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Collective action is more likely to occur and to be effective when
it is consistent with the self-interest of the affected individuals. The
Maine lobster fishery is an instructive example of biological and
technological circumstances combining with individual self-interest
to create conditions favorable to collective action. The model
describes the way social structure emerges from the adaptive
behavior of competing fishers. Fishers compete in two ways: in a
scramble to find the lobsters first and by directly interfering in
other fishers’ ability to compete, i.e., by cutting their traps. Both
forms of competition lead fishers to interact frequently and to
self-organize into relatively small groups. They learn to restrain
their competitive behavior toward their neighbors but do not
extend that same restraint to nonneighbors. Groups work within
well defined boundaries, contact one another frequently, actively
exchange information about the resource, and, most importantly,
depend on continuing mutual restraint for their economic well-
being. These self-organizing, competitive processes lay the foun-
dation for successful collective action, i.e., mutual agreements that
create the additional restraint required for conservation. The
modeling approach we use is a combined multiagent and classifier
systems simulation. The model allows us to simulate the dynamic
adaptation (learning) of multiple individuals interacting in a com-
plex, changing environment and, consequently, provides a way to
analyze the fine-scale processes that emerge as the broad social–
ecological patterns of the fishery. Patterns generated by the model
are compared with patterns observed in a large dataset collected
by 44 Maine fishers.

agent-based model � classifier system � self-organizing

The Maine lobster fishery is a well studied example of a fishery
in which a self-organizing process at a very local level, group

territoriality, has created the basis for a rudimentary form of
collective action (1). The importance of territoriality is that it
restricts the geographic range of fishers. They cannot deplete the
resources on their doorstep and expect to repeat the same behavior
elsewhere (at least not if their neighbors also practice territoriality).
Because they are forced to ‘‘stay at home,’’ fishers cannot run away
from overfishing; they have to live with the consequences of their
actions. Furthermore, when ‘‘staying at home,’’ whether they like it
or not, they become part of an easily identified, usually fairly small,
homogeneous, and stable group, working within well defined
geographic boundaries. These social circumstances are almost
always associated with well managed common resources (2).

In the lobster fishery, these very local circumstances are the
foundation of a relatively stable and effective system of multi-
level (local, state, and federal) governance, a reasonably sus-
tained resource,§ very effective enforcement of conservation
rules, and the growth of a personal sense of stewardship among
fishers. This kind of outcome is unusual in fisheries. The more
common situation is an impersonal, administrative approach
that relies on an ecologically restricted set of fishing rules, fails
to create biologically effective stewardship incentives, and, too
often, leads to the depletion of the resource (3). Consequently,
the circumstances that give rise to this form of self-organized
governance are of interest because they provide a perspective on

the causes of overfishing that is very different from the conven-
tional ‘‘technical’’ or top-down perspective.

We describe here a model used to investigate the factors facili-
tating the emergence of self-governance in this fishery. The basic
premise of the model is that the relatively sedentary behavior of
lobsters and the technology of their capture (traps), combined with
the self-interested, competitive behavior of individual fishers create
circumstances that facilitate collective action. The same people, in
the same place, fishing for other species (such as scallops, urchins,
groundfish, and shrimp) with mobile fishing gear did not arrive at
similar self-organizing arrangements.

The modeling approach is a combination of a multiagent or
individual-based simulation and a classifier system (CS) (4). In the
typical agent-based simulation, the modeler specifies the rules
governing the interactions of self-interested agents with one an-
other and their environment. In recent years, a comparatively large
population of these models has appeared (in ecology, see ref. 5; in
social sciences, see ref. 6). In a CS model, however, the information
pertinent to the decisions of individual agents and the possible
actions that they might take are specified by the modeler, but the
decision rules that translate that information into action evolve, i.e.,
are computed, in response to feedback about their value to the
agent.

The principal advantage of a CS model is the ability to simulate
the evolution of individual behavior in a complex social–ecological
environment and to analyze, thereby, the fine-scale competitive
dynamics that eventually emerge as broad-scale patterns.¶ Output
from the model is compared with a very large dataset giving the
location and catch for 988,000 trap hauls collected by 44 Maine
fishers [see supporting information (SI) Logbook Data]. The model
is specific to the lobster fishery, but in many ways it is a metaphor
for the dynamics of more generally competitive and cooperative
processes. Presumably, a better understanding of these fine-scale
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dynamics will help avoid reliance on the usual assumptions of
uniformity that drive most policy panaceas (9).

