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What is already known about this subject
• When characterizing an exposure–response relationship it

has been suggested that the randomized
concentration-controlled trial (RCCT) is potentially a more
informative design than a randomized dose-controlled trial
design (RDCT).

• Traditionally, these trials have been analysed by
group-wise comparison or similar statistics.

• The aim of this study was to compare different
randomization schemes when a model-based analysis has
been performed.

What this study adds
• Alternative randomization schemes may not have the

proposed advantages if a model-based analysis is employed.
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Aims
In the literature, five potential benefits of randomizing clinical trials on concentration
levels, rather than dose, have been proposed: (i) statistical study power will increase;
(ii) study power will be less sensitive to high variability in the pharmacokinetics (PK);
(iii) the power of establishing an exposure–response relationship will be robust to
correlations between PK and pharmacodynamics (PD); (iv) estimates of the
exposure–response relationship are likely to be less biased; and (v) studies will
provide a better control of exposure in situations with toxicity issues. The main aim of
this study was to investigate if these five statements are valid when the trial results are
evaluated using a model-based analysis.

Methods
Quantitative relationships between drug dose, concentration, biomarker and clinical
end-point were defined using pharmacometric models. Three randomization schemes
for exposure-controlled trials, dose-controlled (RDCT), concentration-controlled
(RCCT) and biomarker-controlled (RBCT), were simulated and analysed according to
the models.

Results
(i) The RCCT and RBCT had lower statistical power than RDCT in a model-based
analysis; (ii) with a model-based analysis the power for an RDCT increased with
increasing PK variability; (iii) the statistical power in a model-based analysis was robust
to correlations between CL and EC50 or Emax; (iv) under all conditions the bias was
negligible (<3%); and (v) for studies with equal power RCCT could produce either
more or fewer adverse events compared with an RDCT.

Conclusion
Alternative randomization schemes may not have the proposed advantages if a
model-based analysis is employed.
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Introduction
The randomized dose-controlled trial (RDCT) is pres-
ently the most used clinical trial design. The simplicity
in assigning the patients to different dose groups makes
the RDCT easy to perform and cost effective compared
with alternative designs. However, when characterizing
an exposure–response relationship it has been suggested
that the randomized concentration-controlled trial
(RCCT) is potentially a more informative design [1, 2],
and as an extension to the RCCT the randomized
biomarker-controlled trial (RBCT) design has been
described [3]. The idea is that since the randomization
point is moved closer to the clinical end-point in the
chain of causal events, randomizing patients to defined
target concentrations or biomarker levels, as opposed to
dose, makes it possible to reduce the within-group vari-
ability in the response variable in relation to the random-
ization variable. The drawback with an RCCT/RBCT, on
the other hand, is that it is necessary to titrate each
patient by some adaptive feedback strategy to ensure
that the defined target concentration or biomarker level
is reached. This is complicated and costly. A further
issue is that it may not be possible to reach the specified
target level in some patients, so-called formal data
loss, meaning that the desired reduction in variability
due to the randomization scheme will not be achieved.
These practical complications, in particular the first,
in carrying out an RCCT or RBCT have limited their
use.

For the sake of this discussion, the evaluation of
randomized clinical trials can be divided into two
approaches. The first is a ‘traditional’ analysis, e.g. a
group-wise comparison, where the aim is to investigate
differences between treatment arms [4]. The second is a
model-based analysis, where the goal is to establish a
hypothesized mathematical model for the relationship
under investigation. One benefit of the traditional analy-
sis strategy is that it is relatively objective since the
explanatory variable, i.e. the randomization group
assignment, is defined prior to the analysis. A model-
based analysis is more complicated and requires
assumptions about the general underlying form of the
exposure–response relationship as well as other assump-
tions of a more technical nature [5]. On the other hand,
it has been shown that a model-based analysis can
increase the statistical power of a study by using all the
observed data according to their relative information
content and by obviating the need for missing data impu-
tation (by, for example, the last observation carried
forward algorithm) [6].

