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We consider panacea formation in the framework of adaptive
learning and decision for social–ecological systems (SESs). Institu-
tions for managing such systems must address multiple timescales
of ecological change, as well as features of the social community
in which the ecosystem policy problem is embedded. Response of
the SES to each candidate institution must be modeled and treated
as a stochastic process with unknown parameters to be estimated.
A fundamental challenge is to design institutions that are not
vulnerable to capture by subsets of the community that self-
organize to direct the institution against the overall social interest.
In a world of episodic structural change, such as SESs, adaptive
learning can lock in to a single institution, model, or parameter
estimate. Policy diversification, leading to escape from panacea
traps, can come from monitoring indicators of episodic change on
slow timescales, minimax regret decision making, active experi-
mentation to accelerate model identification, mechanisms for
broadening the set of models or institutions under consideration,
and processes for discovery of new institutions and technologies
for ecosystem management. It is difficult to take all of these factors
into account, but the discipline that comes with the attempt to
model the coupled social–ecological dynamics forces policy makers
to confront all conceivable responses. This process helps induce the
modesty needed to avoid panacea traps while supporting system-
atic effort to improve resource management in the public interest.

adaptive learning � governance � institutional design � minimax regret �
model uncertainty

Ostrom (1) describes a tendency for analysts to prescribe
singular solutions for environmental problems. Examples in-

clude centralized government regulation, grassroots governance,
civic environmentalism, privatization, and so forth. There is a
tendency in the literature to take very strong positions concerning
specific policy instruments, which are advocated as a panacea while
alternatives are derided as worse than useless. Yet panaceas create
significant problems (1). Despite the tendency toward panaceas,
many different policy instruments have been used to address
society’s environmental problems (2). Often it is not clear which
policy is optimal, and in many cases a mix of policies may perform
better than a single policy (2).

The articles in this special feature consider diverse explanations
for the origins, consequences, and solutions of panaceas. We discuss
the hypothesis that panaceas can derive from a failure to properly
address model uncertainty in sensible pragmatic practice. Although
model uncertainty is one of many potential causes of panaceas, the
management of social–ecological systems (SESs) must depend to
some extent on models, whether formal or informal, for the
processes to be managed. Embedded in each model are institutions,
the set of nonphysical constraints on economic behavior (3) that are
rules of the game in a society or, more formally, are the humanly
devised constraints that shape human interaction (4). We represent
the institutional design problem as a choice among alternative
institutions in an uncertain world. A set of models, each represent-
ing institutions as well as other relevant aspects of the SES, is
compared with respect to estimated welfare outcomes, weighted
according to consistency with data. Panaceas arise when people
think they have arrived at the truth regarding how the world would
work under different institutional designs and the design they

propose is optimal. We discuss how such panaceas arise and how
they can be avoided.

We motivate the theoretical discussion with a description of a
specific SES, the Northern Highland Lake District (NHLD) of
Wisconsin in the United States; this SES exemplifies the multi-
scaled, multivariate challenges of ecosystem management (5, 6). In
this setting, panaceas can form in several ways: adherence of
individuals or managers to a data-inconsistent model; Bayesian
lock-in through the weight of history; failure to address gradual
change in slow variables; lack of tools to anticipate or detect regime
shifts; and failure to build resilience to cope with unforeseeable
regime shifts. This example suggests a theoretical framework for
adaptive management, which we use to demonstrate ways in which
apparently rational policy processes can lead to panaceas. This
mechanism of panacea formation derives from dynamic statistical
properties of adaptive processes. We close with a discussion of ways
to avoid, or escape from, some types of panaceas.

Northern Highland Lake District
The NHLD is a rural region of rolling moraines, second-growth
forest, extensive wetlands, and numerous lakes. It encompasses
5,300 km2, �7,600 lakes, and 65,000 permanent residents (in 2000)
(5, 7, 8). Outdoor recreation and forest products are mainstays of
the economy. The NHLD is famous for sport fishing, which is an
important component of the outdoor recreation industry.