The Competitive Problem Faced by Fishers
In the Gulf of Maine, the fishery starts in early summer, when
a large number of juvenile lobsters molt and reach the legal
minimum size. During and just after the molt, fishing activity
tends to concentrate in shallow water and then moves to deeper
water as the year progresses. Traps are the only permitted
harvest technology in Maine. They are baited with salted fish,
placed where lobsters are thought to be, and left, exposed to
weather and other fishers, for 1 day to as much as 2 weeks before
being hauled. The buoy for each trap is marked with a distinctive
color combination that identifies its owner. Lobsters are at-
tracted to traps over only a very short distance (tens of meters).
From week to week, month to month, and year to year, lobster
density and patchiness can vary significantly but at a rate that is
very slow compared with finfish. The catch of lobsters at any
particular place varies in response to environmental factors and,
especially, the previous activities of other fishers.

A fisher’s challenge is to maximize income in this changing
natural and human environment. The human environment is
especially complex for the fisher because it requires continuous
adaptation to the strategically competitive behavior of other fishers.
There are two principal modes of competition used by fishers. One
is comparable to what ecologists call scramble competition. Fishers
need to search out and capture lobsters before other fishers. Each
day a fisher might haul several hundred traps and must decide
where to put each trap next. That decision is based on information
(most of it very imperfect) about the activities and catch rates of
other fishers, water temperature, bottom type, and a variety of other
indicators about the natural environment and, of course, the fisher’s
own recent and longer-term experiences. To compete effectively
through scramble competition, fishers closely watch and quickly
adapt to the changes in the location of their own catch and to the
location of the catch of other fishers.

The second mode of competition is comparable to what
ecologists call interference competition. In the lobster fishery,
interference competition occurs when fishers directly reduce the
capabilities of their competitors by destroying, i.e., cutting, their
competitors’ traps. It is almost as if retailers could compete by
burning one another’s stores. The benefit of cutting is a reduc-
tion in competition, but there is a high risk of reciprocal action
by affected competitors. Trap cutting, consequently, can be a
very costly form of competition and is one that fishers try their
best to avoid. It does not occur frequently; nevertheless, it is
possible, and the constant threat of its occurrence is a significant
restraint on fishers’ activities.

For each fisher, the competitive result over the course of a year
is the cumulative outcome from thousands of individual trap-
placement and trap-cutting decisions. Fishers make those decisions
in the context of ongoing strategic interactions with their compet-
itors. It is this decision process and its aggregate outcomes that the
model addresses.

Broad Design of the Model
There are two major components to the model: (i) a biophysical
model that represents a patchy natural environment and (ii) an
agent-based classifier model that addresses the learning/
competitive behavior of fishers. The harvesting activity of fishers
is the link between the two components.

The biophysical model is represented by a spatially explicit map
with three spatial scales: a global scale (70 � 70 grid), a broad
ecological scale (24 irregular zones), and a very local scale (a 3 �
3 neighborhood around each trap). For each cell in the map, the
model records depth, bottom type, wave exposure, seasonal tem-
peratures, and lobster densities (SI Appendix 1 and Figs. 12–14
therein). There are three temporal scales in the model: (i) a daily

scale in which the number of lobsters in each cell is reduced by
fishing, (ii) a seasonal scale marked by changes in water tempera-
ture, and (iii) an annual scale marked by the recruitment of new
lobsters to the population. The annual recruitment of lobsters varies
stochastically in each of the 24 ecological zones. The catchability of
lobsters changes seasonally as changing water temperatures at
different depths induce changes in lobster metabolism. At any time
of the year the best catch rates tend to occur in relatively warmer
water: shoal in the summer, deep in the winter. The maximum
densities of lobsters and traps in each cell are parameters usually set
to 100 and 3, respectively. (Greater detail about the biophysical
model is provided in SI Appendix 1.) This environment generates a
continually changing array of information, which is used by indi-
vidual fishers when they decide where to place their traps. The
computation of those decisions takes place in the agent-based part
of the model.