From the literature, the expected general benefits of
an RCCT over an RDCT can be summarized in five

points. As the general ideas are the same for the RCCT
and RBCT, these points are expected to apply to the
RBCT design also.

1 Statistical study power will increase [2, 7].
2 Study power will be less sensitive to high variability

in the pharmacokinetics (PK) [1, 2, 7].
3 The power of establishing an exposure–response rela-

tionship will be less sensitive to correlations between
PK and pharmacodynamics (PD) [1, 2, 7].

4 The estimates of the exposure–response relationship
are likely to be less biased [1, 2, 7].

5 The studies will provide a better control of exposure
in situations with toxicity issues [1, 2].

Statements 1–4 originate from a traditional data
analysis point of view [2, 7], where the underlying
assumption is that interindividual variability is a con-
founding factor. Statement 5 refers to the fact that side-
effects are related to the level of exposure, similarly to
the desired drug effect. Therefore, controlling the expo-
sure levels should also control the incidence of adverse
events.

In the early 1990s Sanathanan and Peck [2] published
a simulation study where they investigated the improve-
ment in sample size efficiency that can be gained from
the RCCT design (i.e. statement 1). Later, Endrenyi and
Zha [8] showed that Sanathanan and Peck’s results were
dependent on the restricted model they used. None of the
previous authors on the topic has addressed all five of the
potential benefits (mentioned above) of using the RCCT
design.

A MEDLINE search of clinical studies with an RCCT
design [9–46] shows that most RCCTs were analysed
with a traditional statistical approach. Since model-
based drug development is becoming more popular and
is even being advocated by some regulatory authorities
[4, 47], it is of interest to investigate the consequences of
different randomization schemes under the assumption
of a model-based analysis.

The aim of this simulation study was to investigate the
five potential benefits outlined above assuming a model-
based analysis and contrast it with a traditional group-
wise analysis.

Methods
Data simulation
In this study the events caused by administrating the
drug to the body is defined as a sequence of dose,
plasma concentrations, biomarker and clinical end-point
responses, i.e. a mechanistic pathway of drug response,
shown in Figure 1. Each step in the sequence was
defined by a mathematical model which will be
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described in further detail. Each simulation setup was
replicated 1000 times. The simulations and analyses
were made using the software package NONMEM,
version VIb [48] and automated by the use of the pro-
gramming language perl.

Pharmacokinetic model The dose–concentration rela-
tionship was described by a PK model where steady-
state conditions were assumed and the ith individual’s
mean concentration and clearance (CLi) was related to
the administered dosing rate (Di) by Equation 1. Inter-
individual variability in CLi around the typical value of
clearance in the population (qCL) was assumed to be
log-normally distributed according to Equation 2, where
hCL is a zero mean, normally distributed random variable
[hCL∈N(0,w2)], explaining the differences between
individuals.
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Biomarker model An Emax model was used to describe
the relationship between the exposure and the change
from the baseline biomarker response (DB) (Equation 3).
The variability in the individual EC50 values (EC50,i) was
assumed to be log-normally distributed according to
Equation 4, where qEC50 is the typical value of the EC50 in
the population and hEC50 is a zero mean, normally dis-
tributed random variable. To constrain the individual
Emax values (Emax,i) to fall between 0 and 1 the random
variability [hEmax∈N(0,w2)] was added to the typical
value of the Emax in the population through a logit func-
tion (Equations 5 and 6).
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Toxicity model The concentration–toxicity relationship
was described by a Tmax model (Equation 7), where
Tmax = 1. The variability in the individual TC50 values
(TC50,i) was assumed to be log-normally distributed
according to Equation 8, where qTC50 is the typical value
of the TC50 in the population and hTC50 is a zero mean,
normally distributed random variable. The therapeutic
interval was varied by defining qTC50 as a function of
qEC50, according to Equation 9, where x = 1, 2, 3 and 4.
The therapeutic interval describes the differences
between the concentrations which give rise to the
desired effect and the concentrations that lead to side-
effects. An adverse event was defined as T > 0.75·Tmax.
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Clinical end-point model A dichotomous clinical end-
point was simulated using a logistic model. The logit
function (Equation 10) defines the shape of the probabil-
ity function (Equation 11) for the clinical end-point
given a biomarker value (change from baseline
response). a and b are constants that describe the base-
line and the slope, respectively, of the logit function.
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In the simulations the value of the probability,
P(CE = 1|DB), was compared with a uniformly distrib-
uted random number (R) [R∈U(0,1)]. If R was
<P(CE = 1|DB), the value of the clinical end-point was
set to 1, i.e. a response, otherwise 0. The probability of
an effect at baseline was set to 20% and a maximum
change in the biomarker would lead to a 65% probability
of a response.

