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What is already known about this subject
• Isoprostanes are the product of free radical oxidation of

arachidonic acid bound to phospholipids.
• Their hydrolysis from phospholipids is presumably

catalysed by phospholipases A2.
• Atorvastatin reduces protein concentrations of secretory

PLA2s and concentrations of LDL, with which PAF-AH
(group VII phospholipase) is associated.

What this study adds
• Atorvastatin affects PAF-AH activity and this effect is strongly

associated with its lipid-lowering effect, but it has no effect
on groups IIA and V PLA2s’ activity.

• Thus, PAF-AH is no independent risk factor of cardiovascular
diseases.

• Moreover, a role of PAF-AH in the liberation of 15-F2t-isoP
from phospholipids is excluded.
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Aims
Isoprostanes are the product of free radical oxidation of arachidonic acid, whose
hydrolysis from phospholipids is presumably catalysed by phospholipases A2 (PLA2s)
such as group IIA or V PLA2s, or group VII PLA2 [platelet-activating factor
acetylhydrolase (PAF-AH), lipoprotein-associated phospholipase]. Atorvastatin reduces
concentrations of low-density lipoprotein (LDL), with which PAF-AH is associated, and
PLA2s’ protein concentrations. We investigated the effect of atorvastatin on PLA2s and
PAF-AH activity and the urinary excretion of 15-F2trans-isoprostane (15-F2t-IsoP,
8-iso-PGF2a, iPF2a-III).

Methods
Twenty-four hypercholesterolaemic individuals naive to lipid-lowering therapy were
randomized to atorvastatin 40 mg or placebo for 6 weeks. The 15-F2t-isoP urinary
excretion (gas chromatography/mass spectrometry), PAF-AH and group IIA and V PLA2

activities (photometry) were assessed at baseline and end-point.

Results
At end-point, 15-F2t-isoP urinary excretion concentrations as well as PLA2s’ activity were
unchanged under atorvastatin (mean change 0.21 � 1.79 ng h-1, 95% confidence
interval -0.92, 1.35 and 0.33 � 0.94 nmol min-1 ml-1, -0.27, 0.93) and under
placebo (mean change 0.69 � 1.69 ng h-1, -0.52, 1.90 and 1.29 � 2.16 nmol
min-1 ml-1, -0.25, 2.84). Atorvastatin treatment decreased total (P < 0.001) and
LDL-cholesterol (P < 0.001) but had no effect on high-density lipoprotein. PAF-AH
activity was lowered in the atorvastatin group (mean change - 5.27�

1.96 nmol min-1 ml-1, -6.51, -4.03, P < 0.001) but not in the placebo group (mean
change 1.02 � 1.64 nmol min-1 ml-1, 0.15, 2.20), and the change in PAF-AH activity
was correlated with that in total (P = 0.03) and LDL-cholesterol (P = 0.03).

Conclusion
Our results show a lowering effect of atorvastatin on PAF-AH activity associated with its
lipid-lowering effect and exclude a key role of PAF-AH in the liberation of 15-F2t-isoP
from phospholipids.
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Introduction
Isoprostanes are stable end-products of lipid peroxida-
tion [1], which exert biological effects such as vasocon-
striction [2]. They have been shown to increase in
patients suffering from coronary heart disease (CHD) [3,
4]. Likewise, conditions such as diabetes mellitus [5],
hypercholesterolaemia [6], obesity [7] and pulmonary
hypertension [8] have been associated with an increase
in isoprostanes. F2-isoprostanes have also been found in
atherosclerotic lesions [9]. This isoprostane family in
general and the 15-F2trans-isoprostane (15-F2t-IsoP, 8-iso-
PGF2a, iPF2a-III) in particular correlated with the
number of cardiovascular risk factors and are therefore
considered a reliable marker of CHD [4].

