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Aims
An ordinary sigmoid Emax model could not predict overshoot of electroencephalo-
graphic approximate entropy (ApEn) during recovery from remifentanil effect in our
previous study. The aim of this study was to evaluate the ability of an artificial neural
network (ANN) to predict ApEn overshoot and to evaluate the predictive performance
of the pharmacokinetic model, and pharmacodynamic models of ANN with respect to
data used.

Methods
Using a reduced number of ApEn instances (n = 1581) to make NONMEM modelling
feasible and complete ApEn data (n = 24 509), the presence of overshoot was
assessed. A total of 1077 measured remifentanil concentrations and ApEn data, and
a total of 24 509 predicted concentrations and ApEn data were used in the pharma-
codynamic model A and B of ANN, respectively. The testing subset of model B
(n = 7352) was used to evaluate the ability of ANN to predict overshoot of ApEn. Mean
squared error (MSE) was calculated to evaluate the predictive performance of the ANN
models.

Results
With complete ApEn data, ApEn overshoot was observed in 66.7% of subjects, but
only in 37% with a reduced number of ApEn instances. The ANN model B predicted
77.8% of ApEn overshoot. MSE (95% confidence interval) was 57.1 (3.22, 71.03) for
the pharmacokinetic model, 0.148 (0.004, 0.007) for model A and 0.0018 (0.0017,
0.0019) for model B.

Conclusions
The reduced ApEn instances interfered with the approximation of true electroencepha-
lographic response. ANN predicted 77.8% of ApEn overshoot. The predictive perfor-
mance of model B was significantly better than that of model A.
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Introduction
In a clinical investigation evaluating electroencephalo-
graphic (EEG) approximate entropy (ApEn) changes in
healthy volunteers during remifentanil infusion [1], we
observed overshoot of ApEn [2], 95% spectral edge
frequency (SEF95) and canonical univariate parameter
(CUP) [3], which were used as surrogate measures of the
central nervous system effect of remifentanil, during
recovery from profound remifentanil effect (Figure 1).

There have been a few studies of the population phar-
macodynamic model of remifentanil using an ordinary
sigmoid Emax model fitted by NONMEM (GloboMax
LLC, Hanover, MD, USA), in which SEF95 was used as
a surrogate measure of the central nervous system effect
of remifentanil [4, 5]. No study has indicated that the
initial EEG response to opioid administration differs
from that during recovery from the effect of opioids on
the human central nervous system. Additionally, in these
and our own studies, the number of processed EEG
parameters such as ApEn, SEF95 and CUP should have
exceeded that of measured concentrations of remifenta-
nil because these EEG metrics can be calculated every
10–20 s from continuously recorded raw EEG data. For
example, we selected 1581 points (59 � 6 points per
individual, mean � SD) out of 24 509 measurements of
ApEn for population pharmacodynamic modelling using
an ordinary sigmoid Emax model fitted by NONMEM [1].
Because the default maximum number of observations
per subject is set to 50, and with increasing this number
the computing time should be prolonged, NONMEM
requires reduction of these abundant EEG data for the
sake of efficient computing, which might interfere
with the approximation of the true EEG response to
remifentanil.

The overshoot of processed EEG parameters during
recovery and the probable loss of information in the
selected EEG data may advocate an alternative pharma-
codynamic modelling method, other than an ordinary
sigmoid Emax, to model the EEG response to opioids.

Several new methods for mathematical modelling
have emerged in pharmacokinetics and have shown good
performance in solving pharmacokinetic problems
[6–8]. One of them, artificial neural network (ANN), is a
powerful empirical pattern-recognition and mapping
tool for approximation of complex nonlinear relation-
ships. Instead of imposing an a priori model on the data,
ANN learns input and output relationships directly from
the data. The flexibility of the ANN models has led to
successful application in population pharmacokinetic
and pharmacodynamic data analysis [9–12].

Using the blood concentrations of remifentanil and
EEG data obtained from our previous clinical investiga-
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Figure 1
Typical examples of overshoot of electroencephalographic approximate

entropy (ApEn), 95% spectral edge frequency (SEF95) and canonical

univariate parameter (CUP) during recovery from profound remifentanil

effect (arrow). ApEn (upper panel, volunteer ID 1), SEF95 (middle panel,

volunteer ID 14), and CUP (lower panel, volunteer ID 18)
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tion [1], the primary objective of this study was to evalu-
ate if the pharmacodynamic model of ANN, in which
complete ApEn data (n = 24 509) were used, can predict
the overshoot of ApEn during recovery from profound
remifentanil effect. The secondary objective was to
evaluate the predictive performance of the pharmacoki-
netic model, and the pharmacodynamic models of ANN
with respect to datasets used in the pharmacodynamic
analysis, i.e. measured concentrations of remifentanil
and corresponding ApEn data (n = 1077) vs. predicted
concentrations of remifentanil calculated from the phar-
macokinetic model of ANN and complete ApEn data
(n = 24 509).