Dose PK
Clinical

endpoint

Tox

Bio-
marker

Biomarker-CE
model

Tox-model

PK-model PK-Biomarker
model

Figure 1
The model for the mechanistic pathway of drug response consists of:

a pharmacokinetic (PK) model for the dose–exposure relationship, a

pharmacokinetic biomarker model for the exposure–biomarker

relationship and biomarker clinical end-point model for the

biomarker–clinical end-point relationship and a pharmacokinetic

toxicity (Tox) model for the exposure–toxicity relationship.
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Study design
The trials were randomized according to three schemes:
RDCT, RCCT and RBCT. Each simulated clinical trial
consisted of four parallel groups, one placebo and three
active, with 50 subjects per group. One observation per
individual was made for all the variables, i.e. dose, con-
centration, biomarker and clinical end-point. It was
assumed that there was no measurement error in the
observations. When the biomarker was the randomiza-
tion variable there was a possibility that an individual
Emax value was lower than the targeted change in biom-
arker, i.e. the occurrence of formal data loss. In those
cases the simulated change in biomarker was set to 95%
of the individual Emax value. In the RDCT and RCCT it
was assumed that it was possible to reach the target
doses/concentrations exactly.

Simulation setup
A number of simulation setups were defined involving
different permutations of randomization schemes
(RDCT/RCCT/RBCT) and variability magnitudes in the
parameters. The default simulation setup was defined as
30% variability in CLi, 40% variability in EC50,i, 30%
variability in Emax,i and 25% variability in the baseline
value (a) in the clinical end-point model. The other
simulation setups are described in Table 1. The RBCT
design was used as the reference design, meaning that
the dose and concentration levels used in the RDCT and
RCCT were calculated from the biomarker levels con-

sidering the variability between the biomarker and dose/
concentration. To compute the corresponding doses and
concentrations in the RDCTs and RCCTs, respectively,
2500 individual biomarker values were generated for
each target level and the defined models were used to
calculate the corresponding individual concentrations
and doses necessary to reach the target biomarker levels.
The doses and concentrations used for randomization
were set to the median values of these 2500 individual
concentrations and doses for each target level. To inves-
tigate the impact of the choice of randomization levels
two ranges of biomarker levels were simulated: WIDE
and LOW with 0%, 25%, 50%, 75% and 0%, 15%, 35%,
55% change from biomarker baseline, respectively.

Data analysis
In the model-based analysis, different independent vari-
ables were used depending on the randomization
scheme. The independent variables for the RDCT were
dose, concentration and biomarker. For RCCT the inde-
pendent variables were concentration and biomarker.
For RBCT the only independent variable was the biom-
arker. Since only one observation was available for each
individual it was not possible to separately estimate dif-
ferent variability components (between subjects and
between observations within subjects) and the analysis
models did not therefore include any terms for the inter-
individual variability in the parameters.

