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Replica exchange (RE) is a generalized ensemble simulation
method for accelerating the exploration of free-energy landscapes,
which define many challenging problems in computational bio-
physics, including protein folding and binding. Although temper-
ature RE (T-RE) is a parallel simulation technique whose implemen-
tation is relatively straightforward, kinetics and the approach to
equilibrium in the T-RE ensemble are very complicated; there is
much to learn about how to best employ T-RE to protein folding
and binding problems. We have constructed a kinetic network
model for RE studies of protein folding and used this reduced
model to carry out ‘‘simulations of simulations’’ to analyze how the
underlying temperature dependence of the conformational kinet-
ics and the basic parameters of RE (e.g., the number of replicas, the
RE rate, and the temperature spacing) all interact to affect the
number of folding transitions observed. When protein folding
follows anti-Arrhenius kinetics, we observe a speed limit for the
number of folding transitions observed at the low temperature of
interest, which depends on the maximum of the harmonic mean of
the folding and unfolding transition rates at high temperature. The
results shown here for the network RE model suggest ways to
improve atomic-level RE simulations such as the use of ‘‘training’’
simulations to explore some aspects of the temperature depen-
dence for folding of the atomic-level models before performing RE
studies.

anti-Arrhenius � Markov process � parallel tempering

One of the key challenges in the computer simulation of
proteins at the atomic level is the sampling of conforma-

tional space. The efficiency of many common sampling proto-
cols, such as Monte Carlo (MC) and molecular dynamics (MD),
is limited by the need to cross high free-energy barriers between
conformational states and rugged energy landscapes. One class
of methods for studying equilibrium properties of quasi-ergodic
systems that has received a great deal of recent attention is based
on the replica exchange (RE) algorithm (1, 2) (also known as
parallel tempering). To accomplish barrier crossings, RE meth-
ods simulate a series of replicas over a range of temperatures.
Periodically, coordinates are exchanged by using a Metropolis
criterion (3) that ensures that at any given temperature a
canonical distribution is realized. RE methods, particularly
REMD (4), have become very popular for the study of protein
biophysics, including peptide and protein folding (5, 6), aggre-
gation (7–9), and protein–ligand interactions (10, 11). Previous
studies of protein folding appear to show a significant increase
in the number of reversible folding events in REMD simulations
versus conventional MD (12, 13). Given the wide use of REMD,
a better understanding of the RE algorithm and how it can be
used most effectively for the study of protein folding and binding
is of considerable interest.

The effectiveness of RE methods is determined by the number
of temperatures (replicas) that are simulated, their range and
spacing, the rate at which exchanges are attempted, and the
kinetics of the system at each temperature. Although the deter-
mination of ‘‘optimal’’ Metropolis acceptance rates and temper-

ature spacings has been the subject of various studies (2, 14–19),
the role played by the intrinsic temperature-dependent confor-
mational kinetics that is central to understanding RE has not
received much attention. Recent work (19–22) recognizes the
importance of exploration of conformational space and the
crossing of barriers between conformational states as the key
limiting factor for the RE algorithm. Molecular kinetics can have
a strong effect on RE beyond the entropic effects that have been
discussed (20, 22), particularly if the kinetics does not have
simple temperature dependence. It is known from experimental
and computational studies that the folding rates of proteins and
peptides can exhibit anti-Arrhenius behavior, where the folding
rate decreases with increasing temperature (23–28). Different
models have been proposed to explain the physical origin of this
effect (29, 30).

In this paper, we investigate the impact of simulation param-
eters and anti-Arrhenius kinetics on the RE method. Because
RE simulations of protein systems that display anti-Arrhenius
behavior are difficult to converge, we developed a network RE
(NRE) model that allows us to simulate the RE algorithm of
two-state protein folding. This network model reduces the
atomic complexity of the system to a set of discrete conforma-
tional states that evolve in continuous time according to Mark-
ovian kinetics for both conformational transitions and exchange
between replicas.