Because they hydrolyse oxidized phospholipids at the
sn-2 position, generating lysophospholipids and oxi-
dized fatty acids, phospholipases have been hypoth-
esized to be responsible for the release of isoprostanes in
the blood stream [10, 11]. One of the enzymes that
would come into question is the platelet-activating factor
acetylhydrolase (PAF-AH), also known as lipoprotein-
associated phospholipase A2 or group VIIA phospholi-
pase A2. In plasma, 70% of PAF-AH circulates with
low-density lipoprotein (LDL), in which it exerts a
longer half-life than in high-density lipoprotein (HDL)
[12, 13]. In fact, some studies have demonstrated con-
current decreases in PAF-AH protein concentrations
[14–16] and activity [14] in plasma and LDL-cholesterol
in response to different lipid-lowering drugs. Like
F2-isoprostanes, PAF-AH is also expressed by macroph-
ages in human atherosclerotic lesions [17]. Among
others, PAF-AH catabolizes PAF, a phospholipid which
binds the PAF-receptor, thereby causing increased vas-
cular permeability and activating platelets and leuco-
cytes [12], a function that should confer PAF-AH
anti-inflammatory properties. On the contrary, a consid-
erable number of clinical and experimental reports
support a role of PAF-AH as a proinflammatory mol-
ecule and risk factor for CHD [18–24].

Other phopholipases’ A2 (PLA2s) involvement in the
release of isoprostanes must be considered, such as
group IIA and group V PLA2. Group IIA PLA2 partici-
pates in immediate and delayed phases of cellular
arachidonic acid release and is increased in inflamma-
tory states [12]. In one clinical study, treatment with
both atorvastatin and simvastatin led to a reduction in
group IIA PLA2 protein concentrations [25]. Group V
PLA2 promotes atherosclerotic lesions by modifying
LDL particles [26]. Group IIA and V PLA2s have been
found to act jointly in inflammatory states [27].

We investigated if a statin treatment (atorvastatin
40 mg day-1 for 6 weeks) in hypercholesterolaemic

patients naive to lipid-lowering therapy would lead to a
lowering in PAF-AH and/or PLA2s activity and in
15-F2t-isoP urinary excretion, thereby indicating which
enzyme(s) is involved in the release of the latter.

Methods
Patients and study protocol
Twenty-four participants aged between 35 and 60 years
were included in this study. Hypercholesterolaemia was
defined as LDL-cholesterol concentrations �160 mg dl-1

(4.2 mmol l-1). All hypercholesterolaemic participants
were naive to statins or other lipid-lowering medications.
Exclusion criteria were: history of alcoholism or drug
abuse; pregnancy or breastfeeding status; liver disease or
liver insufficiency [serum aspartate aminotransferase
(AST) or alanine aminotransferase (ALT) >1.5-fold
above the upper limit of the normal range, 10–35 U l-1 for
women, 10–50 U l-1 for men]; advanced kidney disease
(creatinine clearance <30 ml min-1), nephrotic syndrome
or dysproteinaemia; diabetes mellitus. We assessed eligi-
bility and obtained written informed consent as stipulated
in the study protocol approved by the local Review Board
for Studies in Humans.

All participants were invited to the study centre on the
morning of day 1 and a 24-h urine sample collection was
started. Urine was collected into a container prepared
with 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl
(4-hydroxy-TEMPO) and ethylinediamine tetraacetic
acid as antioxidants. Twenty-four hours later, patients
returned to the study centre in the morning. A fasting
blood sample was drawn, blood samples were centri-
fuged (2000 g, 20 min, 4°C) immediately and plasma
was divided into aliquots and stored at -20°C until analy-
sis. Urine samples were collected, divided into aliquots
and kept frozen at -20°C until analysis. Participants were
given the study medication or placebo in a neutral pack-
aging, instructed about the intake scheme and dismissed.
Two weeks later, they returned to the study centre to have
their biochemical parameters controlled in order to detect
any intolerance reaction. On day 42 of the study, partici-
pants returned to the study centre and underwent an
investigation identical to that on the first day.