Two models were fitted to each simulated dataset. The
first model constituted the null hypothesis (H0) in which

Table 1
Numerical values used in the simulations Fixed effects parameters

qCL qEC50 qEmax qTC50 qa qb

10 25 0.8 1/2/3/4·qEC50 -1.386 0.0224

Random effects parameters
CV(CL) % CV(EC50) % CV(Emax) % CV(TC50) % CV(a) % CV(b) %

0/20/30/50/100 40 0/30* 0/30/50/75 0/25* 0

Correlation levels
r (CL < = > EC50) r (CL < = > Emax)

-0.8 -0.2 0 0.2 0.8 -0.8 -0.2 0 0.2 0.8

The figures in bold indicate the values used in the default simulation setup. *The
parameters are used within a logit transform and the numerical values for the
standard deviation were wEmax = 1.875 and wa = 0.3465.

Randomized exposure-controlled trials

Br J Clin Pharmacol 64:3 269



the logit function for the clinical end-point did not
include a term related to drug exposure. The second
model, which constituted the alternative hypothesis
(H1), altered depending on the independent variable. In
the case where the biomarker was the independent vari-
able the H1 model was the same as the simulation model
(except for the interindividual variability term). When
the independent variable was either dose or concentra-
tion they were related to the clinical end-point through
an Emax-shaped logit function. This is because the Emax

model that was used to simulate the relationship
between concentration and biomarker.

The models were estimated in NONMEM and com-
pared using the likelihood ratio (LR) test (see below).

In the traditional analysis, a group-wise comparison
was made to investigate the differences between treat-
ment groups. Since the clinical end-point is dichoto-
mous, a c2 test for independent observations was used to
compare the responses from all treatment groups simul-
taneously, i.e. the test statistic (Q) to be used in the test
is a function of the observed frequencies and the
expected frequencies in all the groups.

The next sections describe the methods used for inves-
tigating the five potential benefits of an RCCT/RBCT.

Potential for higher statistical power In the investiga-
tion of a potential gain in statistical power, the default
simulation setup was used and the simulated trials were
analysed with model-based analysis and by group-wise
comparison.

In the model-based analysis the significance testing
of the models was made by using the LR test. The LR
test is based on the difference in objective function
value (OFV), computed by NONMEM, between the
model with (H1) and without (H0) a relationship
between the clinical end-point and the independent vari-
able. The statistical power was calculated according to
Equation 12,
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OFV df

N
n

N

=
≥ ( )( )

=
∑ Δ χ0 05

2

1
. (12)

where d.f. is degrees of freedom, i.e. the difference in
number of parameters between models and N is the total
number of simulated trials. The significance level
required to reject the null hypothesis was set to 5%. This
corresponds to differences in OFV of 3.84 and 5.99 for
1 and 2 degrees of freedom, respectively.

In the traditional analysis, the statistical power was
calculated as the sum of trials where the c2 test showed
statistical significance divided by the total number of
simulated trials (Equation 13),
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where the degrees of freedom are the number of treat-
ment groups minus one. The required significance level
was 5%.

Sensitivity to high pharmacokinetic variability When
addressing the impact of high PK variability on statisti-
cal power, the default setup was compared with one
where the variability in CLi was set to 100%. In all other
respects the simulation setup was the same as in the
default setup. The power was computed as described
above.

Sensitivity to correlation between PK and PD param-
eters By simulation a correlation (r) between PK and
biomarker response was introduced between CLi and
EC50,i or Emax,i. Five different levels of parameter corre-
lations were investigated (Table 1). The correlated data
were simulated using both the default and high variabil-
ity in CLi, i.e. 30 and 100%.

Less biased estimates of exposure–response relation-
ships In the investigation of the contribution of the
study design to a potential bias in the estimated param-
eters in the exposure–response relationships, the simu-
lations were performed without any variability in the
biomarker–clinical end0point model. This was done to
avoid any bias caused by simplification of the model due
to the necessary omission of the interindividual compo-
nent in the logit function for the clinical end-point.

