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Aims

 

To investigate the relationship between changes in plasma deoxynucleoside concen-
trations and response and toxicity in patients treated with capecitabine.

 

Methods

 

Twenty-six patients received 2 g capecitabine twice daily orally for 2 weeks of a 3-
week cycle. Blood samples were collected on day 0 (baseline), day 8, day 15 and
day 22 of the first cycle for the determination of plasma thymidine (TdR) and
deoxyuridine (UdR) concentrations. Patients were reviewed weekly during the first
cycle, then 3-weekly for toxicity assessment. Response was assessed according to
Response Evaluation Criteria in Solid Tumours (RECIST) criteria.

 

Results

 

The plasma UdR and UdR/TdR ratios were significantly elevated (

 

P

 

 

 

<

 

 0.001) com-
pared with baseline (49.3 

 

±

 

 20.8 nmol l

 

−

 

1

 

) for the entire 3-week treatment period.
In contrast, the plasma TdR concentrations of these patients were significantly reduced
only on day 8 (

 

P

 

 

 

<

 

 0.01) compared with baseline (12.1 

 

±

 

 3.83 nmol l

 

−

 

1

 

), but
returned gradually to basal levels by day 15. There were no significant correlations
demonstrated between pretreatment or maximal post-treatment plasma nucleoside
ratio and either toxicity or response. The TSER genotype frequencies of homozygous
TSER*2, TSER*3 and heterozygous TSER*2/*3 were 7.7%, 42.3% and 50%, respec-
tively. These preliminary data also indicate no direct relationship between thymidylate
synthase (TS) genotype and plasma nucleoside levels.

 

Conclusions

 

Capecitabine mimics continuous infusion of 5-FU to achieve sustained cellular TS
inhibitory effects and suggests the antiproliferative mechanism of capectabine is at
least partly due to TS inhibition through its active metabolite FdUMP. Although plasma
UdR and TdR concentrations and the UdR/TdR ratio can provide some pharmacody-
namic indication of TS inhibition, they are unlikely to predict therapeutic response or
toxicity accurately following capecitabine treatment in cancer patients.

 

Introduction

 

Two main intracellular mechanisms of action have been
suggested for the cytotoxic effects of fluoropyrimidines
such as 5-FU and capecitabine (N

 

4

 

-pentyloxycarbonyl-
5

 

′

 

-deoxy-5-fluorocytidine): inhibition of thymidylate

synthase (TS) and hence of pyrimidine 

 

de novo

 

 synthe-
sis; and incorporation of fraudulent bases into RNA and
DNA. Protracted infusional regimens of 5-FU provide
superior activity with reduced toxicity compared with
bolus schedules and have been hypothesized to favour
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TS inhibition as their principal cytotoxic mechanism [1,
2]. Inhibition of TS should provide selectivity to DNA
synthesis and limit toxicities caused by other mecha-
nisms. Infusional regimens are difficult to administer, as
they require central venous catheters and the use of
infusion devices. Orally bioavailable 5-FU prodrugs
have been developed to mimic infusional regimens.
Capecitabine is a novel fluoropyrimidine carbamate
designed to generate 5-FU preferentially in tumour tis-
sues [3]. The final stage of its enzymatic conversion is
mediated by thymidine phosphorylase (TP), which is
upregulated in tumour compared with normal tissues.
This is proposed to enhance drug activation in tumour
cells and reduce systemic toxicity [4, 5]. Preclinical
studies have shown that capecitabine is more effective
over a wider dose range and has a broader spectrum of
antitumour activity than either 5-FU or another 5-FU
prodrug, UFT, against human cancer xenografts [6].
Results from two large Phase III trials have shown that
capecitabine produced higher response rates and equiv-
alent survival to an intravenous bolus schedule of 5-FU/
LV (Mayo Clinic regimen) as first-line treatment for
metastatic colorectal cancer (CRC) [7, 8] and provided
superior safety and tolerability [9].

Inhibition of TS in tissues leads to accumulation of
deoxyuridine monophosphate (dUMP) with subsequent
efflux of deoxyuridine (UdR) into the circulation
(Figure 1). Recent evidence suggests that increased
plasma levels of UdR could be an important pharmaco-
dynamic marker of antifolate TS inhibitors (TSI) such
as AG377 [10–13], ZD 9331 [14–17] and ZD1694 [18,
19] and might enable rational dose adjustment in
patients. In one study, plasma UdR was as used as a
pharmacodynamic (PD) marker with 5-FU treatment
(bolus and infusion) in CRC patients. The improved
therapeutic response with the infusional regimen was

associated with prolonged elevation of plasma UdR,
suggesting more prolonged inhibition of TS with this
schedule [20].