The NRE model studied here does not capture all of the
complexities of the ‘‘real’’ molecular simulation because various
kinds of non-Markovian behavior are not captured in the
network model. However, it does capture some of the essential
features of RE and allows us to study these fundamental aspects
of the algorithm in a controlled setting and at low computational
cost, which allows us to separate some of the interacting param-
eters and study their effects on the simulation individually. Many
of the limitations in the convergence rates and efficiency ob-
served with NRE also will be present in full atomic-level RE
simulations, allowing us to identify promising avenues of inquiry
for future atomic-level simulations.

Theory
The RE Method and the NRE Model. In a standard RE simulation
with M replicas corresponding to M inverse temperatures �i �
(kBTi)�1 (�1 � �2 � . . . � �M), the state of the extended
ensemble is specified by a joint configuration of M replicas X �
{x1, x2, . . . , xM}, where xi stands for the configuration of replica
i. To simulate the extended ensemble, a propagation algorithm
such as MC or constant-temperature MD is used to locally
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sample the conformational space within each replica, and ex-
changes of configurations between pairs of replicas, e.g., X �
{. . . , xi, . . . , xj, . . .}3 X� � {. . . , xj, . . . , xi, . . .} are attempted
periodically with an acceptance probability w(X3 X�). For the
equilibrium distribution to remain invariant with respect to these
exchanges, it is sufficient to impose a detailed balance condition
on the transition probability. For the potential energy function
U(x), the appropriate transition probability is given by (4)

w�X3 X�� � min�1, exp� � �� j � � i��U�xi� � U�xj��	
 . [1]

To isolate some of the essential features of the RE algorithm,
we construct a kinetic NRE model, which we can use to study the
effects of the parameters of the model on efficiency and con-
vergence. We consider a system in which the configurational
space can be partitioned into two macrostates of interest sepa-
rated by a free-energy barrier that makes transitions between the
conformations an activated process. Motivated by protein fold-
ing, we call these macrostates F and U (for ‘‘folded’’ and
‘‘unfolded’’). Transitions between F and U in a (non-RE) MD or
kinetic MC simulation can be approximated by a Poisson process
in which the waiting times between folding and unfolding
transition events are exponentially distributed random variables
with means equal to the reciprocal of the folding or unfolding
rates, respectively.

If the transition events are Markovian, then we can represent
the simultaneous behavior of two noninteracting replicas in
terms of the four composite states {F1F2, F1U2, U1F2, U1U2}. In
each symbol, the first letter is the configuration of replica 1, the
second letter is the configuration of replica 2, and the subscripts
are the temperatures of each replica. Therefore, F1U2 represents
the composite state that replica 1 at temperature T1 is folded,
while replica 2 at temperature T2 is unfolded. The kinetics in the
composite state space can be represented as a continuous-time
Markov process with discrete states (31).

The four-state composite system corresponding to noninteract-
ing replicas can be extended to create a discrete-state model of RE
by introducing temperature exchanges between replicas. For ex-
ample, suppose the current state is F1U2. After a successful tem-
perature exchange, replica 1 is at T2 and replica 2 is at T1, thus the
new state can be represented as F2U1. The introduction of temper-
ature exchange therefore creates four additional states, leading to
the eight-state system {F1F2, F1U2, U1F2, U1U2, F2F1, F2U1, U2F1,
U2U1}. These states are arranged into two subnetworks defined by
the ‘‘horizontal’’ folding and unfolding transitions, which are con-
nected to each other by ‘‘vertical’’ temperature-exchange transi-
tions, forming a cubic network (Fig. 1). In general, the network for
an N-replica system consists of N! subnetworks, each of which has
2N states connected by folding/unfolding transitions. The model
description in this section will focus primarily on the two-replica
case; all of the details can be generalized easily to the case of N
replicas.

We require that the equilibrium populations of the states be
such that the canonical ensemble is recovered at each temper-
ature. This is the case if the equilibrium populations are pro-
portional to the product of the equilibrium populations for the
two-state systems, e.g.,

Peq�F1U2� �
1
2

Peq�F1�Peq�U2� �
1
2

kf1ku2

�kf1 � ku1��kf2 � ku2�
,

where the factor of 1/2 accounts for the presence of the two
equivalent manifolds. For these probabilities to be preserved
under temperature exchanges, it is sufficient that detailed bal-
ance is satisfied, e.g., the transition probabilities w(F1U23 F2U1)
and w(F2U1 3 F1U2) satisfy Peq(F1U2)w(F1U2 3 F2U1) �
Peq(F2U1)w(F2U1 3 F1U2) or

w�F1U23 F2U1�

w�F2U13 F1U2�
�

kf 2ku1

kf 1ku2
� w. [2]

If the equilibrium favors the folded state at T1 and the unfolded
state at T2, then w � 1. The ratios of forward and reverse
transition probabilities for F1F2 º F2F1 and U1U2 º U2U1 are
equal to one because interchange of temperatures does not
change the equilibrium populations.