Methods
Electroencephalographic analysis
In addition to electroencephalographic ApEn derived
from the raw EEG data in the previous study [1], we
calculated total power, relative d, q, a and b band power
from 5-min segments that showed overshoot during
recovery after termination of remifentanil infusion, and
from the baseline EEG activity recorded before remifen-
tanil infusion.

ANN model
SAS ENTERPRISE MINER Release 4.1 was used for
ANN analysis (SAS Institute Inc., Cary, NC, USA). Of
many different architectures of ANN, the multilayer per-
ceptron (MLP) network has been most commonly used
to analyse pharmacokinetic data [10, 13]. An ANN of
MLP architecture is capable of approximating any exis-
tent nonlinear solution and has demonstrated advantages
in at least one population pharmacodynamic analysis
[14]. A three-layered MLP, with input, hidden and output
layers, was used for pharmacokinetic and pharmacody-
namic modelling. A hyperbolic tangent function was
used as the activation function. By standard deviation
method, the continuous input variables (time, amount,
rate, age, height and weight in pharmacokinetic model-
ling; time, age, height, weight, concentrations of
remifentanil in pharmacodynamic modelling) were nor-
malized to a mean of 0 and a SD of 1 [15].

Due to its robustness and fast convergence, the
Levenberg–Marquardt method was used for training of
pharmacokinetic and pharmacodynamic models [11].
This method adjusts the network weights using the fol-
lowing formula.
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where w is the network weight, J is the Jacobian matrix
that contains first derivatives of the network output with
respect to the weights, e is the vector of network errors

and I is the identity matrix. The coefficient m controls the
step size of the weight update and is varied based on the
error convergence. When m is large, the method becomes
gradient descent with a small step size, whereas for m
close to zero, it acts as Newton’s method with an
approximate Hessian [11].

It is often difficult to generalize the ANN models
because of their tendency to over-fit the data. Over-
fitting is the circumstance in which ANN fits the specific
training data instances so closely that it uses random
variance or other idiosyncracies of the training dataset to
predict outcome. To prevent this over-fitting, a method
to incorporate validation and testing subsets has been
adopted [16]. The datasets for pharmacokinetic and
pharmacodynamic models were randomly divided into
three subsets: training (40%), validation (30%) and
testing subset (30%).

The number of iterations was determined by the mean
squared error (MSE) of both training and validation
subsets. Final pharmacokinetic and pharmacodynamic
models were selected according to MSE of the testing
subset.

Pharmacokinetic analysis
The input variables, number of instances and number
of hidden layer neurons (processing elements) are
described in Table 1. The output was transformed using
a logistic activation function.

Pharmacodynamic analysis
The input variables, number of instances and number of
hidden layer neurons characterizing the pharmacody-
namic model A and B of ANN are found in Table 1.
Model A is the pharmacodynamic model of ANN
created with reduced ApEn data (measured concentra-
tions of remifentanil vs. corresponding ApEn values,
n = 1077) and model B is the pharmacodynamic model
of ANN built with the complete ApEn data (predicted
concentrations of remifentanil calculated from pharma-
cokinetic model of ANN vs. complete ApEn dataset,
n = 24 509).

The time delay between measured concentrations of
remifentanil and ApEn values in model A was within
10 s, whereas time of predicted concentrations in model
B was identical to that of ApEn.

Model performance
MSE, mean absolute error (MAE) and R2 were calcu-
lated to evaluate the predictive performance of pharma-
cokinetic and pharmacodynamic models.

Median absolute weighted residual (MDAWR) and
mean of the individual mean absolute weighted residuals

Population PK–PD modelling of remifentanil by ANN
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( MAWR ) were calculated to assess the predictive per-
formance of pharmacokinetic models. We used the
weighted residual to describe the quality of the predic-
tion in each individual, calculated as (measured-
predicted)/predicted [17]. Median absolute residual
(MAR) was calculated to assess the performance of
pharmacodynamic models.