Inhibition of TS and hence 

 

de novo

 

 pyrimidine syn-
thesis may be offset by salvage pathways. However, the
clinical relevance of thymidine (TdR) salvage is
unknown and much less attention has been given to this
alternative pathway in cancer chemotherapy. Early 

 

in
vitro

 

 and animal studies have shown that inhibition of
TdR salvage potentiates the cytotoxicity of TSI. Coad-
ministration of exogenous TdR effectively reverses the
cytotoxic effects of TSI [21–26]. Therefore, significant
interpatient differences in pretreatment plasma TdR
concentrations could lead to differences in response and
toxicity after treatment with TS inhibitors. Also, track-
ing the extent and duration of the fall in TdR after
treatment with a TSI may help identify patients more
likely to respond to and/or experience undue toxicity
following treatment and could help to improve drug
scheduling. Consequently, like UdR, plasma TdR could
also be a useful surrogate PD marker of TS inhibition.
The measurement of plasma TdR concentration has
been difficult and to date no clinical study has success-
fully been carried out to assess the response of plasma
TdR to treatment with TSI.

There is also emerging evidence that genetic poly-
morphisms of the TS gene (18p11.32) could predict
toxicity and tumour response to 5-FU-based therapies in
patients with metastatic CRC. In particular, a polymor-
phism of the variable number of tandem repeat (VNTR)
in the 5

 

′

 

-promoter/enhancer region (TSER) of the gene,
mainly TSER*2 and TSER*3, has been shown to mod-
ulate TS mRNA expression and translational efficiency
[27–29]. Several clinical studies have demonstrated that
the presence of this 28-bp tandem repeat polymorphism
was able to predict the clinical response to 5-FU-based
chemotherapy [30–34]. Recently, a common G

 

→

 

C sin-
gle nucleotide polymorphism (SNP) has also been iden-
tified in the 12th nucleotide of the second repeat of
TSER*3 allele and has been related to the TS transcrip-
tional activation [35]. Observations from Kawakami and
Watanabe showed that coevaluation of both polymor-
phic loci may provide a more effective prediction of the
clinical outcome of 5-FU-based chemotherapy [36].

On the basis of these observations, the major objec-
tives of the present study were to investigate the
relationship between pretreatment (baseline) and post-
treatment plasma deoxynucleoside concentrations and
response and toxicity in metastatic CRC patients treated
with capecitabine twice daily for 2 weeks of a 3-week
cycle. In addition, it was planned to undertake a prelim-
inary exploration of the relationship between polymor-

 

Figure 1 
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phisms of the TSER of the TS gene and plasma
nucleosides levels.

 

Patients and methods

 

All patients included in this study were recruited from
Sydney Cancer Centre at Royal Prince Alfred and Con-
cord Hospitals. Eligibility criteria for patient recruitment
included histological confirmation of advanced CRC,
less than two prior other chemotherapy regimens, per-
formance status 0–2 and a life expectancy of at least
12 weeks. Exclusion criteria were uncontrolled cerebral
metastases, inability to be changed to low-molecular-
weight heparins if on warfarin and the presence of severe
comorbidities or pregnancy/lactation. The patients
received a fixed dose of 2 g capecitabine twice daily
orally for 2 weeks of a 3-week cycle. They were reviewed
weekly during first cycle, then 3-weekly for toxicity
assessment. Response was assessed every two cycles
according to Response Evaluation Criteria in Solid
Tumours (RECIST) criteria [37] and toxicities were
graded according to the National Cancer Institute Com-
mon Toxicity Criteria (CTC) v2.0 [38]. The human ethics
committee of the Central Sydney Area Health Service
and the University of Sydney approved these studies.

 

Sample preparation

 

Blood samples were collected from the patients on days
0 (baseline), 8, 15 and 22 of the first cycle for the
determination of plasma TdR and UdR concentrations.
Blood samples were also obtained from six normal vol-
unteers in the same period of time. Whole blood was
collected into a prechilled heparinized blood tube and
placed on ice immediately. Plasma was rapidly sepa-
rated from cellular components by centrifuging at
3300 

 

g

 

 at 4 

 

°

 

C for 15 min. Plasma was then stored at

 

−

 

80 

 

°

 

C and thawed just prior to analysis. Additional
whole blood was also collected for TSER genotyping.