In atomic-level RE simulations, temperature-exchange at-
tempts usually are made periodically in time, i.e., the MC or MD
evolution is interrupted, temperature swap proposal(s) are
made, and the proposals are either accepted or rejected (4, 6).
In keeping with the continuous-time nature of our network
model, we simulate the effect of temperature exchanges by
introducing an additional rate parameter �, which controls the
overall scaling of the temperature-exchange rate relative to the
folding and unfolding rates. We set the forward and reverse rates
of the F1F2 º F2F1 and U1U2 º U2U1 ‘‘reactions’’ equal to �,
while the other rates are set to � or w� (Fig. 1) as required by
detailed balance (Eq. 2), and where we choose w � 1. For
example, the states U1F2 and U2F1 differ in population, with U2F1
being more populated if the equilibrium favors the folded state
at T1 and the unfolded state at T2. We therefore set the U1F23
U2F1 ‘‘reaction rate’’ equal to � and the reverse rate equal to w�,
where w is defined in Eq. 2.

The NRE model can be simulated by using a standard method
for continuous-time Markov processes with discrete states (31),
also known as the ‘‘Gillespie algorithm.’’ The algorithm remains
efficient even when the number of replicas is large (e.g., 20
replicas, corresponding to 1024 states) because of the fact that
each state is connected to a small number of neighboring states
(those connected by single temperature exchanges involving
neighboring temperatures and folding/unfolding transitions of
each replica).

The convergence or efficiency of a simulation is monitored by
measuring NTE(� T1), the number of ‘‘round-trip’’ transitions
between the U and F states, conditional on the temperature of
interest T1 that occurs in a given observation time �. In the
context of the network model, suppose that we follow replica 1,
and at a given time the system is in a state where that replica is
folded at temperature T1 (e.g., F1F2). We then wait for the first
occurrence of a state in which replica 1 is unfolded at T1 (e.g.,
U1F2) and then for the first occurrence of a state in which that

F1F2

F2F1

F2U1 U2U1

U1U2F1U2

U1F2

U2F1

Fig. 1. The kinetic network of the composite states corresponding to the
simplified RE model with two replicas. The state labels represent the confor-
mation (letter) and temperature (subscript) for each replica. For example, F2U1

represents the state in which replica 1 is folded and at temperature T2 while
replica 2 is unfolded and at temperature T1. Red and black arrows correspond
to folding and unfolding transitions, respectively, and the temperature at
which the transition occurs is indicated by the solid and dashed lines (for T2 and
T1, respectively). The cyan arrows correspond to temperature-exchange tran-
sitions, with the solid and dashed cyan lines denoting transitions with rate
parameters � and w�, respectively.
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replica is folded again at T1 (e.g., F1F2). At this point, we say that
a transition event has occurred. Conceptually, a transition event
is a transit of a given replica from one conformation at low
temperature to the other conformation at low temperature and
back again regardless of route, i.e., whether it was the result of
a direct barrier crossing at T1 or indirectly via a barrier crossing
at T2 combined with temperature exchanges. The number of
transitions as defined corresponds to the number of ‘‘reversible
folding’’ events studied in all-atom simulations of peptide sys-
tems (12, 13).

Thermodynamic Model for Anti-Arrhenius Behavior. The Arrhenius
equation relates a reaction rate k to the temperature:

k�T� � Ae��G†�T��kBT � Ae���E†�T��T�S†�T���kBT, [3]

where �G†(T) is the free energy of activation. The temperature
dependence of the reaction rate customarily is described by
means of the Arrhenius plot, the plot of ln k(T) with respect to
1/T. The slope of ln k(T) in the Arrhenius plot is proportional to
the activation energy, �E†(T), at temperature T. When the
activation energy is temperature-independent, the Arrhenius
plot appears as a line of constant slope. Moreover, if the
activation energy is positive, the reaction rate increases with
increasing temperature. This behavior is referred to as normal
Arrhenius behavior. When the activation energy is negative,
however, increasing the temperature causes the rate to decrease.
This nonintuitive phenomenon sometimes observed in protein
folding kinetics (23–28) is referred to as anti-Arrhenius behav-
ior. In these circumstances, the transition state is energetically
favored but entropically disfavored with respect to the reactants.

