Skip to main content
. 2006 Jul 21;63(1):75–84. doi: 10.1111/j.1365-2125.2006.02725.x

Table 2.

Effect of covariate analysis on variance of clearance (ω2) – impact of each covariate analysis when added sequentially to the model

Individual covariate alone PPVt2 BSVR2 BOV2 PPVP2 PPVP2/PPVt2 OBJ
No covariates 0.279 0.279 0 0 0 2835.261
Allometric scaling 0.279* 0.0538 0.0862 0.139 0.498 2632.123
Age
PMA linear 0.279* 0.0449 0.0443 0.190 0.680 2515.136
exponential 0.279* 0.0443 0.0456 0.189 0.678 2519.390
first order 0.279* 0.0446 0.0450 0.189 0.679 2515.461
variable slope sigmoidal 0.279* 0.0452 0.0450 0.189 0.677 2514.865
PNA linear 0.279* 0.0734 0.0373 0.1683 0.603226 2579.162
Renal function 0.279* 0.0362 0.0137 0.230 0.821 2418.198
Ventilation scaling factor 0.279* 0.0356 0.0137 0.230 0.823 2413.725
*

Assumed from no covariate model estimate. PPVt2, Total population parameter variability estimated without covariate analysis; BSVP2, between-subject variability predictable from covariates, BSVR2, random BSV2 estimated on a parameter when covariate analysis is included; BOV2, between-occasion variability (PPVt2 = BSVP2 + BSVR2 + BOV2). The ratio of the population parameter variability predictable from covariates (PPVP2) to the total population parameter variability obtained without covariate analysis (PPVt2) (i.e. PPVP2/ PPVt2) indicates the fraction of the total variability in the parameter that is predictable from covariates. OBJ, Objective function value measuring the goodness of fit.