Scales of some major social and ecological processes of the
NHLD range from a few days to �12,000 years (time since the last
ice age) and from a single lake to the entire Great Lakes region of
North America (Fig. 1). A full analysis of the SES would address
multiple, interacting ecosystem services on a heterogeneous land-
scape [see supporting information (SI) Table 1]. To simplify the
analysis, we narrowed our focus to the interaction between shore-
land vegetation, fishing, and fish dynamics (6). Lakeshore residents
have tended to remove living and fallen trees, which provide crucial
habitat for fishes (9, 10). Once shoreline forests or fallen trees in
lakes are removed, regrowth or replacement takes decades or even
centuries. Habitat loss causes fishes to grow more slowly, while fish
stocks become more vulnerable to collapse from overfishing,
invasion of exotic species, or other causes (6, 7, 9, 10, 11). Spatially,
lakes are linked by the mobility of anglers; if fishing is poor on a
given lake, anglers can move (6). Spatial patterns of lakeshore
residence and shoreland management can also change, but these
changes occur on timescales of years, whereas angler movements
can occur in a matter of hours.

We focus on three levels of decision making by resource users (6):
selecting a region in which to spend time (NHLD vs. other regions),
selecting a base lake on which to buy or rent housing (note that buy
vs. rent implies longer vs. shorter residence time on site), and
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selecting a lake on which to fish given the choice of base lake (Fig.
2). Fishery dynamics on each lake depend on lakeshore manage-
ment practices of the residents and fishing practices of the residents
and visitors (Fig. 2). In this system, large rapid shifts in fish stocks
of individual lakes can result from decadal changes in habitat
interacting with annual changes in the housing market, daily
decisions of anglers, and exogenous shocks such as storms (6).
Under some circumstances, angler movement can trigger waves of
fish stock reduction across the landscape. Management must there-
fore account for slow changes in habitat, somewhat faster changes
in lakeshore housing and vegetation, and even faster movements of
anglers among lakes. At any given time, optimal policies are
heterogeneous among lakes on the landscape (6). Moreover, pol-
icies must continually adapt to the changing mosaic of users,
habitat, and fish stocks cocreated by tens of thousands of people
interacting with resources of thousands of lakes (6). Policies that are
constant in space or static in time either underexploit resources or

trigger cascading waves of resource breakdown. To succeed, policy
must evolve in time and diversify over space.

The NHLD illustrates three key features of change in SESs that
must be addressed by any framework that seeks to foster an
adaptive approach: (i) Change is ongoing at multiple scales, from
the slow weathering of rock or percolation of groundwater to life
cycles of microorganisms measured in minutes. This change has
both repeated and novel components as captured by the title Time’s
Arrow, Time’s Cycle (12). The future will bring patterns not seen in
the past. Thus adaptive-learning processes must continually invent
and evaluate new institutions and models. (ii) Social–ecological
change, although usually gradual and predictable, is sometimes
rapid, extensive, and unpredictable (13–16). These extensive
changes, or regime shifts, may be difficult or impossible to reverse.
Some regime shifts have significant consequences for ecosystem
services, livelihoods, and human well-being (2). (iii) Any institution
that is implemented evokes a reaction from people and ecosystems,
which then cocreate a system that may become different from the
one that the institution was intended to manage. The reaction may
take days or decades, and the resulting cocreated system may be
substantially new. For any proposed institution, an analysis of the
reaction of the SES must be considered, and this dynamic must be
estimated and predicted, before the ultimate outcome of the
proposed institution can be evaluated. This analysis is the heart of
adaptive management, and the source of potential panacea traps.

Adaptive Learning and Decision
We employ a general framework of statistical adaptive learning and
decision for governing natural resources of a complex region such
as the NHLD. We do not imply that such a framework is the only
way for society to deal with complex resource management issues.
However, the framework is a useful reference point for several
reasons. The analysis is repeatable, in the sense that two decision
makers working from the same information would reach the same
conclusion. Many real-world resource management agencies claim
to be managing adaptively. A significant body of rigorous research
exists for statistical adaptive learning (17–20). Finally, if any man-
agement approach were panacea-proof, one would think that a
data-driven adaptive-learning approach would be it. Yet, we will
show how easily panaceas can emerge from adaptive learning if
parameters are changing on a slow timescale relative to the time-
scale of the learning process.