Often protein folding rates follow normal Arrhenius behavior
at low temperatures, switching to anti-Arrhenius behavior at
higher temperatures. This mixed behavior can be understood in
terms of a constant activation heat-capacity model in which the
activation energy and entropy vary linearly with respect to the
temperature and its logarithm, respectively (24, 32):

�E†�T� � �E†�T0� � �T � T0��Cp
† [4]

�S†�T� � �S†�T0� � ln�T�T0��Cp
†, [5]

where �Cp
† � 0 is the activation heat capacity, which is assumed

here to be independent of temperature. Summing Eqs. 4 and 5,
we obtain the expression for �G†(T) corresponding to this
model. Shown in Fig. 2 are the Arrhenius plots for the unfolding
and folding rates, ku(T) and kf (T), used in this work that result
from inserting this expression in Eq. 3, setting ln A/s�1 � 22, T0 �
300 K, and �E†(T0), �S†(T0), and �Cp

† to be 2 kcal/mol, �0.01
kcal/mol�K, and �0.025 kcal/mol�K for folding, and 8.5 kcal/mol,
0.008 kcal/mol�K, and 0 kcal/mol�K for unfolding, respectively.
For the case of Arrhenius folding (Fig. 2, dashed line), the
parameters are identical with the exception that �Cp

† for folding
is zero. The unfolding rate follows normal linear Arrhenius
behavior, whereas the anti-Arrhenius folding rate decreases with
increasing temperature above T* � 380 K (the temperature at
which the activation energy for folding is zero and the folding
rate is maximal). The general behavior of ku(T) and kf (T) shown
in Fig. 2 is typical for experimentally determined peptide folding
kinetic rates (23, 25, 28).

Results
We have measured the number of conformational transitions for
the NRE model by using both Arrhenius and anti-Arrhenius
models for the folding and unfolding rates with various choices
of the number of replicas, their temperatures, and the temper-
ature-exchange rate parameter �. The goal of these calculations
is to study factors that affect the increased efficiency that RE can

provide. We define the efficiency in the context of NRE to be
the total number of transitions divided by the number of replicas
NTE(� T1)/N. We make several general observations. First,
increasing the total temperature range for a given number of
replicas can degrade the efficiency of reversible folding if the
kinetics is anti-Arrhenius (Fig. 3A). To understand this behavior,
we first examine the behavior of NRE for the simple case of two
replicas (N � 2), where the rate of temperature exchanges is
large compared with the folding/unfolding kinetics. The condi-
tion that � be very large relative to the conformational kinetic
rates simplifies the problem because in that limit the behavior is
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Fig. 2. Arrhenius plot of the folding and unfolding rates from a thermody-
namic model for the temperature dependence of protein folding rate con-
stants. The black line corresponds to the unfolding rate, and the red lines
correspond to the folding rates. The solid line is for the �C †

p  0 case displaying
anti-Arrhenius behavior, whereas the dashed line corresponds to the same
parameters with �C †

p � 0. The arrow indicates the temperature T* at which the
folding rate is maximal (�380 K).
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Fig. 3. Number of transition events in NRE simulations (normalized by the
number of replicas) for various temperature ranges, exchange rates �, and
number of replicas N. In all cases, the system was simulated for � � 4 ms. For
the simulations in A, � was set to 1,000 �s�1, the dashed and solid lines
correspond to Arrhenius and anti-Arrhenius kinetics, respectively, and six
replicas were exponentially distributed between 300 K and Tmax. The simula-
tions in B were performed with anti-Arrhenius rates, N replicas exponentially
distributed from 300 K to 700 K, and � values of 10,000 �s�1 (black), 1,000 �s�1

(red), 100 �s�1 (green), 10 �s�1 (blue), and 1 �s�1 (cyan).
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independent of the precise choice of � and depends on the
(temperature-dependent) folding and unfolding rates. We fix T1
at 300 K and sweep T2 over the range 300 K to 700 K. In Fig. 4A,
we show the dependence of NTE(� T1) normalized by the number
of replicas as a function of T2 for the anti-Arrhenius kinetic
model. We see that NTE(� T1)/N is small at low and high T2 and
reaches a maximum near 440 K (Fig. 4A, solid black line).

