt 2006;45:1062–1071. [PubMed:
16512550]

17. Chen CT, Chiang HK, Chow SN, Wang CY, Lee YS, Tsai JC, Chiang CP. Autofluorescence in normal
and malignant human oral tissues and in DMBA-induced hamster buccal pouch carcinogenesis. J.
Oral Pathol. Med 1998;27:470–474. [PubMed: 9831958]

18. Andrejevic S, Savary JF, Fontolliet C, Monnier P, van Den Bergh H. 7,12-dimethylbenz[a]anthracene-
induced ‘early’ squamous cell carcinoma in the Golden Syrian hamster: evaluation of an animal
model and comparison with ‘early’ forms of human squamous cell carcinoma in the upper aero-
digestive tract. Int. J. Exp. Pathol 1996;77:7–14. [PubMed: 8664146]

19. White FH, Gohari K, Smith CJ. Histological and ultrastructural morphology of 7,12 dimethylbenz
(alpha)-anthracene carcinogenesis in hamster cheek pouch epithelium. Diagn. Histopathol
1981;4:307–333. [PubMed: 6802623]

20. Skala MC, Palmer GM, Zhu C, Liu Q, Vrotsos KM, Marshek-Stone CL, Gendron-Fitzpatrick A,
Ramanujam N. Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of
epithelial pre-cancers. Lasers Surg. Med 2004;34:25–38. [PubMed: 14755422]

21. Skala MC, Riching KM, Bird DK, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, Keely PJ,
Ramanujam N. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free
nicotinamide adenine dinucleotide in normal and precancerous epithelia. J. Biomed. Opt
2007;12:024014. [PubMed: 17477729]

22. Skala MC, Squirrell JM, Vrotsos KM, Eickhoff JC, Gendron-Fitzpatrick A, Eliceiri KW, Ramanujam
N. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and
cancerous squamous epithelial tissues. Cancer Res 2005;65:1180–1186. [PubMed: 15735001]

23. Zhu C, Palmer GM, Breslin TM, Xu F, Ramanujam N. Use of a multiseparation fiber optic probe for
the optical diagnosis of breast cancer. J. Biomed. Opt 2005;10:024032. [PubMed: 15910105]

24. Zhu C, Palmer GM, Breslin TM, Harter J, Ramanujam N. Diagnosis of breast cancer using diffuse
reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based
feature extraction technique. Lasers Surg. Med 2006;38:714–724. [PubMed: 16799981]

25. MacDonald, DG.; Saka, SM. Structural Indicators of the High Risk Lesion. Cambridge Univ. Press;
Cambridge: 1991.

26. Ellsworth ML, Pittman RN, Ellis CG. Measurement of hemoglobin oxygen saturation in capillaries.
Am. J. Physiol 1987;252:H1031–1040. [PubMed: 3578537]

27. Millon SR, Roldan-Perez KM, Riching KM, Palmer GM, Ramanujam N. Effect of optical clearing
agents on the in vivo optical properties of squamous epithelial tissue. Lasers Surg. Med 2006;38:920–
927. [PubMed: 17163473]

28. Mourant J, Freyer J, Hielscher A, Eick A, Shen D, Johnson T. Mechanisms of light scattering from
biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt 1998;37:3586–3593.
[PubMed: 18273328]

29. Palmer GM, Zhu C, Breslin TM, Xu F, Gilchrist KW, Ramanujam N. Monte Carlo-based inverse
model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis. Appl.
Opt 2006;45:1072–1078. [PubMed: 16512551]

30. Dillon, WR.; Goldstein, M. Multivariate analysis: methods and applications. Wiley; New York: 1984.
31. Devore, J. Probability and Statistics for Engineering and the Sciences. Duxbury, Pacific Grove: 2000.
32. Cristianini, N.; Shawe-Taylor, J. An introduction to support vector machines: and other Kernel-based

learning methods. Cambridge University Press; Cambridge: 2000.
33. Hjorth, J. Computer intensive statistical methods: Validation, model selection, and bootstrap.

Chapman & Hall; London, New York: 1994.

Skala et al. Page 10

Opt Express. Author manuscript; available in PMC 2009 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



34. Drezek R, Sokolov K, Utzinger U, Boiko I, Malpica A, Follen M, Richards-Kortum R. Understanding
the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling,
measurements, and implications. J. Biomed. Opt 2001;6:385–396. [PubMed: 11728196]

35. Sunar U, Quon H, Durduran T, Zhang J, Du J, Zhou C, Yu G, Choe R, Kilger A, Lustig R, Loevner
L, Nioka S, Chance B, Yodh AG. Noninvasive diffuse optical measurement of blood flow and blood
oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study.
J. Biomed. Opt 2006;11:064021. [PubMed: 17212544]

36. Hornung R, Pham TH, Keefe KA, Berns MW, Tadir Y, Tromberg BJ. Quantitative near-infrared
spectroscopy of cervical dysplasia in vivo. Hum. Reprod 1999;14:2908–2916. [PubMed: 10548647]

37. Gulledge CJ, Dewhirst MW. Tumor oxygenation: a matter of supply and demand. Anticancer Res
1996;16:741–749. [PubMed: 8687123]

38. Baudelet C, Gallez B. Effect of anesthesia on the signal intensity in tumors using BOLD-MRI:
comparison with flow measurements by Laser Doppler flowmetry and oxygen measurements by
luminescence-based probes. Magn. Reson. Imaging 2004;22:905–912. [PubMed: 15288130]