These indices for the pharmacokinetic model of ANN
were estimated using fivefold cross-validation with
random subsampling. All indices of model performance
were calculated from testing subsets of the pharmaco-
dynamic models of ANN and the results of population
pharmacokinetic and pharmacodynamic models of
NONMEM in our previous study [1].

The corresponding 95% confidence intervals of MSE,
MAE and MAWR were calculated and the statistical
differences of MSE, MAE and MAWR between
NONMEM and ANN models were tested by a paired
t-test or t-test, as appropriate.

Overshoot of ApEn
The overshoot of ApEn during recovery was defined as
follows: (i) the ApEn values within 30 min after termi-
nation of remifentanil infusion should be >110% of indi-
vidual baseline ApEn values; (ii) these overshot values
of ApEn should last at least 30 s.

The selection criteria of ApEn data in the previous
study [1], which were similar to the work of Minto and
associates [5], were as follows: (i) every 30 s during the
first 5 min, every 1 min during the second 5 min, every
2 min during the third 10 min after the beginning of
remifentanil infusion; (ii) every 30 s during the first
5 min, every 1 min during the second 5 min, every 2 min
during the third 10 min after the termination of remifen-
tanil infusion; (iii) and thereafter, every 5–10 min until
170 min after the beginning of remifentanil infusion.

These 1581 measurements of ApEn vs. time, which
were selected for the population pharmacodynamic
modelling by NONMEM in the previous study [1], were
used to assess the presence of overshoot. The number of
subjects who showed overshoot of ApEn during recov-
ery was counted on the basis of the relationships
between the individually predicted and observed ApEn
over time.

According to the previously described criteria for
overshoot of ApEn during recovery, the number of sub-
jects in whom overshoot of ApEn was well predicted by
the model B of ANN (number of ApEn data = 24509)
was counted. The presence of overshoot was assessed
using complete ApEn data vs. time. The testing subset of
model B (n = 7352) was used to evaluate the ability of
model B to predict overshoot of ApEn. Criteria for the

Table 1
Number of instances, input variables and
number of hidden layer neurons of
pharmacokinetic (PK) and
pharamcodynamic (PD) models of the
artificial neural network (ANN)

PK PD
Model A Model B

Number of instances 1340* 1077† 24 509‡
Input variables Time Time Time

Amount Infusion Infusion
Infusion Age Age
Rate Sex Sex
Age Weight Weight
Sex Height Height
Weight Measured concentrations Predicted concentrations
Height of remifentanil of remifentanil

Number of hidden layer
neurons

12 10 9

*Measured concentrations of remifentanil. †Measured concentrations of remifenta-
nil vs. corresponding approximate entropy (ApEn) values. ‡Predicted concentrations
of remifentanil calculated from the pharmacokinetic model of ANN vs. complete
ApEn data. Time, time elapsed from the beginning of remifentanil infusion
(minutes); Amount, total dose infused (mg); Infusion: 1 during remifentanil infu-
sion, 0 after termination of remifentanil infusion; Rate (mg min-1), Age (years), Sex:
1 male, 0 female, Weight (kg), Height (cm).

S. H. Kang et al.

6 64:1 Br J Clin Pharmacol



prediction of overshoot in testing data of model B were
defined as follows: maximal predicted ApEn value
should be larger than both baseline observed ApEn value
and baseline predicted ApEn value.

Results
Previously, processed EEG parameters and blood con-
centrations of remifentanil were modelled by the
sequential approach of pharmacokinetic and pharmaco-
dynamic modelling [1]. Table 2 shows the final popula-
tion pharmacokinetic model fitted by NONMEM which
was not described in our first study [1]. A total number of
1340 remifentanil blood concentrations was available
for pharmacokinetic analysis. All models were fitted
using the first-order estimation procedure. A full
variance–covariance matrix was estimated for the differ-
ent distributions of hs. The minimal value of the objec-
tive function (OFV, equal to minus twice the log
likelihood) provided by NONMEM was used as the
goodness-of-fit characteristic to discriminate between
hierarchical models using the log likelihood ratio test. A
P-value of 0.05, representing a decrease in OFV of 3.84
points, was considered statistically significant [c2 distri-
bution, degrees of freedom (d.f.) = 1]. A nonparametric
bootstrap analysis was performed as an internal model

validation, using the software package Wings for
NONMEM (N. Holford, Version 404, June 2003, Auck-
land, New Zealand) [18]. This process was repeated
3000 times.