The fundamental unit of adaptive learning and decision is a cycle
(Fig. 3). In each cycle, the analyst considers a set of institutions for
managing the region and a set of models for dynamics of the SES,
together with available relevant data. The models address ecolog-

Fig. 1. Temporal scale (measured as return time) vs. spatial scale (measured
as extent of spatial patterns) for some key ecological (blue ellipses) and social
phenomena (brown ellipses) in the NHLD.

Fig. 2. Scales of decision making by recreational users, and dynamics of
people and fish stocks in lakes.

Fig. 3. Cycle of adaptive learning and decision. The set of institutions and set
of models for the SES change from cycle to cycle. These dynamics depend, in
part, on introduction of innovations by people or by emergence of new
ecological or social phenomena.

Brock and Carpenter PNAS � September 25, 2007 � vol. 104 � no. 39 � 15207

SU
ST

A
IN

A
BI

LI
TY

SC
IE

N
CE

SP
EC

IA
L

FE
A

TU
RE



ical and social dynamics, including social responses to the institu-
tions. Forecasts of social welfare are developed for each candidate
institution and model, and they are weighted according to their
data-based credibility. This comparison of institutions leads to
selection of an institution, or mix of institutions, to be implemented.
Following implementation, the SES is monitored. Note that deci-
sions regarding whether and what to monitor, and responses to
changes revealed by monitoring, are embedded in the set of
institutions to be considered. Deliberate experimentation to deter-
mine the effects of particular policies on the SES is also among the
institutions that could be considered (19).

The decision to initiate a new cycle is a critical step; failure to take
this step can create a panacea. The new cycle could be prompted
by monitoring data (e.g., information that suggests a regime shift is
occurring). It could be triggered by discovery of new institutions,
technologies, or ecosystem phenomena. Note that policies to invest
in exploration leading to discoveries are part of the set of institu-
tions under consideration. Thus, the outcome of adaptive learning
and decision rests on a foundation of innovation (Fig. 3); change
depends on assimilation of discoveries into the set of institutions
and models under consideration. When a new cycle is initiated, the
sets of institutions and models under consideration include new
inventions, and the available data include new information.

Evaluation of Alternative Policies
This section takes a small step toward formalizing the discussion to
show how panaceas can arise from failure to address model
uncertainty in adaptive-learning processes. First we analyze a
simple optimization problem where different models are repre-
sented by different values of a parameter and the decision maker
has beliefs regarding the parameter. Second we show how the
decision maker can learn the true value of the parameter by using
data, but the decision maker can persist in the wrong belief for a
long time if the true value of the parameter changes. We discuss
Bayesian learning on a fast timescale, and we assume that estima-
tion converges to a reasonable estimate of social–ecological dy-
namics. We then introduce a second, slower timescale on which the
SES shifts to a new regime. On this slower timescale, Bayesian
learning on the fast timescale can easily stabilize on the wrong
model, a form of panacea.

Assume that ecosystem i produces service potential xt�1,i, which
is a scalar that follows (on the fast timescale) the one-dimensional
dynamic system

xt�1,i � f�xt,i, rt�1,i, ut�1,i�, i � 1, 2, . . . N. [1a]

Here, xt,i denotes the service potential or state (e.g., capacity to
produce ecosystem services, or biomass, of a renewable resource)
of ecosystem i at time t; f(x, r) is the law of motion, where r denotes
a scalar stochastic shock process; u(.) is a control function to be
specified below that denotes some impact of humans (e.g., harvest
of a renewable resource, damage to habitat, pollution, or manage-
ment intervention); and N is the number of ecosystems on the
landscape.