The number of transition events at the low temperature T1
obtained by simulation in the large � limit is very well approx-
imated by the average of the harmonic means of the folding and
unfolding rates at both temperatures:

NTE���T1�/N �
�

N
��kf 1

�1 � ku1
�1��1 � �kf 2

�1 � ku2
�1��1	 [6]

(Fig. 4A, dashed black line). For the uncoupled, non-RE case,
the rate of transition events at each temperature is simply the
harmonic mean of the rate constants. Therefore, our observa-
tion (Eq. 6) suggests that the number of transition events
observed at the lowest temperature in the coupled RE case can
be no larger than the number of transitions at an ‘‘optimum’’
temperature defined as that temperature for which the number
of folding/unfolding transitions for the uncoupled system is
maximized. Because the number of transitions for the uncoupled
system is a harmonic mean of the rate constants, the overall
convergence of NRE at low temperature is limited by the
smallest rate at this optimum (higher) temperature.

Next, we examine how the number of replicas affects the
convergence as monitored by the number of transition events. In
Fig. 4A, we examine whether a third replica results in an
improvement over the optimum behavior with two replicas by
fixing T1 at 300 K and T3 at 440 K (the two-replica optimum) and
scanning T2 from 300 K to 700 K (i.e., we do not require T1 �
T2 � T3). We see in Fig. 4A (solid green line) that the number
of transitions per replica again reaches a maximum near T2 � 440
K, corresponding to the case in which one replica is at the
temperature of interest (300 K) and the other two are both
placed at the ‘‘optimal’’ temperature of 440 K. As in the

two-replica case, NTE(� T1)/N is very well approximated by the
average of the harmonic means of the rates at all three temper-
atures (Fig. 4A, dashed green line).

The relevant question is whether the addition of the third
replica is an improvement over having two. It is important in this
regard to distinguish the convergence rate from the computa-
tional efficiency of the simulation. In the cases seen in Fig. 4A,
the total number of transition events (not normalized by the
number of walkers) is larger for three replicas than the maximum
total number of transition events for two replicas, and therefore
we expect the convergence to be better. In general, adding an
additional replica always will improve overall convergence,
because the additional transition pathways opened up always will
have a positive contribution to the total number of transition
events. However, the computational efficiency of NRE as mea-
sured by NTE(� T1)/N of the three-replica simulation is improved
relative to the two-replica simulation only if the additional
temperature T2 has values between 350 K and 550 K (Fig. 4A,
dotted black line). Although the addition of a replica always
improves convergence, it improves efficiency only if the har-
monic mean of the rates at the additional temperature is large
relative to the harmonic means of the other replicas. If not, then
the presence of the additional slow paths will reduce the
efficiency. For the general case of NRE with N replicas, we
expect that, in the large � limit, optimal efficiency (and conver-
gence) will be obtained when one replica is at the temperature
of interest and all of the other replicas are placed at the
temperature that maximizes the harmonic mean of the folding
and unfolding rates. Thus, the replica with the largest harmonic
mean sets a ‘‘speed limit’’ for the amount of efficiency improve-
ment that an RE simulation can have over an uncoupled
simulation run for the same amount of CPU time. The addition
of replica N � 1 will increase the efficiency only if the harmonic
mean at the new temperature is greater than the average of the
harmonic means of the original N replicas.