ANN model
To avoid multicollinearity, height/body weight/sex,
body surface area (BSA)/sex, or lean body mass
(LBM) exclusively entered the pharmacokinetic and
pharmacodynamic models of ANN. Of these, the com-
bination of height/body weight/sex was selected for
both pharmacokinetic and pharmacodynamic models,
as it improved the model performance better than BSA/
sex or LBM did. These findings are different from the
covariates of pharmacokinetic and pharmacodynamic
models of NONMEM. In ANN, demographic factors
enter a model as independent variables.

Pharmacokinetic analysis A pharmacokinetic model
was selected according to MSE of the testing subset
previously described. The number of iterations was 41.

The n-fold cross-validation approach to training and
testing has often been used for relatively small numbers
of instances [19]. In a preliminary analysis, 10-fold
cross validation resulted in a large variability in the

Table 2
The estimates of population pharmacokinetic parameters and median parameter values (2.5–97.5%) of the nonparametric
bootstrap replicates of the final pharmacokinetic model of NONMEM

Parameter Estimate Median 2.5–97.5% Bias

V1 (q1) 9.95 10.00 7.95–17.00 0.05

k Age BSA10 2 9 10100= − × ( ) + ×θ θ θ q2 0.3 0.3 0.1–0.5 0
q9 0.0939 0.0978 0.01–0.23 0.0039
q10 0.0491 0.0512 0.01–0.22 0.0021

k12 (q3) 0.159 0.160 0.115–0.256 0.001
k21 (q4) 0.136 0.135 0.116–0.154 -0.001
k13 (q5) 0.0185 0.02 0.01–0.07 0.0015
k31 (q6) 0.00204 0.002 0.001–0.005 -0.00004
w2 for V1 0.112 0.346 0.110–0.769 0.234
w2 for k10 0.159 0.462 0.150–1.269 0.303
w2 for k12 0.188 0.508 0.112–1.061 0.32
w2 for k21 0.0157 0.161 0.012–0.422 0.1453
w2 for k13 12.1 3.6 0.8–13.0 -8.5
w2 for k31 18.5 4.5 0.7–19.0 -14
s2

1 (additive) 0.0496 0.0464 0.003–0.068 -0.0032
s2

2 (proportional) 0.247 0.25 0.21–0.44 0.003

BSA, body surface area. Bias = Median – Estimate. w2 and s2, Variance of random effects parameters in log domain
(interindividual random variability) and variance of residual random variability, respectively. Interindividual random variability and
residual random variability was modelled using log-normal model and additive plus proportional error model, respectively.

Population PK–PD modelling of remifentanil by ANN
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performance estimates from fold to fold. Stratification
into fivefold cross-validation produced more homoge-
neous testing subsets and showed less variability in
the performance estimates. Because fivefold cross-
validation maximizes the number of instances available
for both training and testing, the fivefold cross-
validation performance estimate was considered a fairly
good estimate of true performance. Therefore, perfor-
mance of the pharmacokinetic model of ANN, selected
according to MSE of the testing subset, was estimated
using fivefold cross-validation with random subsam-
pling, in which 80% (n1 = 1072) and 20% (n2 = 268) of
data were used as training and testing subset, respec-
tively [20]. The dataset was randomly split into five
mutually exclusive subsets (the folds) D1, D2, D3, D4, D5

of equal size. For five experiments, a model structurally
identical to the selected pharmacokinetic model of ANN
(same architecture, training parameters, inputs and
number of hidden layer neurons) was trained (weight
adjustment) with n1 = 1072 training instances, then
tested using n2 = 268 testing instances. Performance
estimates were then calculated from all five testing
subsets, including every instance (n = 1340). This
method enabled optimal performance estimation on the
limited dataset, by maximizing the data used for training
and simultaneously maximizing the data used for

testing. The five test subsets were homogeneous
(P = 0.3, one-way anova).

Figure 2 illustrates the relationship between the pre-
dicted and measured concentrations of remifentanil in
the ANN analysis. The residuals of pharmacokinetic
models of NONMEM and ANN showed similar range
of values (-42.2 to 76.75 ng ml-1 vs. -82.65 to
55.45 ng ml-1, respectively). At the clinical range of
concentrations (<25 ng ml-1), the residuals were much
lower than those at higher concentrations of
remifentanil.