The bias in the estimated parameters was calculated
according to

Bias
N
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X X
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θ
1 1 (14)

where θ̂X is the parameter estimate, qX is the true value,
N is the number of simulated datasets and the index X is
the parameter of interest.

Control of exposure in situations of toxicity issues To
investigate the impact of the randomization scheme and
data analysis strategy on the number of adverse events,
the number of subjects in the simulated trials was cali-
brated so that each trial would result in an 80% statistical
power. Five levels of interindividual variability in CL
and TC50 and four sizes of the therapeutic interval,
shown in Table 1, were simulated. The average number
of adverse events (from 1000 simulated trials) between
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an RCCT with group-wise analysis and an RDCT and
RCCT with model-based analysis with concentration
and biomarker as the independent variable was
compared.

Results
Potential for higher statistical power
The effect of the dose range, randomization scheme and
analysis strategy on the statistical power are shown in
Figure 2. The trends between the randomization
schemes were the same regardless of dose range and
analysis strategy. With respect to randomization scheme,
the statistical powers decrease in the following order:
RDCT, RCCT and RBCT. However, the main differ-
ences in statistical power appear within a randomization
scheme between different independent variables. With
the LOW dose range, in the RDCT there is approxi-
mately a 30% gain (from 52% to 81%) in statistical
power by using biomarker as the independent variable
compared with dose.

Sensitivity to high pharmacokinetic variability
The effect on the statistical power in an RDCT of the
different sizes of interindividual variability in the phar-
macokinetics is shown in Figure 3. The trends, increased
power with increased PK variability, are the same in all
cases except when using the WIDE dose range with a
traditional analysis. With the model-based analysis, the
power increased with independent variable in the order

dose, concentration and biomarker. The power with the
model-based analysis was comparable to or higher than
the group-wise analysis regardless of independent vari-
able. The statistical power for all the other randomiza-
tion scheme and independent variable options was not
affected by the variability in CL (results not shown).

Sensitivity to correlation between PK and PD parameters
The effect of the correlations between PK and PD (with
the default parameter variabilities), dose range, random-
ization scheme and analysis strategy on the statistical
power is shown in Table 2. Regardless of all other
factors, the statistical power in a model-based analysis is
robust to correlations between CL and EC50 or Emax. The
same is true in a group-wise analysis with respect to a
correlation between CL and EC50. The formal data loss
which is caused by, in particular, high correlations
between CL and Emax leads to higher sensitivity in the
statistical power with the group-wise analysis. The
results of effect of the correlations between PK and PD
when the variability in CL was 100% did not add any
new conclusions and for the sake of clarity the results are
not shown.

Less biased estimates of exposure–response relationships
Under all conditions the bias in parameter estimates was
negligible (<3%) and unaffected by study design, vari-
ability in the PK or correlation between PK and PD.

Po
w

er

Analysis variable: Dose

Range:  WIDE Range:  WIDE Range:  WIDE Range:  WIDE

RDCT RCCT RBCT

Randomization scheme

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Analysis variable: Group Analysis variable: Dose Analysis variable: PK Analysis variable: BM

Analysis variable: Group Analysis variable: PK Analysis variable: BM

Range: LOW Range: LOW Range: LOW Range: LOW

RDCT RCCT RBCT RDCT RCCT RBCT RDCT RCCT RBCT

Figure 2
The effect of randomization and independent variable on statistical power under the default simulation setup with both wide and low dose ranges.

The independent variable group indicates a traditional statistical analysis.
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Control of exposure in situations of toxicity issues
Since the statistical power is a function of randomization
scheme and analysis strategy (see above), it was neces-
sary to simulate trials of different sizes depending on
randomization and analysis conditions, to ensure a sta-
tistical power of 80%. The required number of individu-
als ranged between 140 and 460, as shown in Table 3. In

all but one case (RDCT with analysis on concentration
and 100% variability in CL) the number of individuals
was less in a model-based analysis than in a group-wise
comparison.