The agent-based model addresses the evolution of the decision
rules, the learning process, fishers employ to compete effectively.
We describe first the part of the model dealing with scramble
competition, or trap placement, and then turn to interference
competition, or trap cutting. Fishers are assumed to be boundedly
rational, profit maximizers. Each fisher is given a small number of
traps,� each of which is hauled and placed each day. Each fisher has
fixed and variable costs. The criteria fishers use to select effective
decision rules is profitability. Except when long-run sustainability
questions are addressed, the model is run with 30 fishers, as if there
were a limited number of licenses in the fishery.** Depending on
the question the model addresses, there is only one harbor with 30
fishers or two harbors with 15 fishers each.

We use a variation of Holland and Holyoak’s (4) learning
classifier system to model the evolution of a fisher’s decision rules.
A decision rule is defined as a unique combination of conditions
describing a particular state of the environment and a specific
action. Decision rules can be very general or very specific. For
example, a general rule might be something like, ‘‘If it is summer,
fish inshore.’’ A more specific rule might be something like, ‘‘If it
is summer, the bottom is muddy, water temperature is low, the
depth is deep, and the catch from the trap is low, move the trap to
warmer, shallow, rocky water.’’ The latter rule depends on much
more specific information and requires a much more specific action.
Both rules, however, can apply to a particular summertime situa-
tion. In effect, a classifier system creates a hierarchy of general to
specific rules; thus, in any situation, a fisher is likely to have a
number of rules of varying degrees of specificity that might apply
to that particular situation. Because the biophysical–human envi-
ronment is complex, fishers require a large, heterogeneous set of
decision rules to adapt effectively (the model holds up to 1,200 rules
in each fisher’s memory).

The basic logic of the decision process is reasonably straightfor-
ward. The biophysical model and the agent-based model together
provide the fisher with information about the current state of the
environment. Each fisher has a memory that consists of a list of
decision rules (classifiers) of the form described above; each rule is
accompanied by a weight that reflects its performance (profitabil-
ity) in previous use.

The trap placement decision begins with the fisher’s observation
of the environment. The fisher then checks his memory to find rules
used previously in similar circumstances. One that performed well
in the past is chosen (using a ‘‘roulette’’ based on the rule’s weight)
and implemented. If, once again, the rule performs well, its weight

�In the real fishery, traps are fished in groups referred to as a string and are located in the
same neighborhood. A string may consist of 5–25 traps. Placing a string generally involves
a single location decision, at least at the scale employed in the model.

**Entry is driven by average fleet profits. At entry, each fisher is endowed with a bank
account that buffers the initial costs of learning or other temporary declines in profit-
ability; the exhaustion of the account at any time is taken as a signal to exit.
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is increased still more and, in addition, the rules used just previously
are also strengthened (i.e., precursor rules share some of the credit
for the success of the current rule).†† Strengthened rules are more
likely to be used again when similar circumstances are encountered.
If the rule performs poorly, it and its precursors are weakened and
less likely to be used again. If the fisher has no rules that fit a
particular circumstance, fairly general new rules appropriate to the
circumstance are created and added to the fisher’s memory (SI
Appendix 1). Holland (10) describes the entire process as one of
continuous hypothesis creation, testing, and revision. Generally, the
information available to fishers varies according to its proximity in
time and space. There are three basic classes of information
available to the fisher.

The first class is historical information about the location of
lobsters and fishing patterns. This information is contained in the
fisher’s decision rules. It is an imperfect indicator of the current
location of the resource because the environment changes both in
the long term, due to changing recruitment of lobsters, and in the
short term, due to the activities of other fishers. This information
is useful to the fisher only to the extent that there are environmental
regularities that persist despite these changes.

Observations concerning the immediate biophysical circum-
stances relevant to the trap the fisher just hauled and his current
catch rate make up the second class of information. The fisher
is assumed to be fully knowledgeable about this data.

The third class of information is obtained by communications
with or observations of other fishers. The fisher knows the
current ‘‘global,’’ or f leet, average catch rate; however, knowl-
edge of the catch of individual fishers is assumed to be dependent
on the frequency of encounters and observations of those fishers
in the course of fishing. The more frequent the encounters, the
more reliable is his or her knowledge of the other fisher’s catch
and the more likely he or she is to imitate the other fisher.
Because there are only so many encounters that can take place,
this formulation is an implicit recognition of the costliness of
information, because it leaves the fisher with little or no knowl-
edge of the activities of many other fishers. The patterns of this
knowledge are particularly important to the fisher’s strategic
interactions with other fishers. Fishers who frequently encounter
one another are labeled neighbors.

