Table 2.
Effect of covariate analysis on variance of clearance (ω2) – impact of each covariate analysis when added sequentially to the model
Individual covariate alone | PPVt2 | BSVR2 | BOV2 | PPVP2 | PPVP2/PPVt2 | OBJ |
---|---|---|---|---|---|---|
No covariates | 0.279 | 0.279 | 0 | 0 | 0 | 2835.261 |
Allometric scaling | 0.279* | 0.0538 | 0.0862 | 0.139 | 0.498 | 2632.123 |
Age | ||||||
PMA linear | 0.279* | 0.0449 | 0.0443 | 0.190 | 0.680 | 2515.136 |
exponential | 0.279* | 0.0443 | 0.0456 | 0.189 | 0.678 | 2519.390 |
first order | 0.279* | 0.0446 | 0.0450 | 0.189 | 0.679 | 2515.461 |
variable slope sigmoidal | 0.279* | 0.0452 | 0.0450 | 0.189 | 0.677 | 2514.865 |
PNA linear | 0.279* | 0.0734 | 0.0373 | 0.1683 | 0.603226 | 2579.162 |
Renal function | 0.279* | 0.0362 | 0.0137 | 0.230 | 0.821 | 2418.198 |
Ventilation scaling factor | 0.279* | 0.0356 | 0.0137 | 0.230 | 0.823 | 2413.725 |
Assumed from no covariate model estimate. PPVt2, Total population parameter variability estimated without covariate analysis; BSVP2, between-subject variability predictable from covariates, BSVR2, random BSV2 estimated on a parameter when covariate analysis is included; BOV2, between-occasion variability (PPVt2 = BSVP2 + BSVR2 + BOV2). The ratio of the population parameter variability predictable from covariates (PPVP2) to the total population parameter variability obtained without covariate analysis (PPVt2) (i.e. PPVP2/ PPVt2) indicates the fraction of the total variability in the parameter that is predictable from covariates. OBJ, Objective function value measuring the goodness of fit.