The statistical measures of the performance of the
final pharmacokinetic models of NONMEM and ANN
are found in Table 3. MSE and MAE of the pharmaco-
kinetic model of ANN were smaller than those of the
pharmacokinetic model of NONMEM. MAWR of the
pharmacokinetic model of ANN was considerably
higher than that of the pharmacokinetic model of
NONMEM, which resulted from the excessive under-
prediction of the lower range of remifentanil concentra-
tions in ANN analysis. The median value of the 198
points of measured concentrations, which showed
MAWR ≥ 2 0. , was 0.4 ng ml-1.

Pharmacodynamic analysis The number of iterations
was 9 for model A and 49 for model B. The results of
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model performance were obtained using testing subsets
(n = 323 for model A, 7352 for model B). The predictive
performance of the pharmacodynamic models of
NONMEM and ANN is summarized in Table 4. The
performance of model B was better than that of the
ordinary sigmoid Emax model fitted by NONMEM and
model A, but there was no difference in model perfor-
mance between ordinary sigmoid Emax model and model
A. The plots of predicted ApEn against observed ApEn,
residuals against predicted ApEn in model A and B are
illustrated in Figure 3. The residuals of model A and B
ranged from -0.38 to 0.28 and -0.37 to 0.23, respec-

tively, which were similar to those of the ordinary
sigmoid Emax model (-0.40 to 0.29).

Figure 4 shows the plots of predicted ApEn and
observed ApEn against predicted concentrations of
remifentanil in two volunteers. ANN accurately pre-
dicted the change in observed ApEn at predicted con-
centrations of remifentanil. The hysteresis loop was seen
in Figure 4, suggesting ANN differentially predicted the
ApEn values at the same predicted concentrations of
remifentanil in the ascending and descending limbs.

Overshoot of ApEn
In the previous study [1], 1581 measurements of ApEn
vs. time were selected for the population pharmacody-
namic modelling by NONMEM. When the same dataset
was used to assess the presence of overshoot, the number
of subjects who showed overshoot of ApEn during
recovery was 10 (37.0% of all volunteers). This over-
shoot was not predicted by the individually predicted
ApEn of the final pharmacodynamic model by
NONMEM [1].

The number of subjects who showed overshoot of
ApEn during recovery was 18 (66.7% of all volunteers),
as determined by evaluating complete ApEn data vs.
time. Total power, relative d, q, a and b band powers in
these volunteers are found in Table 5. The increase of b
band power, and hence increase of total power during
recovery from profound remifentanil effect, is believed
to cause the overshoot of ApEn. Using the testing subset
of model B, ANN predicted this overshoot in 14 subjects
(77.8%) of 18 volunteers who showed overshoot of
ApEn. Figure 5 shows observed and predicted ApEn

Table 3
Predictive performance of the pharmacokinetic models of
NONMEM and artificial neural network (ANN)

NONMEM (95% CI) ANN*(95% CI)

MSE 95.8 (79.2, 112.3) 57.1 (3.22, 71.03)
MAE 5.4 (4.99, 5.87) 4.1 (3.76, 4.44)
MDAWR 0.27 0.31

MAWR 0.37 (0.31, 0.42) 2.22 (1.66, 2.78)
R2 0.83 0.90

*Five testing sets of fivefold cross-validation were com-
bined to obtain predictive performance estimates for ANN.
P < 0.001 vs. NONMEM. MSE, mean squared error; MAE,
mean absolute error; MDAWR, median absolute weighted
residual; MAWR, mean of the individual mean absolute
weighted residuals.

Table 4
Predictive performance of the
pharmacodynamic models of NONMEM
and artificial neural network (ANN)

NONMEM ANN
Ordinary sigmoid
Emax model (95% CI) Model A (95% CI) Model B (95% CI)

MSE 0.00725 (0.00594, 0.00731) 0.148 (0.004, 0.007) 0.0018* (0.0017, 0.0019)
MAE 0.058 (0.056, 0.061) 0.052 (0.047, 0.058) 0.0300* (0.0293, 0.0307)
MAR 0.04 0.04 0.02
R2 0.52 0.58 0.74

*P < 0.01 vs. ordinary sigmoid Emax model. N = 1581 for the pharmacodyanmic
model of NONMEM [1]. ANN – model A, the dataset was measured concentrations
of remifentanil vs. corresponding approximate entropy (ApEn) values (n = 1077).
ANN – model B, the dataset was predicted concentrations of remifentanil calculated
from the pharmacokinetic model using ANN vs. complete ApEn data (n = 24 509).
MSE, mean squared error; MAE, mean absolute error; MAR, median absolute
residual.