The Hierarchical Decision Process
The complexity of this environment creates a very large decision
search space. For each fisher, the possible number of unique
decision rules is �14 trillion. Clearly, each time a fisher hauls a
trap he or she does not search through 14 trillion possibilities.
Fishers in the real world and in the model simplify the problem
by using a hierarchical decision process. In the model of scramble
competition, the hierarchy consists of three steps. Each step in
the hierarchy rapidly shaves away irrelevant circumstances,
reducing the search space for each decision to several thousand
possibilities (the number varies according to the route of the
decision through the hierarchy). We model each step in the
hierarchy by using the architecture of Stewart Wilson’s zeroth-
level classifier system (11) (SI Appendix 1 and Fig. 10 therein).

Table 1 shows the basic elements of the hierarchy for scramble
competition. The first column lists the environmental informa-
tion provided to the fisher. Column 2 lists the analytical con-
version of that information into conditions pertinent to the
decisions of the individual fisher (e.g., ‘‘own current catch vs.
other’s best’’) and sorts that information into the three hierar-
chical components. Column 3 lists the possible actions each
fisher might take for each component of the hierarchy.

The first step in the decision hierarchy, CS#1, is the choice of a
broad strategy. The fisher’s choice is based on the results from the
trap just hauled, the current performance of his or her other traps,
an estimate of the catch of other fishers, and historical knowledge
of the productivity of broad ecological areas. The strategies (ac-
tions) are (i) stay in the same neighborhood, (ii) move to the
neighborhood of one’s own best-performing trap, (iii) imitate
another fisher who is doing well, or (iv) explore an area that has
been productive in the past. The choice of strategy is made by
matching the conditions of the environment with rules used pre-
viously in the same or similar circumstances. If the fisher chooses
actions i, ii, or iii, then the broad ecological area and the local
neighborhood are given, and all that remains is to find a spot in that
neighborhood where there is room to place the trap. If iv, explore,
is chosen, then the next step (CS#2) is to choose the broad
ecological area where the trap might be placed. The decision to
explore is made on the basis of information that does not deteri-
orate over longer periods of time. A simple general rule in CS#2
is one that says ‘‘in the fall of the year it is usually profitable to move
to area x.’’ Once in the chosen area, the final decision (CS#3)
concerns the choice of a bottom type and depth and, then, a
particular spot to drop the trap.

The fisher’s trap-cutting strategy, interference competition, is
implemented as a fourth CS module (always with two harbors).

††Holland (10) uses the example of a checkers game in which, say, a triple jump is set up by
several prior moves. The credit given to the decision that implements the triple jump also
has to be shared with the prior decisions that made it possible. The entire strategy has to
be learned.

Table 1. Environmental information, conditions evaluated, and actions available to fishers in scramble competition

Environmental information Condition evaluated Possible actions

Global information For choice of strategy (CS#1) Actions for CS#1
Season Current catch vs. own best Stay at current location
‘‘Coffee hour’’/public information about global Own best vs. others’ best Go to own current best

catch rate Current catch vs. others’ best Imitate other best fisher
Change in global catch rate Change in current catch Go to an historically productive area; explore

Broad-area information Change in global catch Actions for CS#2
Current area (1 of 24 broad locations) For choice of broad area (CS#2) Go to a new area (1 of 24)
Orientation of area (compass direction from land) Season Actions for CS#3
Historical catch in each area Current location Same depth and bottom type as current

Local information For choice of a particular habitat (CS#3) Different depth and bottom type
Bottom type of current trap Current time
Depth of current trap Current depth
Catch rate of current trap Current bottom type
Catch rate for other/own traps
Frequency of encounter with each other fisher
Imperfect knowledge of other fisher’s catch
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After each trap is placed, the fisher is paired randomly with another
fisher in the same ecological zone and faced with a decision of
whether to ‘‘cut or ignore’’ the other fisher’s trap. The information
available to the fisher is the frequency with which he or she has
encountered the other fisher, the ratio of neighbors to nonneigh-
bors in the area, and the value of the catch in the area. Each fisher
uses this information to learn a strategy applicable to the cut-or-
ignore decision. A simple decision rule might be, ‘‘If the other fisher
is a neighbor, don’t cut (ignore) the trap.’’ The feedback about the
effectiveness of each rule depends on the action of the other fisher.
We specify four 2 � 2 feedback matrices. The relevant variables in
each matrix are (i) the change in competition in the immediate area
arising from the decision (slightly less catch if the other trap is
ignored, slightly more if it is cut); (ii) any change in the benefits of
cooperation that might occur as a result of the decision; and (iii) the
cost of a trap if it is cut. The value of the cells in the four matrices
depends on whether the other fisher is a neighbor or not and
whether the interaction takes place in an area dominated by fishers
from his or her own harbor or the other harbor. (The factors
generating the pay-off matrix are illustrated in SI Appendix 1 and
Table 13 therein.)