In the results described above, the rate of temperature ex-
changes is so large that convergence is limited only by the rates
of conformational transitions at each temperature. When � is
comparable to or smaller than the rates of conformational
transitions, the waiting time for a temperature exchange to occur
becomes comparable to or even larger than the timescale of
configuration changes within each replica. Therefore, there can
be multiple folding or unfolding events at higher temperatures
before any of these events are transmitted to the temperature of
interest. These events are ‘‘lost’’ and make no contribution to the
number of transition events at low temperature. Therefore, in
the NRE model (where conformational transitions are instan-
taneous and strictly Markovian), the optimal convergence (and
efficiency) is achieved in the limit where � overwhelms the
kinetic rates, and smaller values of � only degrade the perfor-
mance of the algorithm. It should be noted that, because of
non-Markovian effects present in real molecular systems, it may
not be possible to achieve the large � limit in molecular RE
simulations.

In Fig. 4B, we show the effect of � on the number of transition
events per replica for two replicas as a function of the high
temperature T2. As expected, the number of transition events
becomes smaller as � decreases. The drop in the number of
events is most dramatic when � approaches the magnitude of the
conformational transition rate constants (10–100 �s�1). If we
compare NTE(� T1)/N with the expected number of transitions
for a single-temperature simulation at T1 (Fig. 4B, dashed line),
we see that for some combinations of � and T2 the efficiency of
two-replica NRE is less than an uncoupled non-RE simulation,
whereas for others the efficiency is improved.

The value of T2 that maximizes the number of transition events
also decreases as � decreases. This result arises because of a
competition between the increase in the number of transition
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Fig. 4. Number of transition events per replica in NRE simulations using the
anti-Arrhenius folding rates for a simulation time � � 4 ms conditional on
temperature T1 � 300 K, while T2 is scanned from 300 K to 700 K. (A) Solid black
and green lines show simulation results for two-replica and three-replica
systems (with T3 � 440 K), respectively. Dashed black and green lines show the
number of transition events predicted by using the average of harmonic
means for two and three replicas, respectively. All simulations were per-
formed with � � 10 ns�1. (B) Results for two-replica NRE simulations using the
anti-Arrhenius folding rates and � values of 10 ns�1 (solid black), 1 ns�1 (red),
100 �s�1 (green), 10 �s�1 (blue), and 1 �s�1 (cyan). The dashed black line
corresponds to the predicted number of transitions for a single uncoupled
simulation at T1.
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events at high temperature as T2 approaches 440 K (the tem-
perature at which the harmonic mean rate is maximized) and the
decrease in the efficiency in transfer of those transitions to the
low temperature by temperature exchanges caused by the de-
crease of w with increasing temperature gap. Thus, there is a
temperature for which there is an optimal balance between the
increasing number of conformational transition events at high
temperature and the decreasing efficiency of transfer to low
temperature. This optimum occurs when the two competing
effects are of comparable magnitude, leading to a decrease in the
optimum temperature as � decreases.

The finite-� behavior of NRE for many replicas is more
complex because issues related to the size of the state space
become important. Although in the limit of infinite �, any
conformational transition in a replica at any temperature is
‘‘communicated’’ via rapid temperature exchanges to T1 before
the replica has had a chance to move back, this is not the case
for finite �. The most apparent symptom of this is that a
simulation with more replicas can be less efficient than one with
fewer, which can be seen in Fig. 3B, where the insertion of
additional replicas into a fixed temperature range can lead to a
decrease in NTE(� T1)/N. This result is related to the rapid
increase in the combinatoric size of the NRE state space as N
increases.

Conclusions
In this paper, we have used a kinetic NRE model to explore
the effects of anti-Arrhenius behavior of the conformational
kinetics on the convergence of RE protein folding simulations.
We have constructed a NRE model inspired by protein folding
and have studied its convergence behavior as a function of the
number of replicas, their temperatures, the kinetics at each
temperature, and the rate of temperature exchange. The
number of folding transitions is used as an indicator for
convergence. The results demonstrate that the convergence of
NRE for a two-replica system in the limit of very rapid
temperature exchanges is fastest when the high temperature is
chosen to maximize the harmonic mean of the folding and
unfolding rates. Additional replicas improve the efficiency in
the NRE model only if the harmonic mean of the kinetic rates
at the temperature of the additional replica is larger than the
average of the harmonic means of the original set of replicas.
Both the convergence rate and efficiency are reduced if the
temperature-exchange rate is finite, and the optimal temper-
ature of the high temperature is reduced.