Population PK–PD modelling of remifentanil by ANN
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against time in one volunteer (ID 1), in which the over-
shoot of ApEn was well predicted by model B. The
reason we did not examine the prediction of overshoot in
model A was that the number (323) of instances in the
testing subset of model A was too small.

Discussion
The increase of b band power, and hence increase of
total power during recovery from profound remifentanil
effect, is believed to cause the overshoot of ApEn. This
b activation may indicate an increase in vigilance and
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awareness [21]. The filtering level r of ApEn is calcu-
lated as a percentage of the SD of the amplitude values
[22]. Thus the increase of the total power is reflected in
the calculation of ApEn.

Remifentanil is often administered by target con-
trolled infusion (TCI), which is implemented in com-
mercialized TCI devices in the field of anaesthesia [5].
Both the effect-site or plasma concentration of remifen-
tanil can be a target to be controlled during anaesthesia.
Pharmacokinetic parameters and ke0 are needed to cal-
culate the effect-site concentration of remifentanil. Typi-
cally, ke0 was obtained by sequential pharmacokinetic
and pharmacodynamic modelling in which three com-
partmental pharmacokinetic models with added effect
compartment and an ordinary sigmoid Emax model were
used [1, 5]. However, an ordinary sigmoid Emax model
can not predict overshoot of the processed EEG param-
eters during recovery from profound remifentanil effect
on the central nervous system [1].

With complete ApEn data (n = 24 509, model B), the
percentage of volunteers who showed overshoot of
ApEn during recovery from profound remifentanil effect
was 66.7%. However, when the number of ApEn
instances was reduced to make NONMEM feasible, this
percentage was decreased to 37%, suggesting that the
reduction of pharmacodynamic data resulted in inaccu-
rate representation of the real features of response to a
drug. Moreover, the ANN model B predicted 77.8% of
the overshoot of ApEn, whereas the ordinary sigmoid
Emax model fitted by NONMEM could not predict the
overshoot at all because it restricted the highest pre-
dicted ApEn to E0.
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Figure 4
The predicted (�) and observed (�) approximate entropy (ApEn)

against predicted blood concentrations of remifentanil, calculated from

the final pharmacokinetic model of artificial neural network (ANN), in

two volunteers (upper panel: n = 67 for volunteer ID 6, lower panel:

n = 66 for volunteer ID 21)
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Figure 5
The observed (�) and predicted (�) approximate entropy (ApEn)

against time in one volunteer (ID 1). Overshoot of ApEn was well

predicted by model B of the artificial neural network

Table 5
Total power, relative d, q, a and b band powers in
volunteers who showed overshoot of the
electroencephalographic (EEG) approximate entropy
during recovery from profound remifentanil effect

Baseline Overshoot

Total power (mV2) 142.4 � 25.0 340.0 � 63.8*
Relative d (%) 53.3 � 3.5 43.7 � 3.1*
Relative q (%) 13.5 � 0.9 14.5 � 1.3
Relative a (%) 21.6 � 3.4 22.5 � 2.5
Relative b (%) 12.6 � 1.0 20.6 � 2.6*

Data are stated as mean � SE. Five-minute segments of
raw EEG data were used to calculate total power, relative
d, q, a and b band powers for both baseline and overshoot
during recovery. *P < 0.05 vs. baseline.

Population PK–PD modelling of remifentanil by ANN

Br J Clin Pharmacol 64:1 11



The predictive performance of the pharmacokinetic
model of ANN was better than that of NONMEM.
However, ANN excessively underpredicted the lower
range of measured concentrations of remifentanil
(especially below 0.4 ng ml-1). The predictive perfor-
mance of the ordinary sigmoid Emax model fitted by
NONMEM and the pharmacodynamic model A of
ANN was similar, suggesting that the model perfor-
mance of ANN could not be improved with the limited
number of pharmacodynamic data. However, the ANN
model B using complete ApEn data showed signifi-
cantly better performance than did the ordinary
sigmoid Emax model. This differences of performance
between the ordinary sigmoid Emax model and the ANN
model B were attributed to the predictive ability of the
ApEn overshoot during recovery from profound
remifentanil effect.