We will specialize below to case 1b,

xt�1,i � f�xt,i, rt�1,i� � ht�1,i, i � 1, 2, . . . N, [1b]

where the intertemporal control choice, {u} � {h}, is some impact,
such as harvesting. We assume the stochastic process {rt�1,i} is
independently and identically distributed (IID) with finite mean
and finite variance across all points in time and across all ecosystems
i � 1, 2, . . . N. Assume the managers of ecosystem i wish to
maximize the mathematical expectation given their beliefs of
long-run, steady-state utility

E�U�h�� [2]

produced by the ecosystem by choosing ht�1,i � u[ f(xt, i, rt�1, i)]
where u(.) is a function with sufficient regularity that the result (1b)
is a first-order nonlinear autoregression that possesses a unique
invariant measure and converges exponentially fast to this unique
invariant measure (ref. 21, chap. 3.6). Here, ‘‘long run’’ is a period
long enough on the fast timescale so that 1b has converged close
enough to the unique invariant measure, or steady-state distribu-
tion, to use it as an approximation. E denotes the expectation taken
with respect to the assumed unique stationary distribution of the
state, x, determined by control function u(.).

The fast-scale learning problem is that the policy makers do not
know the parameters of the dynamics and must learn their true
values by experience. In addition, the planner faces the problem that
the true values of the parameters change on the slow timescale,
which poses a challenge for any scheme for learning unknown
parameters, including Bayesian learning.

Focus now on a single ecosystem. Let the set U of control
functions u(.) be linear-in-output rules of the form ht�1 � u[ f(xt,
rt�1)] � (1 � s) f(xt, rt�1), where s is in the closed interval [0, 1].
Because from 2 xt�1 � ht�1 � f(xt, rt�1) we have

xt�1 � sf�xt, rt�1� � syt�1, ht�1 � �1 � s�yt�1. [3]

Think of s as the fraction of ecosystem output yt�1 that is saved while
1 � s is the fraction harvested. Let the objective be to choose s in
[0, 1] to maximize

E	ln��1 � s�yt�1�
 , [4]

where the mathematical expectation is computed over the long-run
steady-state distribution determined by fixed s, and ln(x) denotes
the natural logarithm of x.

Here we present an example that can be solved in closed form
(ref. 21, chaps. 3 and 6, and refs. 22 and 23). Although this example
uses linear savings rules as in 3, it is not necessary to restrict the
optimization to linear savings rules. On the fast timescale, the law
of motion of the ecosystem is

f�xt, rt�1� � rt�1xt
at�1, [5]

where {ln[rt]} is IID with mean 0 and finite variance and {at} is IID
binary with 0 � a1 � 1/2 � a2 � 1 the two possible values, with
probabilities p1 and p2, respectively. We also assume that {ln[rt]}
and {at} are independent of each other. In the context of this model,
panacea advocates believe {at} is a deterministic process with at �
a1 or a2 when in truth it is a stochastic process.

In 5, a measures the elasticity of response of ecosystem service
potential tomorrow to the service potential of the ecosystem today.
It is defined by

d ln� f � /d ln�x� � a . [6]

If we take natural logs of 3 and calculate the steady-state limit
distribution, it is easy to show that the optimal rule s* that
maximizes 4 is

s* � E�a� � p1a1 � p2a2. [7]

We define ‘‘panacea belief of type j � 1, 2’’ to be a belief that a �
aj with probability 1. A panacea j believer will optimize 3 and choose
s*j � aj, but the true dynamics (if no harvest) is given by

xt�1 � rt�1 xt
at�1, [8]

where {r} and {a} are IID stochastic processes independent of each
other, as defined above. Thus, panacea believers are similar to
fundamentalist ideologues, people who believe they know the truth
with an unwarranted degree of certainty.

If a1 is close to 0 and a2 is close to 1, both panacea believers do
poorly in the long run compared with one who knows the true
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process [under the assumption that E(a) � 1/2]. Notice that the
panacea 1 believer exploits the ecosystem too heavily, whereas the
panacea 2 believer does just the opposite. Note also that each pan-
acea believer should, after several periods of observing actual
output, learn that a is actually random and, by using sensible
statistical procedures, eventually learn the true process {at} as well
as learn the process {rt}. Notice that it is difficult to learn that {at}
is random, because {rt} is also random.