Biochemical analyses
The urinary concentration of 15-F2t-isoP was determined
by gas chromatography/mass spectrometry (GC-MS) as
described previously [28]. Briefly, urine samples were
thawed and a labelled internal standard of 15-F2t-isoP
was added at 1 ng ml-1. Physiological and labelled
15-F2t-isoP were extracted by immunoaffinity and
derivatized. Samples were subsequently analysed by
GC-MS: physiological 15-F2t-isoP was detected at m/z
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569 and the internal standard at m/z 573. Activities of
plasma group IIA and V PLA2s and PAF-AH were
assessed using commercially available assay kits
(Cayman Chemicals, Ann Arbor, MI, USA), following
sample concentration with Amicon Ultra Centrifugation
Filter Devices (Millipore, Billerica, MA, USA). Ultra-
sensitive C-reactive protein (hsCRP) was measured on a
Dade Behring BN II nephelometer (Dade Behring
GmbH, Eschborn, Germany) with polystyrene micro-
beads coated with monoclonal mouse antibodies [29].
Plasma total cholesterol, LDL and HDL concentrations
as well as plasma and urinary creatinine concentrations
were determined by standard laboratory methods using
certified assays in the local clinical laboratory.

Calculations and statistical methods
All data were tested for normal distribution with the
Shapiro–Wilk test. The distribution of 15-F2t-isoP and
hsCRP was skewed, as reported previously [4, 7, 30].
Differences between groups are given as mean (SD)
except for parameters not normally distributed (median
and interquartile range). Comparisons between study
end and baseline involving parameters not normally dis-
tributed were performed with the Wilcoxon test. All
other comparisons were performed by T-test. Correla-
tion coefficients are Pearson’s. P < 0.05 was accepted
for statistical significance. For statistical analyses, SPSS
version 13.0 was used (SPSS Inc., Chicago, IL, USA).

Results
Participants’ characteristics at baseline are presented in
Table 1. There were two smokers in the placebo group
and none in the treatment group. The PROCAM (Pro-
spective Cardiovascular Münster) score was 8.95 [inter-
quartile range (IQR) 3.65–29.7] in the placebo group
and 6.00 (IQR 3.65–23.7) in the atorvastatin group
(P = 0.630).

At the end of the study, none of the biochemical
parameters (total, LDL- and HDL-cholesterol plasma
concentrations, 15-F2t-isoP urinary excretion, PAF-AH
and PLA2s activity, CRP) was modified in the placebo
group (Table 1). The mean change in 15-F2t-isoP urinary
excretion was +0.69 ng h-1 [95% confidence interval
(CI) -0.52, 1.90].

In the atorvastatin group, a nonsignificant reduction in
15-F2t-isoP urinary excretion was observed, whereas
PLA2s activity remained virtually unaffected. Total and
LDL-cholesterol were significantly lowered, which was
paralleled by a decrease of PAF-AH activity in all
patients with active treatment (Figure 1a,b). The change
in PAF-AH activity was correlated with the change in
LDL-cholesterol concentrations (r = 0.574, P = 0.03)
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(Figure 2a) and with that in total cholesterol (r = 0.562,
P = 0.03), but not with the change in 15-F2t-isoP urinary
excretion (Figure 2b). The mean change in 15-F2t-isoP
urinary excretion was +0.21 ng h-1 (95% CI -0.92,
1.35). No episode of intolerance was recorded in this
group, although liver enzyme ALT was slightly in-
creased (43.5 U l-1, SD 15.6 vs. 32.6 U l-1, SD 12.6;
P = 0.004). Creatine kinase (155.7 U l-1, SD 97.5 vs.
175.2 U l-1, SD 185.3 at baseline; P = 0.659) and AST
(33.8 U l-1, SD 9.6 vs. 30.1 U l-1, SD 9.6 at baseline;
P = 0.147) were not modified, nor was the inflammatory
marker hsCRP (0.85 mg l-1, IQR 0.70–2.17 vs.
1.35 mg l-1, IQR 0.83–1.80 at baseline, P = 0.553).

Discussion
We report reduced PAF-AH activity secondary to cho-
lesterol lowering after 6 weeks’ treatment with atorvas-
tatin 40 mg. The treatment did not induce any change in
other secretory phospholipase activity, nor in 15-F2t-isoP
urinary excretion.