Originally, population pharmacokinetic data analysis
technique was developed to analyse sparse within-
patient concentration–time data. With the dosing history
and clinically relevant measures of response to a drug,
we can obtain further insight into the effects of different
demographic factors on the behaviour of a drug and
pharmacodynamic characteristics. The purpose of phar-
macokinetic modelling is to obtain the absorption, dis-
tribution, metabolism, excretion and toxicity (ADMET)
properties of drugs. In this point of view, ANN might
provide us with only limited information on a drug,
because a fitting itself for given data can not tell us the
mechanistic parameters regarding ADMET properties of
drugs. However, if we want to know the natural or real
features of response to a drug and a large quantity of
pharmacodynamic data can be obtained, ANN may be an
excellent alternative to NONMEM, especially in phar-
macodynamic modelling. The purpose of calculating the
predicted concentrations from the pharmacokinetic
model of ANN in the ANN model B was to match the
concentration data to all of the ApEn data. Therefore,
this approach differed from the NONMEM method to
collapse hysteresis loop by ke0.

For the final pharmacokinetic model of NONMEM,
interindividual variability of k13 and k31 was very high.
This is possibly because there was a considerable
number of volunteers who did not have the third com-
partment, as reported previously [5], or perhaps because
of the relatively small sample size. Both the pharmaco-
kinetic and pharmacodynamic models using first-order
conditional estimation (FOCE) of NONMEM failed to
converge. Joint estimation of q and h by FOCE may
cause computational difficulty, especially when sample
size is small [23, 24], which may partly account for
convergence failure of FOCE models. For the validation

of both the pharmacokinetic and pharmacodynamic
models of first-order estimation by NONMEM, non-
parametric bootstrap analyses were performed. Esti-
mates of all the structural parameters were similar to the
median values of bootstrap replicates and estimates of
all the structural and statistical parameters were within
2.5–97.5 percentile (Table 2 in this report and Table 4 in
our previous report [1]). Additionally, prediction prob-
ability of the calculated remifentanil effect-site concen-
tration for ApEn, which was assessed as described by
Smith et al. [25], was good enough to accept that the
models were optimal [1, 25].

Minto et al. reported that age/LBM and age were
significant covariates for their pharmacokinetic and
pharmacodynamic models, respectively [5]. In the phar-
macokinetic model of NONMEM in this study, age and
BSA were significant covariates of central clearance,
which decreased by approximately 24.6% with increas-
ing age. Age was the only significant covariate for both
t1/2 ke0 and Ce50, and t1/2 ke0 increased by approximately
31.7% and Ce50 decreased by 77.1% with increasing age
[1]. These characteristic pharmacokinetic and pharma-
codynamic findings in elderly patients are consistent
with a previous report [5] and suggest considerable dose
reduction in clinical practice.

In conclusion, the reduction of pharmacodynamic
data to make NONMEM modelling feasible for effi-
cient computation resulted in inaccurate representation
of the real features of response to remifentanil. ANN
could predict overshoot of ApEn during recovery from
profound remifentanil effect using complete ApEn
data. The predictive performance of the pharmacoki-
netic model of ANN was better than that of
NONMEM, but tended to underpredict the lower range
of measured concentrations of remifentanil. The pre-
dictive performance of the pharmacodynamic model of
ANN using complete ApEn data was superior to that of
the pharmacodynamic model of ANN using measured
concentrations of remifentanil vs. corresponding ApEn
data.

We are deeply grateful to Jung-Mi Choi PhD and
Ki-Seong Kim PhD of Laxtha Inc., Korea, for the analy-
sis of EEG, and to Sook-Kyung Seo of Asan Medical
Centre and Yoo-Mi Kim of Korea Health Industry Devel-
opment Institute for the preparation of data used in this
study. We are also grateful to Ae-Kyung Hwang of Clini-
cal Research Centre of Asan Medical Centre for the
measurement of remifentanil concentration. This study
was supported by the 2006 Inje University Special
Research Grant and the grant (2004–0726) from the
Industry Trust Research Service between University of

S. H. Kang et al.

12 64:1 Br J Clin Pharmacol



Ulsan College of Medicine and GlaxoSmithKline Korea,
Seoul, Korea.

References
1 Noh GJ, Kim KM, Jeong YB, Jeong SW, Yoon HS, Jeong SM,

Kany SH, Linares O, Kerm SE. Electroencephalographic
approximate entropy changes in healthy volunteers during
remifentanil infusion. Anesthesiology 2006; 104: 921–32.

2 Pincus S. Approximate entropy (ApEn) as a complexity measure.
Chaos 1995; 5: 110–7.

3 Gambus PL, Gregg KM, Shafer SL. Validation of the alfentanil
canonical univariate parameter as a measure of opioid effect
on the electroencephalogram. Anesthesiology 1995; 83:
747–56.