Panaceas 1 and 2 are analogs of certain strategies in classical
decision theory. Panacea 1 is closely related to a maximax strategy,
and panacea 2 is closely related to a maximin strategy (ref. 24, p.
282). Of course, we are not saying that maximax and maximin are
always panaceas; indeed, in some settings these strategies are
optimal (24). To compute these strategies, prepare a table of
payoffs to each possible act for each possible state of the world (ref.
24, pp. 277–280). Each row of this table gives the list of payoffs
across states of the world for a particular action. A maximax
(maximin) strategy is an action that maximizes the best-case
state-of-the-world payoff (worst-case payoff) over the set of possi-
ble actions. Find a maximax (maximin) strategy by finding the value
of the largest (smallest) payoff across each action’s row and
selecting the action that gives the largest value.

How might a planner who is not a panacea believer attempt to
learn the truth in the setting above? There are two main sets of
approaches taken in modern decision theory. The first approach is
Bayesian. In a Bayesian approach, the decision maker assigns prior
probabilities to the different states of the world and chooses the
action that maximizes the expected payoff.

The second set of approaches is non-Bayesian and includes
maximax, maximin, and minimax regret. Roughly speaking, mini-
max regret minimizes the maximum loss when one is ignorant of the
true situation (ref. 24, p. 280).

Beyond the scope of formal decision theory, panacea thinking
might be avoided by expanding the set of institutions and models
under consideration, or initiating new cycles of adaptive learning
(Fig. 3). Here we focus on the outcome of formal decision methods
in the context of the simple panacea model above. Specifically,
when the true value of parameter a changes infrequently (but
changes are unknown to the decision maker), Bayesian approaches
are susceptible to panaceas 1 and 2 defined above. We argue that
panaceas of this type can potentially be mitigated by using non-
Bayesian approaches.

Bayesian Analysis on the Fast Timescale. We assume that process {at}
is deterministic and either a1 or a2 is the true state of {at} but the
decision maker does not know which it is. Let p1, t be the belief
probability of the decision maker that the true state is a1 at date t.
To ease the calculations below, we assume that {ln(rt)} is IID
normal with mean zero and finite, known variance v. Bayes’s
updating formula gives us

p1,t�1 � p1,t f1�xt�1� xt, ut�/Dt�1 [9a]

p2,t�1 � p2,t f2�xt�1� xt, ut�/Dt�1 [9b]

Dt�1 � p1,t f1�xt�1� xt, ut� � p2,t f2�xt�1� xt, ut�, [10]

where ut is the control rule applied at date t, which, in our case, is
parameterized by s. Here the fj values denote the likelihoods of the
data under belief system j.

We may write, after shortening the notation in an obvious
manner,

ln� p1,t�1

p2,t�1
� � ln� p1,t

p2,t
� � ln� f1,t�1

f2,t�1
� [11]

and observe that if we sum 11 from t � 1, 2, . . . T observations and
divide by T, and take the probability limit, if it exists, we can simply

evaluate E{ln( f1/f2)} to tell whether the ratio of p1 to p2 goes to 0
or to infinity. E denotes the mathematical expectation under the
true density function. It is unknown, but it can be estimated from
observable data by taking the sample average. Although an inter-
mediate value is possible, the generic case is 0 or 1 for the limiting
ratio of p1/p2 as we shall sketch below.

Proposition: If the probability limit of

1
T �

t�1

T

ln� f1,t

f2,t
� f E� ln� f1,t

f2,t
� 	 � D1,2, T f � [12a]

exists and is positive (negative) then p1, t/p2, t converges to infinity (0).
Furthermore, this proposition generalizes to settings where there are a
finite number of possible values of a, i.e., a1, a2, . . . an, and we can get
an expression for the speed of convergence from the limit in 12.