The conclusions obtained here are based on the behavior of
a simplified NRE model, which is completely Markovian. More
of the characteristics of molecular RE could be incorporated
into the NRE model to enhance its realism. For example,
continuous energy distributions could be used to simulate the
effects of energy-distribution overlaps. Non-Markovian effects,
such as nonexponential waiting time distributions also could be
modeled, either directly or by dividing the F and U macrostates
into ‘‘hidden’’ microstates. Even though many proteins are
observed to follow simple two-state kinetics for folding under
some conditions, the underlying free-energy landscape is un-
doubtedly more complex. The NRE model also can be extended
to simulate more complex landscapes represented by three or
many more macrostates. It could turn out that the best strategies
for optimizing RE simulations are different for such cases as
compared with those in which the kinetics is described by
two-state anti-Arrhenius behavior as has been observed for
some peptides (25, 28).

The results shown here for the NRE model nevertheless are
likely to be relevant for atomic-level RE simulations, and they
suggest that more extensive ‘‘training’’ simulations to explore the
temperature dependence of the kinetics will be useful for
optimizing the efficiency of RE. Training simulations have been

used to construct asynchronous variants of RE (33) and to find
the optimum temperature ladder by maximizing the diffusion in
temperature space (6, 19). However, maximizing the diffusion of
replicas in temperature space regardless of the actual kinetics at
each temperature does not necessarily optimize the RE simu-
lation. If the rate constants have anti-Arrhenius behavior, then
there exists an optimal temperature with the fastest kinetics.
Additional replicas beyond that temperature decrease the effi-
ciency of the simulation relative to the case in which the same
number of replicas are used but the additional replicas are placed
close to the optimum temperature. The reason for this is because
in the anti-Arrhenius case the optimum temperature has more
favorable kinetic properties than any higher temperature and can
contribute more to the convergence of the low temperature of
interest. In this context, finding the optimum high temperature
should take priority, and the remaining replicas then can be
distributed to optimize temperature diffusion and efficiency. On
the other hand, in the context of Arrhenius-like rates, there is no
optimum high temperature, and the focus on the optimization of
diffusion to the highest temperature is justified.

The possibility that an arbitrary choice of highest temperature
may be too high is increased further by the observation that finite
temperature-exchange rates lower the optimal highest temper-
ature significantly below that predicted by the harmonic mean of
the forward and reverse rates at high temperature. Superficially,
it could be argued that this result is not relevant to atomic-level
simulations, which already are conducted in the ‘‘large-�’’ limit,
given that the folding and unfolding timescales of peptides and
small proteins are on the order of tens to hundreds of nanosec-
onds, whereas temperature exchanges typically are done on a
picosecond timescale. However, unlike the NRE model, for
which temperature exchanges of any magnitude can occur freely,
in a molecular simulation the rate of temperature exchanges is
limited by the rate of diffusion in energy space. For example, a
replica must first find low-energy configurations to be able to
exchange temperature with a replica at a lower temperature.
Therefore, the rate of conformational transitions places an
upper limit on the effective value of � that can be achieved in a
molecular simulation.

NRE also provides some insights into the choice of the
number of replicas and their temperature distribution. In mo-
lecular RE simulations, the temperature spacing is dictated
primarily by the overlap of energy distributions at different
temperatures. However, if we wish to add additional replicas
beyond those required to obtain sufficient energy overlap (for
example, in a large-scale cluster or grid computing environ-
ment), the NRE results indicate that additional replicas will be
most beneficial to efficiency if they are placed at temperatures
such that the average of the harmonic means is increased.
Additionally, it may be possible to use reweighting methods such
as T-WHAM (34), which generate estimates of thermodynamic
quantities based on data from more than one temperature, to
further accelerate convergence properties because folding tran-
sitions are not required to occur between identical temperatures
to be ‘‘productive.’’ RE methods that are based on the exchange
of energy function parameters (35) also may have more favorable
convergence properties for some systems.

The RE technique is a powerful conformational sampling
method for the study of quasi-ergodic systems while preserving
canonical thermodynamic properties. For these reasons, it has
become a very popular tool in computational biophysics re-
search. This study identifies some characteristics of the method
that are key for the effective use of RE to study processes with
anti-Arrhenius kinetic behavior, such as protein folding and
binding.
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