For example, if a fisher encounters a neighbor in an area
dominated by his or her neighbors, the outcome of the cut-or-ignore
decision is likely to be very different from a situation in which the
fisher is not among neighbors and encounters a nonneighbor. In
both instances, the important consideration is the way other fishers
are likely to reinforce their or the other fisher’s actions. Among
neighbors, actions are likely to be reinforced by similar decisions by
the neighbors. Among nonneighbors, the other fisher’s actions are
likely to be reinforced by that other fisher’s neighbors. After fishers
learn the context, the result is a ‘‘boring game’’ in which the
outcome is ambiguous usually only in areas of low abundance that
are fished relatively infrequently. In these areas, it is often the case
that paired fishers are from the same harbor and never encounter
trap cutting, even though at some times of the year fishers from the
other harbor may be present. This feedback is also sent to CS#2,
the scramble competition module where fishers decide what new
areas to explore. As the model progresses, feedback gives the fisher
a history of the ‘‘trap-cutting status’’ of the areas he or she fishes and
informs decisions about where to fish in the future. Thus, fishers can
make the strategic decision about whether to defect or cooperate,
and can also adjust the areas they fish. The latter gives them the
valuable ability to avoid future interactions that might involve trap
cutting.

This four-stage decision process is modeled with 30 fishers
operating simultaneously. Each day each fisher hauls and relo-
cates all of his or her traps and decides whether to cut or ignore
the traps of other fishers. Each year the fisher makes several
thousand decisions of each type (depending on how many traps
are fished). Both the biophysical and the agent-based parts of the
model are modified daily as a result of these decisions and, as
described above, some of that information is transmitted to
fishers for their use the following day (Table 1, column 1). There
are 240 days in the fishing year. At the end of each year, a new
year-class of lobsters is recruited and distributed around the
map. The model is usually run for 50 years.

Gaining Confidence in the Model
The insights we wish to gain from the model concern the fine-scale
behavioral dynamics that generate the aggregate spatial, temporal,
and social patterns observed in the fishery. In the model, there are
five basic patterns that lead to the social conditions that facilitate
collective action. They are described below. These patterns tend to
be relatively robust so long as resources are patchily distributed and
fishers have the ability to communicate with one another.

To better understand these patterns and because the model is
complicated, there are a number of steps we have taken to make
sure the outcome from the model is not simply an artifact of the

model itself. First, we have, as much as possible, subjected the
assumptions and the behavioral outputs to an informal compar-
ison with the experience of consulting fishers and project
members. Second, we have tested the patterns generated by the
model against the patterns observed in the fishery, specifically
those observed in the Maine Department of Marine Resources
data. Finally, we explored the model to find its limits. We
changed its specifications so we can better understand how
resource patchiness and communication among fishers affect the
dynamic patterns we observe. These tests and explorations are
reported below and in greater detail in SI Appendix 2. Our
confidence in the model is based on the consistency of results
from all these tests, even though no single test might be offered
as conclusive proof of the model’s validity.

Compared with the Conventional Bioeconomic Model
First, we wanted to know whether the modeling approach
generated results that were consistent with those of conventional
bioeconomic models of fisheries. We modified the model so that
its circumstances approximated those found in a typical Gordon–
Schaefer bioeconomic model of a fishery (12). We used a logistic
function to calculate the recruitment of lobsters, placed them
randomly on the map, gave fishers a single fishing rule to fish at
random locations,‡‡ and used profit-driven entry and exit pro-
cesses. Given these assumptions, fishers have nothing to learn;
the dynamics of the model are limited to the long-term adjust-
ment of fishing effort to recruitment, and the model closely
replicates the broad qualitative patterns generated by the Gor-
don–Schaefer model (SI Table 2).