For our example with {rt} IID lognormal, if we put rt�1 
exp(v0.5 et�1) and take natural logs of both sides of the
equation xt�1 � s rt�1 x a, we obtain yt�1 � ln(s) � v0.5 et�1 �
a yt, where {et} is IID normal with mean zero and variance v.
Now suppose a � a1 is true. Then

ln� f1,t

f2,t
� �

1
2v

	� yt�1 � ln�s� � a2 yt�
2

� � yt�1 � ln�s� � a1 yt�
2
 . [12b]

By the assumption that a � a1 is the true value of a, we have

yt�1 � ln�s� � a1 yt � v0.5et�1. [12c]

Sufficient conditions for a law of large numbers (LLN) to hold for
the left side of 12a are modest. Under the assumption that an LLN
holds, compute the right side of 12a to obtain

D1,2 � E	��a1 � a2� yt��
2}, [12d]

where the expectation is computed over the long-run steady-state
distribution determined by 12c. D12 � 0 if a1 is not equal to a2.
Notice that the control s drops out in this derivation. A similar
calculation may be done for all harvesting functions of output that
give xt�1 � g(rt�1 xa), where g(.) is monotone increasing and has an
inverse. Calculate by putting y � ln(x) to get yt�1 � ln{g[exp(a yt �
v0.5 et�1)]}, then form the right side of 12a and use the inverse of g
to find an expression analogous to 12d.

Sufficient conditions for 12 to converge can be found in Vuong
(25) and Sin and White (26), who study the problem of selecting
between two or more models. They show, for example, that when
the choice is between two models, the one closest to the true
data-generating process is chosen in the sense that it attracts all of
the limiting probability in 12. Although they do not study what
happens when control functions are inserted into the dynamics, the
worked example above suggests the conjecture that sufficient
conditions may be found on the set of controls U such that their
results can be applied. This analysis is beyond the scope of this short
article.

A general optimization and learning framework can be applied
to problems of managing ecosystems where there are unknown
parameters to be estimated as well as possible alternative stable
states for some values of those parameters (27). Discounting has an
important impact on learning in this setting (19, 27) but is also
beyond the scope of this article.

The Slow Timescale. The preceding section shows how a Bayesian
learning mechanism on a fast timescale might be too sluggish in
adapting to parameter changes on a slow timescale, if the time
between changes on the slow timescale is long enough that con-
vergence of Bayes’s learning is almost complete on the fast time-
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scale. It is beyond the scope of this short article to formalize a
serious model of what happens on the slow timescale and how the
panacea can be mitigated. Other literature points the way. Expres-
sion 12a is closely related to recursive algorithms that can make the
learning more responsive to structural changes (28). Beck and
Wieland (20) study incentives to experiment to learn slowly chang-
ing parameters. Colacito et al. (17) study how long it takes for an
optimal Bayesian learning mechanism to correct a specification
error in the case of two models that are almost equally well fitted
to economic data. They also compare passive and active learning in
a dynamic setting analogous to passive and active adaptive man-
agement of ecosystems (19).

Summary of the Example. Our example is a kind of panacea. It
implies that p1,T/p2,T acts like exp(T D1,2) for large T, so if D1,2 is
positive (negative) then p1,T is converging exponentially fast to 1 (0).
Thus if a1 is true for the time interval [1, N] where N is large, the
decision maker will come to believe that the parameter a is at a1
with high probability. If the value of a then switches to a2 on [N �
1, 2N], it will take some time for the updating mechanism to leave
a small neighborhood of placing high weight on a1. This inertia of
Bayesian updating mechanisms can lead to a false sense of certainty
that a is at a1 when a is really at a2.

This panacea resembles the extreme simplification described for
failing corporations (29) or government policies (30) and the
rigidity trap described for ecosystem management (31). Peterson et
al. (32) present a simulation model of lake management that
illustrates this phenomenon.

Introducing New Options
Adaptive learning easily converges to beliefs that support panaceas.
How can panacea formation be countered? In the NHLD, spatially
heterogeneous fishery regulations and zoning are emerging to
counter tendencies toward panaceas (7). In the context of adaptive
learning, several kinds of processes can diversify policy. Some are
Bayesian. For example, the planner can monitor regime-shift
indicators and use these data to determine when a new cycle of
adaptive learning is needed. Elsewhere, we discuss construction of
regime detectors in certain cases in which the regime shift is caused
by a bifurcation in the underlying dynamics (33, 34). De Lima (35)
provides a general test for regime shift. Other approaches are
non-Bayesian. This section briefly describes two non-Bayesian
approaches, minimax regret decision making and regulatory tiering,
and points to a general need for research on innovation and
diversification of environmental policy.