4 Egan TD, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL.
Remifentanil versus alfentanil: comparative pharmacokinetics
and pharmacodynamics in healthy adult male volunteers.
Anesthesiology 1996; 84: 821–33.

5 Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ,
Gambus PL, Billard V, Hoke JF, Moore KH, Hermann DJ, Muir
KT, Mandema JW, Shafer SL. Influence of age and gender on
the pharmacokinetics and pharmacodynamics of remifentanil. I.
Model development. Anesthesiology 1997; 86: 10–23.

6 Yamamura S, Takehira R, Kawada K, Nishizawa K, Katayama S,
Hirano M, Momose Y. Application of artificial neural network
modelling to identify severely ill patients whose aminoglycoside
concentrations are likely to fall below therapeutic
concentrations. J Clin Pharm Ther 2003; 28: 425–32.

7 Durisova M, Dedik L. New mathematical methods in
pharmacokinetic modeling. Basic Clin Pharmacol Toxicol 2005;
96: 335–42.

8 Turner JV, Maddalena DJ, Cutler DJ. Pharmacokinetic parameter
prediction from drug structure using artificial neural networks. Int
J Pharm 2004; 270: 209–19.

9 Haidar SH, Johnson SB, Fossler MJ, Hussain AS. Modeling the
pharmacokinetics and pharmacodynamics of a unique oral
hypoglycemic agent using neural networks. Pharm Res 2002;
19: 87–91.

10 Brier ME, Zurada JM, Aronoff GR. Neural network predicted
peak and trough gentamicin concentrations. Pharm Res 1995;
12: 406–12.

11 Gaweda AE, Jacobs AA, Brier ME, Zurada JM. Pharmacodynamic

population analysis in chronic renal failure using artificial neural
networks – a comparative study. Neural Netw 2003; 16: 841–5.

12 Chow HH, Tolle KM, Roe DJ, Elsberry V, Chen H. Application of
neural networks to population pharmacokinetic data analysis. J
Pharm Sci 1997; 86: 840–5.

13 Nestorov IS, Hadjitodorov ST, Petrov I, Rowland M. Empirical
versus mechanistic modelling: comparison of an artificial neural
network to a mechanistically based model for quantitative
structure pharmacokinetic relationships of a homologous series
of barbiturates. AAPS Pharmsci 1999; 1: E17.

14 Hornik K, Stinchcombe M, Wite H. Multilayer feedforward
networks are universal approximation. Neural Netw 1989; 2:
359–66.

15 Yamamura S, Nishizawa K, Hirano M, Momose Y, Kimura A.
Prediction of plasma levels of aminoglycoside antibiotic in
patients with severe illness by means of an artificial neural
network simulator. J Pharm Pharm Sci 1998; 1: 95–101.

16 Rumelhart DE, Widrow B, Lehr MA. The basic ideas in neural
networks. Commun ACM 1994; 37: 87–92.

17 Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY,
Mandema JW, Shafer SL. The pharmacokinetics of propofol in
children using three different data analysis approaches.
Anesthesiology 1994; 80: 104–22.

18 Parke J, Holford NH, Charles BG. A procedure for generating
bootstrap samples for the validation of nonlinear mixed-effects
population models. Comput Meth Programs Biomed 1999; 59:
19–29.

19 Leroy G, Rindflesch TC. Effects of information and machine
learning algorithms on word sense disambiguation with small
datasets. Int J Med Inform 2005; 74: 573–85.

20 Arana E, Delicado P, Marti-Bonmati L. Validation procedures in
radiologic diagnostic models. Neural network and logistic
regression. Invest Radiol 1999; 34: 636–42.

21 Eger EI 2nd, Stevens WC, Cromwell TH. The
electroencephalogram in man anesthetized with forane.
Anesthesiology 1971; 35: 504–8.

22 Pincus SM, Gladstone IM, Ehrenkranz RA. A regularity statistic
for medical data analysis. J Clin Monit 1991; 7: 335–45.

23 Lee Y, Nelder J. Hierarchical generalized linear models (with
discussion). J Roy Stat Soc B 1996; 58: 619–78.

24 Pawitan Y. In All Likelihood: Statistical Modeling and Inference
Using Likelihood. New York: Oxford University Press Inc. 2001.

25 Smith WD, Dutton RC, Smith NT. Measuring the performance of
anesthetic depth indicators. Anesthesiology 1996; 84: 38–51.

Population PK–PD modelling of remifentanil by ANN

Br J Clin Pharmacol 64:1 13