Spatial, Temporal, and Social Patterns
from Scramble Competition
In the model of scramble competition (i.e., no trap cutting), fishers
start off on the first day of the first year with no decision rules, i.e.,
no skills or memory. They place their traps randomly near their
harbor. The next day, they haul their traps and evaluate their
performance. On the basis of the limited information gathered that
first day, they place their traps in the same or another location on
the second day. This process continues day after day. At the start
of a model run, fishing success is rather poor even though there is
a large population of lobsters. After a while, however, fishers begin
to associate good and bad results with particular conditions in the
combined biophysical and human environment. Fishers’ decision
rules evolve following the procedures in the classifier system
described above. They also communicate with and learn from one
another, i.e., they acquire new decision rules by imitating. As the
run progresses, the decision rules that produce good results are
strengthened and those that do not are weakened. Individual and
fleet performances improve dramatically over the course of a few
years (SI Fig. 3).

Scramble competition generates four robust patterns. By a robust
pattern we mean one that persists in the face of large changes in
important model variables, e.g., numbers of fishers, traps, and
lobsters, the variability of lobsters from year to year, and so on (SI
Appendix 2). Two attributes of the model, the patchiness of the
resource and the ability of fishers to communicate, are especially
important for an understanding of these patterns. When the model
is modified to remove either resource patchiness or communica-
tion among fishers, almost all patterns described below tend to
disappear.

‡‡In the CS model, as long as the environment is uniform, fishers evolve multiple rules.
However, each rule yields exactly the same feedback and, consequently, there is no
preference for one over the other. Each has an equal probability of being chosen at any
time, and together they function as if there were a single random rule (SI Appendix 2).

Wilson et al. PNAS � September 25, 2007 � vol. 104 � no. 39 � 15215

SU
ST

A
IN

A
BI

LI
TY

SC
IE

N
CE

SP
EC

IA
L

FE
A

TU
RE

http://www.pnas.org/cgi/content/full/0702241104/DC1
http://www.pnas.org/cgi/content/full/0702241104/DC1
http://www.pnas.org/cgi/content/full/0702241104/DC1
http://www.pnas.org/cgi/content/full/0702241104/DC1
http://www.pnas.org/cgi/content/full/0702241104/DC1
http://www.pnas.org/cgi/content/full/0702241104/DC1
http://www.pnas.org/cgi/content/full/0702241104/DC1


Individual Search. The spatial patterns generated by individual
search are generally characterized by a move to a new location, one
to several days spent fishing down the resource at that location (or
the immediate vicinity), and then a move to another location (SI
Table 3). The pattern is a function of the changing patchiness of the
resource and the fisher’s knowledge of both current and historical
catch rates in particular areas. Long-term, fairly regular patterns of
lobster distribution occur at the scale of the ecological zone.
However, at the level of the individual cell, that regularity is
disrupted by the daily harvests of the fleet, creating a premium for
knowledge of the current, fine-scale distribution of the resource.

A trap is moved when the fisher learns that his or her catch rate
at that location is below (i) the catch rate of one of his or her own
traps at another location or (ii) the catch rate of another fisher at
another location or (iii) the global average catch rate or (iv)
historical catches at that same time of year at another location. The
new location for the trap depends on the information that prompted
the move; e.g., the fisher moves to the location of his or her
best-performing trap if that information is what prompted the
move. This process continually moves traps to neighborhoods
where higher catch rates are expected (SI Movie 1). Usually, these
moves raise the catch rate of newly placed traps but also reduce the
catch rate of the traps already in those locations. Then, as the
immediate neighborhood is fished down, other locations appear
better; traps are moved again, and the innovate-and-exploit dy-
namic starts on another loop. There is no equilibrium. (SI Fig. 4).
Without resource patchiness, the innovate-and-exploit pattern dis-
appears (SI Movie 2). Without communication, the pattern is
similar, but a change in location occurs less frequently (SI Table 4).