It is worth pointing out that the analysis strategy
affects only the number of adverse events through the
statistical power and its effect on study size. This means

Variability in CL (%)

Analysis variable: Group Analysis variable: Dose Analysis variable: PK Analysis variable: BM

Analysis variable: Group Analysis variable: Dose Analysis variable: PK Analysis variable: BM

Range: LOW Range: LOW Range: LOW Range: LOW

Range:  WIDE Range:  WIDE Range:  WIDE Range:  WIDE

Po
w

er

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

30 100 30 100 30 100 30 100

Figure 3
Effect of high variability in CL with a randomized dose-controlled trial (RDCT) design. The randomized concentration-controlled trial (RCCT) and

randomized biomarker-controlled trial (RBCT) designs are not affected by the variability in CL. The independent variable group indicates a traditional

statistical analysis.

Table 2
Statistical power when introducing different magnitudes of correlation between CL and EC50 or CL and Emax

Magnitude of correlation

RDCT RCCT RBCT
Model-based Traditional Model-based Traditional Model-based Traditional

EC50 Emax EC50 Emax EC50 Emax EC50 Emax EC50 Emax EC50 Emax

LOW dose range
-0.8 0.81 1 0.46 0.52 0.87 0.82 0.44 0.39 0.61 0.63 0.39 0.32
-0.2 0.81 0.86 0.46 0.47 0.82 0.79 0.47 0.44 0.61 0.60 0.39 0.39
0 0.85 0.85 0.50 0.50 0.80 0.80 0.46 0.46 0.61 0.61 0.39 0.39
0.2 0.86 0.83 0.51 0.45 0.81 0.78 0.46 0.44 0.61 0.60 0.39 0.40
0.8 0.94 0.80 0.46 0.22 0.86 0.81 0.46 0.38 0.61 0.61 0.39 0.33

WIDE dose range
-0.8 0.95 1 0.70 0.65 0.96 0.96 0.67 0.63 0.86 0.86 0.62 0.50
-0.2 0.95 0.96 0.70 0.71 0.95 0.95 0.71 0.71 0.86 0.85 0.62 0.62
0 0.96 0.96 0.72 0.72 0.95 0.95 0.70 0.70 0.86 0.86 0.62 0.62
0.2 0.96 0.95 0.73 0.69 0.95 0.95 0.71 0.69 0.86 0.87 0.62 0.62
0.8 0.99 0.93 0.63 0.34 0.96 0.96 0.68 0.63 0.86 0.86 0.62 0.52

The default parameter variability levels are used and the independent variable is biomarker.
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that since the model-based analysis under an RCCT
always resulted in a lower than or equal study size com-
pared with the group-wise analysis, the corresponding
number of adverse events for the RCCT was also always
lower than or equal to the adverse events found in the
group-wise analysis.

Figure 4 shows the difference in the average number
of adverse events between an RDCT with analysis on
biomarker with model-based analysis, and an RCCT
with group-wise comparison vs. the size of therapeutic
interval. Each line in Figure 4a represents one level of
variability in TC50, while each panel displays one level
of variability in CL. In Figure 4b the lines represent the
different levels of variability in CL and the panels
display the levels of variability in TC50. Generally, the
difference in number of adverse events increases with
increasing variability in CL, whereas it decreases with
increasing variability in TC50. Since the number of
adverse events is decreasing with increasing therapeutic
interval, the difference in the number of adverse events
tends towards zero as the therapeutic interval increases.

Discussion
The results consistently show that, when using a model-
based analysis approach, the more variability in the
independent variable the more information in the data,
i.e. higher statistical power. For traditional analyses it is
often assumed that to obtain an increase in statistical
power a decrease in within-group variability in the data
is needed. As seen in some of these results, the trend can
be the opposite.