The biological functions of PAF-AH appear paradoxi-
cal and their pro- or anti-inflammatory and atherogenic
effects are still a matter of debate. PAF-AH catabolizes
the proinflammatory PAF [12] and, in vitro, its activity
in HDL parallels HDL’s ability to prevent LDL oxida-
tion [31]. A genetic deficiency in PAF-AH studied in
Japanese subjects was significantly associated with
asthma, stroke, myocardial infarction, brain haemor-
rhage and nonfamilial cardiomyopathy [32, 33]. On the

other hand, PAF-AH can transform lyso-PAF back into
the biologically active PAF and its analogues. This reac-
tion may occur in the atherogenic small dense LDL
particles and may confer them with higher proinflam-
matory potential in atherosclerosis-prone areas [34]. The
lysophospholipids and oxidized fatty acids generated by
PAF-AH from highly oxidized LDL are proinflamma-
tory, upregulating adhesion molecules and cytokine pro-
duction, thereby having a deleterious effect on the
arterial wall [22–24, 34]. PAF-AH has been postulated
to be an independent risk factor for cardiovascular
disease in healthy middle-aged men [35] and women
[19] as well as in men with a history of coronary events
[18]. One other possible mechanism for the proinflam-
matory effect of PAF-AH could be an involvement in the
liberation of isoprostanes into the blood stream. Indeed,
isoprostanes are not mere markers, but also mediators of
oxidative stress: they are vasoconstrictors in several vas-
cular beds [36], activate platelets [37] and stimulate
monocyte adhesion to endothelial cells [38]. However,
the results of the present study, especially the correlation
between the change in PAF-AH activity and that in
LDL-cholesterol concentrations in such a small group,
argue against an independent role of PAF-AH in cardio-
vascular disease and, in accordance with recent reports
[39, 40], rather suggest that these observations were
actually closely connected to LDL-cholesterol concen-
trations. Moreover, contrary to recent observations that
plasma samples from PAF-AH-deficient subjects do not

Figure 1
Individual change in (a) low-density

lipoprotein (LDL)-cholesterol plasma

concentrations and (b) platelet-activating factor

acetylhydrolase (PAF-AH) activity in the

ATV-treated group. ATV, Atorvastatin; NS, not

significant

n.s.<0.001
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release F2-isoprostanes from esterified precursors ex
vivo and that PAF-AH transgenic mice have a higher
capacity to release F2-isoprostanes compared with non-
transgenic littermates [41], the unchanged urinary excre-
tion of 15-F2t-isoP despite the marked atorvastatin-
induced lowering in PAF-AH activity rather shows that
the involvement of plasma PAF-AH in 15-F2t-isoP in
vivo in hypercholesterolaemic patients is marginal to nil.
This, in turn, is compatible with the observation from
Stafforini et al. that the catabolism rate of PAF-AH was
much slower for isoprostanes than for its other sub-
strates, a hint that this enzyme is not the main one
responsible for isoprostane liberation.

The intake of atorvastatin 40 mg over 6 weeks signifi-
cantly lowered PAF-AH activity, but as the exact role of

PAF-AH remains controversial, the potential benefits of
this reduction are also uncertain. According to the litera-
ture, overly increased PAF-AH expression and/or activ-
ity are associated with pathological states [22–24, 34].
Thus, although the decrease in the inflammatory marker
hsCRP was not significant (Table 1), we hypothesize
that in such pathological states as hypercholestero-
laemia, a lowering in PAF-AH activity to normal physi-
ological levels lowers atherogenesis and inflammatory
potential and is beneficial. However, since overly
decreased PAF-AH expression and/or activity is associ-
ated with pathological states also [11, 32, 33], these
should not be excessively lowered either. Indeed,
PAF-AH is secreted in response to inflammatory stimuli
[42], yet it is unclear if this happens in response to or
as part of an inflammatory cascade. If proven to be a
primarily anti-inflammatory and -atherogenic enzyme,
PAF-AH’s reported proinflammatory and pro-athero-
genic properties could be a mere imbalance or reversal
of its functions brought about by unknown pathophysi-
ological conditions.