Group Formation. The trap technology of the fishery and the
relatively sedentary nature of lobsters facilitate observation and
learning about the fishing patterns of other fishers. But knowledge
of the activities of other fishers is not free; it is limited by the time
available for observation. Consequently, fishers have better knowl-
edge about the fishing patterns of other fishers whom they encoun-
ter frequently. They tend to imitate fishers who are doing well.
Imitation leads to still more encounters, which further improves
their knowledge of the other fishers and leads to still more
imitation. This positive feedback leads to the formation of very
persistent groups of fishers (SI Movie 3 and SI Fig. 5). When we
disable fishers’ ability to communicate with one another, groups do
not form, but fishers are still able to acquire useful knowledge of the
resource, only at a much slower rate (SI Fig. 3, SI Appendix 2, and
SI Movie 4). With no patchiness, groups still form but confer no
advantage to the individual fisher (SI Appendix 2 and SI Movie 5).

Diversity. Fishers within groups tend to enjoy the benefits of the
knowledge gained by other members of the group, but there are
limits to the collective benefit that results. As more fishers join
groups, collective knowledge of the current distribution of the
resource declines because there is less exploration taking place. This
decline raises the value of individual exploration and tends to draw
fishers away from fishing as part of a group. As a result, a diverse
population of fishers engaged in both group and autonomous
behaviors tends to evolve; this better fits their collective activities to
the patchy spatial and temporal distribution of the resource (SI Fig.
5 f–j and SI Table 5). The collective effect of this diversity is greater
efficiency.

When the model is modified so fishers can imitate but are not
able to explore, a single, large, inefficient group forms. Search
is limited to incremental movements into cells adjacent to
current fishing spots, and profits decline (SI Movie 6 and SI Fig.
6). Similarly, when fishers cannot imitate but can explore, there
is a comparable decline in collective profits (SI Fig. 3). We
conclude from this that a pattern of diverse individual behavior,
i.e., a combination of mutual imitation and autonomous activity,
best adapts the fleet to searching out the resource.

The Spatial Allocation of Effort. All three patterns, individual search,
the formation of groups, and diversity, contribute to a fourth
pattern that closely mimics the spatial patterns observed in the real
fishery. In both the real fishery and our model fishery, the entire
fleet tends to allocate its fishing effort to particular areas and/or
depths in almost strict proportion to the available catch (SI Fig. 7).
The result is a remarkable and close-to-optimal allocation that
occurs with no coordination of individuals’ activities. However, with
scramble competition alone, the spatial and temporal patterns of
fishing by both individuals and groups are best described as those
of roving bandits (ref. 13 and SI Movie 7). Fishers compete with all
other fishers over the entire map, and the resource boundaries
necessary for effective collective action do not emerge (SI Fig. 8a).

Interference Competition: Trap Cutting
When competition takes place through trap cutting, the stakes can
be very high. In the model, a lost trap (a string in the real fishery)
is equivalent to the profits from several typical days of fishing.
Episodes of reciprocal trap cutting can be very expensive. However,
under some circumstances there are competitive advantages that
accrue to a trap cutter, so the temptation to cut is often present.
Consequently, the decision about when, where, and whose trap to
cut is very selective. It depends critically on the personal relation-
ships that arise from scramble competition. The groups that form
strongly influence each fisher’s expectations about the benefits and
costs that are likely to emerge from strategic interactions with other
fishers.

The trap-cutting version of the model has two harbors with 15
fishers each. Global information about catch rates is restricted to
people from the same harbor. Trap cutting does not begin until the
11th year. The first 10 years give fishers a chance to establish the
groups and the spatial fishing patterns that form through scramble
competition. They know their neighbors and the areas their neigh-
bors dominate. As a result, when trap cutting begins, the circum-
stances created by these patterns in most areas of the map give
fishers strong and unambiguous feedback from their ignore–cut
decisions (see pay-off matrix in SI Appendix 1). Fishers learn that
cutting a neighbor’s trap can be very costly, so after several years the
incidence of trap cutting among neighbors falls to zero (Fig. 1).

Fishers also reduce the number of times they cut the traps of
nonneighbors to a very low level, �1–2% of all trap hauls (Fig.
1). However, when fishers do encounter nonneighbors, they cut
their traps �75% of the time (SI Fig. 9); in other words, they
learn to actively defect from cooperation with nonneighbors.