One explanation of why this happens is that the biom-
arker values are allowed to be higher than the targeted
values in the RBCT and thus give rise to higher
responses. This is due to the log-normal distribution of
the biomarker values and that the RDCT/RCCT targets

the median biomarker value. The decrease in power with
the RBCT, with both methods of analysis, is also caused
by formal data loss. Formal data loss occurs when
patients randomized to a target, e.g. a certain biomarker
level, fail to reach that target. Another cause of formal
data loss is when the target, in a large fraction of the
patients, gives rise to a response that is outside the infor-
mative exposure–response range, for example at Emax.
This has been recognized as one of the disadvantages
with the RCCT [8]. Without formal data loss, the statis-
tical power will increase, as expected, with decreasing
within-group variability in a group-wise analysis (results
not shown). However, it is difficult to avoid formal data
loss in a randomized clinical trial and will probably
become a problem in any RBCT or RCCT regardless
of analysis strategy. In this study the underlying
concentration-biomarker model is an Emax model and the
formal data loss problem increases with increasing vari-
ability in the Emax parameter.

According to the present results, there is generally no
gain in statistical power by randomizing on either con-
centration or biomarker with increased variability in CL.
From a modelling point of view, the increase in variabil-
ity increases the information content in the data, i.e. the
greatest statistical power is obtained with a high vari-
ability in CL, randomization on dose and using the
biomarker as the independent variable. In the group-
wise analysis the statistical power is also dependent on
the randomization target range. When the target range is
close to baseline response (LOW in our simulations),
increased variability in CL leads to a slightly higher
statistical power in an RDCT. This is because the
increased variability in the response makes it easier to
contrast between the placebo response and the highest
exposure group. When the target range is closer to the
maximal response (WIDE in our simulations), on the

Table 3
The number of subjects needed to reach
a statistical power of 80% under
different analysis strategies and levels of
interindividual variability in CL

Interindividual
variability in CL (%)

Number of subjects to reach a statistical power of 80%
RCCTGroup RDCT(B) RDCT(C) RCCT(B) RCCT(C)

0 410 200 380 200 380
20 420 200 380 210 380
30 430 200 400 220 400
50 420 180 400 210 380

100 410 140 460 210 380

The letters in parentheses denote the independent variable in a model-based
analysis. RCCT, Randomized concentration-controlled trial; RDCT, randomized dose-
controlled trial.
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other hand, the increased variability in CL leads to
formal data loss and therefore lower statistical power.
The effect of randomization scheme and target range
with a group-wise analysis is illustrated in Figure 2.
From a practical point of view, this means that the effect
on the statistical power after a model-based analysis is
more predictable to the consequences of a high variabil-
ity in PK compared with a group-wise analysis.

One of the arguments for using the RCCT has been in
situations where there is a correlation between PK and
PD. According to the present results, a model-based
analysis is quite robust to such correlations, regardless
of whether the correlation is between CL and EC50 or CL
and Emax, and regardless of the randomization scheme
and independent variable. The only case when the sta-
tistical power is sensitive to correlations is in a group-
wise analysis when the correlation is between CL and
Emax, which can be explained by the occurrence of
formal data loss.

Another of the suggested benefits of an RCCT in a
traditional statistical analysis is that the decreased vari-

ability in the randomization variable would decrease the
parameter bias. Our results from the model-based analy-
sis show no appreciable parameter bias in any parameter
regardless of simulation setup.

In the MEDLINE search of RCCTs [9–46], half of the
number of trials were aimed towards investigating
safety/toxicity and most of the other studies stated that
the reason for controlling the concentrations was a
narrow therapeutic window or other safety reasons. This
shows that safety issues are the most common reasons to
choose an RCCT (RBCT) design. However, the simula-
tions in this study have shown that, with a moderate
variability in PK and a high variability in the toxicity
response, an RDCT combined with a model-based
analysis strategy may be a more effective means of mini-
mizing the number of adverse events in a clinical trial.
The reason is that a model-based analysis leads to a
higher statistical power and therefore allows for smaller
study populations. On the other hand, if the variability in
the toxicity response or PK is unknown, the most con-
servative approach is to use an RCCT, assuming a well-