Minimax Regret. Some approaches for decision making under
uncertainty, e.g., maximin and minimax regret, have vastly different
implications for the speed of learning an unknown structure (36).
In the context of a bank making loans to lendees with unknown
payoff probabilities, a maximin lender will assume the worst-case
scenario and will refuse to lend to a large group of people no matter
how much information there is on their payoff probabilities, be-
cause the belief probability on the possibility that a member of the
group will default is always positive (36). Hence, the worst-case
scenario is default and the maximin lender will never know the true
payoff probability of loans to members of this particular group.
However, the mixing induced by minimax regret ensures that,
typically, the lender will lend to a positive fraction of this group.
Hence, in just one period, the true probability will be revealed by
the LLN, and the lender will have learned the true probability,
whereas the maximin lender will never learn the true probability.

This parable suggests that if we have N ecosystem dynamics being
managed and they are all alike, we would get a similar result when
we compare maximin learning vs. minimax regret learning. Even on
the fast timescale, the maximin learner will always assume the
worst-case scenario and hence always plan to guard against the
worst case, because even under Bayesian updating, the date t

posterior probability of the worst-case parameter value is still
positive (even though it becomes small exponentially fast if the
worst-case parameter value is not the true parameter value).
Minimax regret mixes options in many situations. This diversifica-
tion allows one to use a panel of case studies to learn more
effectively how to improve performance in any one of the particular
situations. Active adaptive management, which involves deliberate
experiments to accelerate model identification (19), goes even
further than minimax regret in exploring alternative institutions or
policies. Deliberate whole-ecosystem experiments have helped
frame policy options for lake management in the NHLD (7, 8, 10).

Regulatory Tiering. Regulatory tiering (37) is the practice of making
the burden of regulations lighter on smaller entities. A kind of
panacea in regulation of negative externalities (such as pollution) is
the argument that all businesses must be treated equally. But often
equal treatment is inefficient. Brock and Evans (37) provide an
example of regulating polluters. The size distribution of business
firms is approximately lognormal. Suppose businesses in a partic-
ular industry (e.g., farms in agriculture) pollute the environment
(e.g., by eutrophication of surface waters). If the classical remedy of
taxation of negative externalities is implemented, there are admin-
istrative costs at both the firm level and the regulatory authority
level. There are also uncertainties on how bureaucrats will behave.
These costs act as fixed costs plus variable costs at the firm level.
Variable costs appear because, for example, auditing is more
intensive as tax rates are increased because avoidance attempts tend
to increase with higher taxes. Small firms cannot average down
these fixed costs. It is more efficient to introduce regulatory tiering
in which small firms might be entirely exempted, middle-sized firms
be taxed more lightly than larger firms, and the largest firms be
taxed at full social cost per unit of pollutant emission (37).

Responses of the Community to Management Institutions. Certain
issues must be addressed whenever an institution is proposed to
solve a resource management problem. If one proposes, for exam-
ple, a government authority, one must take into account the
response of the community. Although we are dealing here with
resource management, we can learn much from management of
international trade (38). In this case, the very existence of a trade
management authority causes lobbies to form for and against trade
restrictions. Organization and maintenance of an effective lobby is
analytically similar to organization and maintenance of community-
based management of a natural resource. Therefore, the same
structural conditions that facilitate or hamper community-based
management (39) also facilitate or hamper formation of effective
lobbying efforts. In the case of community-based management, it is
in society’s interest that effective social action self-organize. In the
case of international trade (assuming no negative externalities), it
is just the opposite. Hence, in some cases (e.g., when there are no
negative externalities) it is in the social interest not to interfere with
trade and, hence, to shut down government intervention. The
unpredictability of subgroup responses to the advent of any insti-
tution is another good reason not to be dogmatic concerning what
will work well and what will not (35). Indeed, the surprising results
in game theory, where cooperation emerges in settings where one
would expect noncooperation, underscores the difficulty of pre-
dicting collective responses (40). Colander (41) addresses rent-
seeking activities of subgroups in general economic settings and
what can be done to tame this damaging activity.