Fig. 1. Trap cutting of neighbors and nonneighbors. On the first day, the
choice of trap-cutting actions is random, and 50% of all traps are cut. Even-
tually fishers cut only nonneighbors. That rate is �75% of encounters with
nonneighbors. The decline is due to learning about the costs of cutting and to
the relocation of traps so that they are not placed in areas dominated by
nonneighbors.
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Consequently, the most important reason for the overall reduc-
tion in the cuts of nonneighbor’s traps is that fishers know where
their traps have been cut in the past and tend to avoid fishing in
those areas. This avoidance is a response to the feedback about
trap cutting (SI Appendix 1) that is sent to CS#2; it effectively
segregates fishers into two territories separated by contested
areas. These contested areas tend to be, but are not always, less
productive and visited less often by fishers. When fishers do visit
these areas, they are usually in the company of their neighbors.
As a result, random pairing produces fewer encounters with
nonneighbors, and fishers do not learn to avoid trap cutting in
these areas. Thus, trap cutting segregates fishers into territorial
groups because (i) fishers learn not to cut the traps of their
neighbors, and (ii) they learn especially to avoid fishing in areas
where their traps might be cut (Fig. 2 and SI Movie 8). (SI Fig.
8 shows the evolution of territories and contested areas.) Each
group operates within fairly well defined social and spatial
boundaries; members of each group tend to encounter one
another and communicate frequently, and they learn to restrain
the way they compete with one another. These circumstances
facilitate effective collective action.

Summary
Collective action is more likely to occur and to be effective when it
is consistent with the self-interest of the affected individuals. The
particular circumstances of the natural and social environment are
an important determinant of the way self-interest is played out. The
Maine lobster fishery is an instructive and, in fisheries, an unusual
example of biological and technological circumstances combining
with individual self-interest to create conditions favorable to col-
lective action. The model described here emphasizes the way the
particulars of the biology and technology of the fishery affect the
self-organizing, competitive interactions among fishers.

We describe two kinds of competition: scramble competition, in
which fishers race to find the patchy resource, and interference
competition, in which fishers destroy traps used by other fishers. In
a patchy, changing environment, knowledge of the location of the
resource is the key to competitive success. Fishers acquire this
knowledge through costly individual search and communications
with limited numbers of other fishers. The resulting patterns of
information availability are the principal determinant of the social
relationships developed by individual fishers and by groups of
fishers.

Individual search tends to follow a pattern in which there is an
initial move to a location; the resource at that location is fished
down until the rate of catch is below what is perceived available
elsewhere, and another move is made. As fishers search, they
encounter one another. The more frequent the encounters, the
more they learn about one another’s fishing patterns and, conse-
quently, the more likely they are to imitate one another. Imitation,
of course, increases the frequency of contact and eventually leads
to the formation of persistent groups of fishers. As members of a
group, fishers gain significant knowledge of the resource; however,
as more fishers rely on imitation, the advantages of being a member
of a group decline because less new information is acquired. This
leads to circumstances in which individuals often find it advanta-
geous to fish away from the group. Consequently, when the group
as a whole is considered, a mix of group-oriented behavior, imita-
tion, and autonomous behavior, exploration, tends to occur. The
balance between group and autonomous behavior is driven by the
self-interested actions of individual fishers and is an important
determinant of fleet efficiency. The groups that form as a result of
scramble competition are the beginning of the social relationships
important for governance. However, the activities of these groups
overlap in space and, consequently, do not generate the boundaries
necessary for effective collective action.

Trap fishing opens the door for fishers to compete with one
another by direct and costly interference, i.e., trap cutting. Fishers
adapt to the threat of trap cutting by learning to restrain the way
they compete with others they encounter often, i.e., members of
their own group, and by rearranging the spatial patterns of their
fishing to minimize their contact with fishers whose restraint they
cannot trust. The result is territories occupied by groups of fishers
who work within well-defined boundaries, contact one another
frequently, actively exchange information about the resource and,
most importantly, depend on continuing mutual restraint for their
economic well-being. These circumstances lay the foundation for
successful collective action (2), i.e., explicit mutual agreements that
create the additional restraint required for conservation.
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Fig. 2. Areas fished with no trap cutting (a) and with trap cutting (b). The
map records the percent of visits of fishers from Harbor B (bottom of the
island, lower center) to areas of the map: black, 100%; gray, contested area;
white, 0%; green, land. Contested areas can change from run to run, depend-
ing on the spatial patterns of fishing established in the first few years of the
run, but territories always develop. SI Fig. 8 shows the evolution of the groups
forming these territories in a typical run of the model.
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