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Idiosyncratic toxicity is an unpredictable and often life-
threatening complication of drug therapy. The underly-
ing mechanisms are largely unknown, but the evidence
favours the view that reactive intermediates generated
during phase I metabolism of a parent drug are ineffi-
ciently detoxified and cleared. These metabolites accu-
mulate intracellularly and covalently bind to, and
modify host proteins or DNA. If the adduct is presented
to the immune system, a hypersensitivity reaction
occurs (i.e. the hapten hypothesis) [1]. One caveat, how-
ever, is the fact that a high incidence of idiosyncratic
reactions is not found with all drugs known to form
reactive intermediates. This dilemma has led to the for-
mulation of the ‘danger, or risk hypothesis’, wherein the
potential for an idiosyncratic drug reaction is enhanced
by certain host risk factors such as infection, injury or
cell stress [2]. The challenge is to identify these risk
factors and to elucidate their role in the toxic cascade.
Here we report the case of a 68-year-old woman who
possesses a combination of nuclear and mitochondrial
defects. We submit that this combination presents a pre-
viously unrecognized risk factor and we advocate its
consideration, along with other genetic determinants, in
the evaluation of drug idiosyncrasy.

The subject had suffered a lifelong seizure disorder,
myopathy and myoclonus, and had been treated over the
years with a wide variety of drugs, including antimicro-
bials, antiepileptics, anaesthetics and sedative-
hypnotics. At normal doses, these drugs had caused
severe and occasionally life-threatening toxicity. For
example, phenytoin had produced symmetrical target

lesions on her extremities, trunk and mouth, progressing
to blisters and denudation within a week of exposure.
Also, 2–3 days following the initiation of sulfamethox-
azole/trimethoprim for a urinary tract infection, the
patient had developed a malar rash upon exposure to the
sun, accompanied by symmetric arthralgias. All symp-
toms had resolved after discontinuation of the sul-
famethoxazole/trimethoprim. The patient was referred
to our service for further investigation into the potential
causes of her idiosyncratic drug toxicity, to recommend
potentially safe medications for her to take and to iden-
tify putative substances to protect her from future
adverse drug reactions.

Genotyping revealed defects at multiple gene loci,
including regions that encode phase I and phase II drug-
metabolizing enzymes. Analysis of three cytochrome
P450 (CYP) genes that are known to confer clinically
important polymorphisms confirmed the presence of
two allelic variants: 

 

CYP2C19

 

*

 

1/2

 

* and 

 

CYP2D6

 

*

 

1/4

 

*
(Table 1). The third gene, 

 

CYP2C9

 

, was not polymor-
phically expressed [i.e. the subject was found to be
homozygous for the wild-type 

 

CYP2C9

 

 allele
(

 

CYP2C9

 

*

 

1/

 

*

 

1

 

) (Table 1)]. As shown (Table 1), the
patient was homozygous for the commonly occurring
N-acetyltransferase 2 allele, 

 

NAT2

 

*

 

5B

 

, which confers
slow acetylator status. Conversely, no polymorphisms
were detected at the 

 

NAT1

 

 locus (i.e. the patient was
homozygous for the wild-type 

 

NAT1

 

*

 

4

 

 allele). Genotyp-
ing at the glutathione S-transferase (GST) locus
revealed that the patient was homozygous null for both
the 

 

GSTM1

 

 and 

 

GSTT1

 

 genes (

 

GSTM1

 

*

 

0/

 

*

 

0

 

, 

 

GSTT1

 

*

 

0/

 

*

 

0

 

). Reportedly, a physiological function of GSTs is to
remove reactive metabolites by conjugation with glu-
tathione (GSH) [3]. Our findings therefore reinforce the
realization that the double null GST mutation, which
occurs in approximately 5–10% of US Whites and Afri-
can-Americans [4], is a risk factor for drug toxicity [5,
6]. However, an imbalance in phase I and phase II drug
metabolism is not sufficient to explain idiosyncratic
drug reactions; other risk factors must be present [7].
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Our patient’s history of myopathy and myoclonus
suggested that mitochondrial dysfunction might be an
additional risk. Biopsy of her left quadriceps muscle
showed mild atrophy, mildly elevated lipid content in
some areas, and some ragged red fibres, features poten-
tially indicative of a metabolic disorder. Sequencing of
mitochondrial DNA (mtDNA) from the biopsied muscle
tissue revealed a missense mutation at position 11204,
resulting in a T to C transition that converts a highly
conserved phenylalanine to a leucine in the ND4 subunit
of respiratory complex I (C1). Mutations within the C1
subunits have been shown to inhibit cell respiration and
to increase the production of reactive oxygen species
(ROS) with the subsequent development of chronic
oxidative stress [8]. This possibility was confirmed by
measuring the oxidation/reduction status of leucocytes
isolated from the patient. The fluorescent signal from

the redox-sensitive dye, dichlorodihydrofluorescein,
was 54 

 

±

 

 8% greater in cells from the patient compared
with those of controls [9]. Additional clinical evidence
for the presence of oxidative stress was the finding that
the subject’s GSH/glutathione disulphide (GSSG) ratio
was 11, a value considerably below the normal range
of 200–500. (The subject’s blood GSH content was
5.18 

 

µ

 

mol gHb

 

−

 

1

 

 and her GSSG concentration was
464 nmol gHb

 

−

 

1

 

.) Unfortunately, the exact cause of her
abnormal GSH/GSSG ratio is unclear at present.

We propose a new paradigm for drug-induced idio-
syncrasy: the superimposition of oxidative stress,
caused in this case by a mitochondrial mutation, upon a
deficiency in the clearance of reactive metabolites,
caused by the double null GST mutations. The conse-
quences can be appreciated by a discussion of the
patient’s response to sulfamethoxazole (SMX). First,
her slow acetylation status coupled with normal
CYP2C9 oxidation favours an enhanced production of
the SMX hydroxylamine [10]. Second, the hydroxy-
lamine is normally auto-oxidized to a highly reactive
intermediate [10] and this process is exacerbated by the
superimposition of oxidative stress. Lastly, the nitroso
intermediate is cleared by conjugation with GSH [10],
but this process occurs minimally as a result of her
deficiency in GST activity and low GSH content. Thus,
the combination of defects favours the generation of
reactive intermediates and promotes the formation of
drug adducts by mass action. Interestingly, there are
striking similarities between our case and the sulphona-
mide idiosyncrasy seen in human immunodeficiency
virus patients [10]. In essence, our hypothesis is an
extension of the hapten hypothesis, and we urge inves-
tigators to consider this risk factor when identifying the

 

putative causes of idiosyncratic drug reactions.
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