For any proposed institution, an analysis of the reaction of the
community must be conducted, and this dynamic must be estimated
and predicted before the ultimate outcome of the proposed insti-
tution can be evaluated. For example, the policy maker might want
to implement taxation of negative externalities. At the same time,
it might be helpful to have a bit of government regulation in setting
standards, to catalyze people to work out a community-based
management scheme, and to work to align property rights with the
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public interest. Such a combined approach, rather than a panacea
approach of focusing strictly on taxation of negative externalities,
could deliver better results in some settings, even in situations where
most experts would agree that taxation of negative externalities is
called for.

Discussion
We studied a very simple, stylized problem under an assumption
that one could separate the hierarchy of temporal speeds into two
timescales. In regions like the NHLD, learning and adaptation in
pursuit of goals takes place in a hierarchy of timescales and spatial
extents (Figs. 1 and 2 and SI Table 1). Furthermore, the systems
being managed are coupled with feedbacks causing coevolution
across space and time scales, and across ecological and social
domains. Thus, the actual problem is significantly more complex
than we have studied here. Nevertheless, our simplified analysis
reveals important points.

Even relatively sophisticated adaptive-learning approaches fall
easily into panaceas in the face of potential regime shifts, especially
during periods when the system appears stationary in a statistical
sense. This mechanism provides a rational explanation for panaceas
(32). We suspect that a wide range of other mechanisms, such as
social or political processes that create stability despite changing
environments, are also important for formation of panaceas in
practice (14, 42).

Although we have emphasized how fast and slow timescales can
lead to panaceas, failure to address spatial heterogeneity may also
lead to panaceas. In the NHLD, uniform regional fishery regula-
tions increase risk of fishery collapse across the landscape (6). This
panacea can arise if average fishery parameters across the diverse
landscape are used to set policies for all of the lakes. Fishing
regulations are sometimes uniform in space, and it is plausible that
the uniformity is explained by inappropriate spatial averaging.
However, it is equally plausible that the panacea derives from
political pressure from anglers to simplify and standardize regula-
tions, from resort owners who believe they will lose business if

fishery regulations are tightened on ‘‘their’’ lakes, or a host of other
social and political phenomena. Such explanations imply social or
political processes that drive policy choice away from the social
optimum. We think that our model is only one explanation for
panaceas and that more work is needed to develop a comprehensive
theory.

A new cycle of adaptive learning is an opportunity for consid-
eration of new institutions, new models for dynamics of the SES,
and new data relevant to performance of the system (Fig. 3).
Innovation depends in part on past decisions on monitoring the SES
and investment in discovery of new options for institutions or
models of social–ecological dynamics. The brevity of this article
does not allow for adequate discussion of innovation and its role in
overcoming the tendency to form panaceas, which is a crucial topic
that needs greater attention.

Gunderson and Holling (31) describe an adaptive cycle that
oscillates between phases of discovery and innovation, then phases
of consolidation and efficiency. Adaptive learning, in contrast,
focuses on a systematic cycle of adaptive learning based on an
underlying matrix that supports innovation (Fig. 3). Thus, we do not
imply any particular temporal relationship between phases of
innovation, analysis, and decision, but we recognize that choice of
institutions affects future discoveries and innovations, and the
possibilities for considering them in future decisions. Linked adap-
tive cycles across a range of timescales (panarchies) play the same
role for Gunderson and Holling (31).

Avoidance of panaceas seems to be characteristic of resilient
SESs and a key to maintaining ecosystem services in a shrinking
world (43). Therefore, more work is needed on practices for
avoiding panaceas. All available approaches rest on the active
discovery and evaluation of new options for governing SESs.
Institutions that evoke such discoveries may be the ones best able
to avoid panaceas.
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