The reason why we did not see a significant decrease
in 15-F2t-isoP is not clear. The choice of the statin used
does not explain it. Indeed, a few studies have reported a
decrease in 15-F2t-isoP after atorvastatin treatment [43,
44]. Sugiyama et al. [44] observed a significant decrease
in 15-F2t-isoP as soon as 4 weeks of a 10-mg daily intake
of atorvastatin. An insufficient lowering of cholesterol
concentrations, which has been associated in some
studies [45] with that in 15-F2t-isoP urinary excretion, is
not the explanation either. Indeed, in a therapy scheme
intended to produce a 20% reduction of total cholesterol
concentrations after 60 days, as soon as after 1 month
simvastatin induced a significant reduction in 15-F2t-
isoP urinary excretion concentrations [45]. Despite a
>40% lowering in total cholesterol, we could not repro-
duce this result for atorvastatin in our setting. Since liver
and muscle enzymes were not significantly increased,
with the exception of ALT, which did not reach 1.5-fold
of the upper limit of the normal range, the hypothesis of
oxidation injury in the muscles or liver to explain the
lack of change in 15-F2t-isoP excretion [46] also seems
irrelevant. Of course, the explanation could be that
15-F2t-isoP is in fact liberated by PLA2s (groups IIA and
V). Nevertheless, at least one study has suggested a link
between 15-F2-isoprostane and group IIA and V PLA2s
[47].

Wiklund et al. [25] have reported a significant reduc-
tion in group IIA PLA2 plasma protein concentrations
after a 6-week daily intake of atorvastatin 40 mg. Thus,
a likely argument for the lack of change in PLA2s’ activ-
ity in our study could be the fact that we measured
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acetylhydrolase (PAF-AH) activity and the change in (a) low-density
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enzyme activity where others measured plasma protein
concentrations. Indeed, protein quantification does not
give information about the catalytic activity of PLA2

present in the sample, and reaction rates can remain
unchanged or even rise with comparable protein levels
[47]. Since PLA2s are involved in inflammatory pro-
cesses, a reason for the lack of change in their activity
could be that atorvastatin, as reflected by the hsCRP
(Table 1), did not significantly affect the inflammatory
status of treated participants, although Sugiyama et al.
[44] have reported a significant decrease in hsCRP after
a 4-week 10 mg day-1 intake of atorvastatin. Taken
together, these data and ours suggest that the possible
association between PLA2s and 15-F2t-isoP should be
further investigated.

A limitation of our study is that the biochemical
parameters were not measured in the same biological
compartment: all parameters except 15-F2t-isoP were
quantified in plasma. Nevertheless, there is an excellent
correlation between plasma and urine 15-F2t-isoP [48].
Since artefactual isoprostane formation through lipid
auto-oxidation is less of an issue in urine samples than
in plasma [49], 15-F2t-isoP quantification in urine is
more reliable and was favoured. We cannot rule out the
possibility that a larger number of participants would
have allowed the drawing of more definite conclusions
regarding the parameters possibly linked to inflamma-
tion, e.g. hsCRP, PLA2s and 15-F2t-isoP. However, in a
previous study including 12 individuals with similar
baseline 15-F2t-isoP concentrations [50], we were able
to detect a significant 24% decrease in urinary 15-F2t-
isoP excretion, i.e. ª2 ng h-1. Finally, it is undeniable
that PAF-AH plasma protein concentrations instead of
activity could have led to different conclusions, first,
because, similar to PLA2s, there is no direct correlation
between protein concentrations and activity [51], sug-
gesting that a fraction of the protein can become inac-
tive; and second, because activity seems more closely
related to LDL-cholesterol than protein concentrations
[52]. However, since we were interested in PAF-AH
involvement in the enzymatic liberation process of iso-
prostanes, its activity was more relevant than its
protein concentrations.

In conclusion, although an association between
group IIA and V phospholipase and 15-F2t-isoP must
be further investigated, our data strongly suggest that
the previously reported increased cardiovascular risk
associated with PAF-AH was connected with LDL-
cholesterol. Furthermore, we have eliminated a key
role of the enzyme PAF-AH in the release of 15-F2t-
isoP.
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