Figure 4
The difference in number of adverse events

vs. the size of therapeutic interval

(TI = TC50/EC50) between a randomized

dose-controlled trial (RDCT) with model-

based analysis (MBA) with biomarker as

independent variable and a randomized

concentration-controlled trial (RCCT) with

group-wise analysis. The graphs are

conditioned on variability in (a) TC50 ( , 0

varCL; , 0.2 varCL; , 0.3 varCL; , 0.5

varCL; , 0 varTC50) and (b) CL ( , 0

varTC50; , 0.3 varTC50; , 0.5 varTC50;

, 0.75 varTC50; , 1 varTC50). The vari-

ability is noted as the CV.

varCL: 0 varCL: 0.2 varCL: 0.3 varCL: 0.5 varCL: 1

varTC50: 0 varTC50: 0.3 varTC50: 0.5 varTC50: 0.75 varTC50: 1

varCL: 0 varCL: 0.2 varCL: 0.3 varCL: 0.5 varCL: 1

varTC50: 0 varTC50: 0.3 varTC50: 0.5 varTC50: 0.75 varTC50: 1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
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defined model. This is especially true if the expected
adverse events are serious, in which case it is particu-
larly important to use a model-based data analysis
approach to minimize the study size and therefore the
number of side-effects.

A model-based analysis is robust to the choice of the
target exposure levels [49]. For example, if the PD
model is an Emax model, it is possible to choose dose
levels such that only a fraction of the concentrations are
above the EC50 value and still obtain a high statistical
power. This explains the small differences in statistical
power between the two target exposure ranges used in
this study. It also means that the target ranges in an
RDCT study subject to model-based analysis can be
lower than the target range for a corresponding RCCT
study with group-wise analysis. This may also influence
the incidence of adverse events.

In this study only one set of models has been tested.
However, the models used are relatively general and
therefore quite robust to deviations from assumptions. It
is thereby possible to generalize the conclusions.

When using model-based analysis, it is beneficial to
use a biomarker as the independent variable in the analy-
sis. Using a biomarker as an independent variable in a
model-based analysis should be distinguished from a
postrandomization on a biomarker in a single treatment
arm trial. In a postrandomization there is a risk of expe-
riencing bias in the estimated parameters, since, for
example, patients with high clearance will end up in a
low biomarker group. In the model-based analysis strat-
egy we propose, no new groupings are made on the basis
of the biomarker value, it is just an observation with high
information content about the clinical end-point.
However, when using an RDCT design and analysing an
exposure–response relationship there is a possibility of
experiencing parameter bias if the randomization vari-
ability is less than the interindividual variability. One
example of this is when the variability between the dose
levels (randomization variability) is less than the inter-
individual variability in the pharmacokinetics. In this
study the randomization variability was always greater
than the interindividual variability.

In conclusion, even though conditions are maximally
favourable for RBCT and RCCT (ability to target the
randomization levels exactly, having no residual error in
the concentration and biomarker observations and biom-
arker on the mechanistic pathway), the results of this
study indicate that alternative randomization schemes
have no beneficial effect on the statistical power, regard-
less of whether a model-based or group-wise analysis is
employed. A model-based analysis will result in higher
statistical power and therefore smaller group sizes com-

pared with a group-wise analysis, given the same ran-
domization scheme. In addition, this study has
demonstrated that under certain conditions, and main-
taining equal power across trial designs and analysis
options, an RDCT may well result in fewer adverse
events than an RCCT. On the other hand, randomization
on the closest predictor to the toxicity effect, RCCT or
RBCT, and model-based analysis is the most conserva-
tive approach and can be expected to yield the lowest
number of adverse events regardless of PK and toxicity
response variability. With a model-based analysis the
practical and economic gain in performing an RDCT
further outweighs the possible benefits of performing an
alternative randomization scheme.

K.E.K. was supported by a grant from AstraZeneca,
Södertälje, Sweden.
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