39. Steinberg F, Rohrborn HJ, Otto T, Scheufler KM, Streffer C. NIR reflection measurements of
hemoglobin and cytochrome aa3 in healthy tissue and tumors. Correlations to oxygen consumption:
preclinical and clinical data. Adv. Exp. Med. Biol 1997;428:69–77. [PubMed: 9500031]

40. Collier T, Follen M, Malpica A, Richards-Kortum R. Sources of scattering in cervical tissue:
determination of the scattering coefficient by confocal microscopy. Appl. Opt 2005;44:2072–2081.
[PubMed: 15835356]

41. Pavlova I, Sokolov K, Drezek R, Malpica A, Follen M, Richards-Kortum R. Microanatomical and
biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning
fluorescence confocal microscopy. Photochem. Photobiol 2003;77:550–555. [PubMed: 12812299]

42. Saidi I, Jacques S, Tittel F. Mie and Rayleigh modeling of visible-light scattering in neonatal skin.
Appl. Opt 1995;34:7410–7418.

Skala et al. Page 11

Opt Express. Author manuscript; available in PMC 2009 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Measured diffuse reflectance spectra of one normal and neoplastic (squamous cell carcinoma)
tissue site within the same animal, and the corresponding fits to the physical model (c.u. =
calibrated units). The measured and fitted data were multiplied by the reference phantom after
the fitting procedure, so that the original diffuse reflectance spectra and its corresponding fit
are shown in this figure. The residuals for the normal and neoplastic sample are also shown.
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Fig. 3.
Scatter plot of the two of the most diagnostic tissue parameters obtained from the physical
model based analysis (mean reduced scattering coefficient and absorption coefficient at 460
nm). The samples include normal (●), dysplasia and CIS (+), and SCC (*). The decision line
(—) was obtained from the SVM classifier. (SCC=squamous cell carcinoma, CIS = carcinoma
in situ).
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Fig. 4.
Average phantom normalized spectra for normal (n=10, —) and neoplastic (dysplasia/CIS/
SCC, n=10, - -) tissues, and spectral re-projections of PC1 + PC2 for normal (●) and neoplastic
(*) tissues. The difference between the re-projected spectra and the phantom-normalized
spectra are shown as residuals for normal (△) and neoplastic (▽) tissues.
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Fig. 5.
Scatter plot of two diagnostic parameters (PC1 and PC2) extracted from the diffuse reflectance
spectra using the empirical model (PCA) based analysis for phantom-normalized spectra. The
samples include normal (●), dysplasia and CIS (+), and SCC (*). The decision line (—) was
obtained from the SVM classifier.
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Table 1
Mean and standard deviation of the reduced scattering coefficient (μs') and absorption coefficient (μa) calculated across
all normal (n=10) and neoplastic (dysplasia/CIS/SCC, n=10) tissues. Significant differences between normal vs.
neoplastic tissues were found for the variables marked with an asterisk (*), based on unpaired Wilcoxon tests.

μs' (cm−1) μa (cm−1)

Wavelength (nm) Normal (n=10) Neoplastic (n=10) Normal (n=10) Neoplastic (n=10)

400 nm 14.2 ± 2.8 8.6 ± 3.8* 8.8 ± 1.2 5.9 ± 2.1*

420 nm 13.9 ± 2.6 8.4 ± 3.8* 17.1 ± 2.4 12.2 ± 4.6*

440 nm 13.6 ± 2.5 8.2 ± 3.6* 9.6 ± 3.1 9.3 ± 4.2

460 nm 13.4 ± 2.4 8.2 ± 3.6* 1.4 ± 0.2 0.9 ± 0.3*

Mean 400-460 nm 13.8 ± 2.6 8.6 ± 3.4* 10.5 ± 1.8 7.0 ± 2.5
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Table 2
Results from the SVM classifier for the physical model based analysis. The two variables shown in Fig. 3 were used
to classify normal (n=10) and neoplastic (dysplasia/CIS/SCC, n=10) samples. The mean and standard deviation of the
overall classification rate, sensitivity and specificity are shown for the training sets, and the “leave one out” cross
validation result is also shown.

Training Cross-Validation

Classification Rate (%) 90 ± 2 90

Sensitivity (%) 90 ± 2 90

Specificity (%) 90 ± 2 90
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Table 3
Principal components obtained from the empirical (PCA) analysis, the percent variance accounted for by each PC, and
the p-value from unpaired Wilcoxon tests of normal (n=10) vs. neoplastic (dysplasia/CIS/SCC, n=10) tissues. These
PCs were derived from phantom-normalized diffuse reflectance spectra.

Principal Components Variance P-value

PC1 88.6% <0.05

PC2 7.7% <0.005
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Table 4
Results from the SVM classifier for the empirical model based analysis. PC1 and PC2 from phantom-normalized spectra
were used to classify normal (n=10) and neoplastic (dysplasia/CIS/SCC n=10) samples. The mean and standard
deviation of the overall classification rate, sensitivity and specificity are shown for the training sets, and the “leave one
out” cross validation result is also shown.

Training Cross-Validation

Classification Rate (%) 100 ± 1 95

Sensitivity (%) 99 ± 2 100

Specificity (%) 100 ± 0 90

Opt Express. Author manuscript; available in PMC 2009 May 28.