 

Sample analysis

 

Plasma UdR and TdR levels were analysed using a
validated LC-MS method which we have previously
reported [39, 40]. Briefly, plasma samples were extracted
with strong anion-exchange solid-phase extraction
(SAX-SPE) columns followed by high-performance liq-
uid chromatography separation and atmospheric pres-
sure chemical ionization mass spectrometry detection
(APCI-MS) in a selected-ion monitoring (SIM) mode.
Values for nucleosides were expressed as a percentage
of pretreatment baseline levels and ratios of UdR/TdR.
For TSER genotyping, genomic DNA was extracted
from whole blood using the Qiagen DNeasy extraction
kit according to the manufacturer’s instructions

(QIAGEN, Clifton Hill, Australia). The TSER VNTR
polymorphism was analysed by polymerase chain reac-
tion (PCR) and restriction fragment length polymor-
phism (RFLP) analysis as previously described [41]. The
forward primer was 5

 

′

 

-GTG GCT CCT GCG TTT CCC-
3

 

′

 

 and the reverse 5

 

′

 

-GCT CCG AGC CGG CCA CAG
GCA TGG CGG-3

 

′

 

. Analysis of the G

 

→

 

C (12th nucle-
otide/TSER*3) SNP in the second repeat was performed
by digesting PCR products with 

 

Hae

 

III restriction
enzyme as previously reported [35].

 

Statistical analysis

 

The percentage values for UdR and TdR at each time
point are expressed as mean 

 

±

 

 SD. Statistical analysis
of data was achieved by Student’s 

 

t

 

-tests and regression
correlation (GraphPad Prism program, San Diego, CA,
USA). Significant differences between response in
patients and plasma nucleoside levels were assessed by
unpaired 

 

t

 

-test. One-way 

 

ANOVA

 

 test was used to assess
significant differences between plasma nucleoside levels
and TSER genotyping. The relationship between toxic-
ity profiles and plasma nucleoside levels were also car-
ried out by one-way 

 

ANOVA

 

 test. Hardy–Weinberg
equilibrium analysis was used to assess the allele fre-
quency. 

 

P

 

-values 

 

≤

 

0.05 were considered to denote sta-
tistical significance.

 

Results

 

Full deoxynucleoside analyses were performed in 26
patients. The plasma UdR and TdR concentrations in
patients treated with capecitabine are shown in Figure 2.

 

Figure 2 

 

Plasma deoxyuridine (UdR) and thymidine (TdR) levels in cancer patients 

following capecitabine 2 g twice daily for 14 days (

 

n

 

 

 

=

 

 26). Data are mean 

 

±

 

 SD. †

 

P 

 

<

 

 0.001 and *

 

P 

 

<

 

 0.01 compared with baseline value (paired 

 

t

 

-

test)
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The mean pretreatment plasma UdR and TdR concen-
trations were 49.3 

 

±

 

 20.8 nmol l

 

−

 

1

 

 and 12.1 

 

±

 

 3.83 nmol
l

 

−

 

1

 

, respectively. There was no correlation between
plasma TdR and UdR concentrations in pretreatment
(

 

R

 

2

 

 

 

=

 

 0.0543) or post-treatment (

 

R

 

2

 

 

 

=

 

 0.0093) samples.
The plasma UdR levels of treated patients were signifi-
cantly increased on day 8 (294 

 

±

 

 125%, 

 

P

 

 

 

<

 

 0.001),
day 15 (249 

 

±

 

 105%, 

 

P

 

 

 

<

 

 0.001) and day 22 (147 

 

±

 

61%,  

 

P

 

 

 

<

 

 0.001)  compared  with  baseline  (Figure 2).
In contrast, the plasma TdR concentrations of these
patients were significantly reduced only on day 8
(85.7 

 

±

 

 42.4%, 

 

P

 

 

 

<

 

 0.01) compared with baseline, but
returned gradually to basal levels by days 15
(105 

 

±

 

 60.7%) and 22 (108 

 

±

 

 33.3%). As a result, per-
centage ratios of plasma UdR/TdR concentrations were
all elevated significantly during the 3-week cycle of
treatment (Figure 3). The maximum peak ratio was on
day 8 (fourfold, 

 

P

 

 

 

<

 

 0.001). The overall pattern of per-
centage elevation from UdR/TdR ratios was similar to
plasma UdR alone, on day 8 (407 

 

±

 

 269%, 

 

P

 

 

 

<

 

 0.001),
day 15 (315 

 

±

 

 196%, 

 

P

 

 

 

<

 

 0.001) and day 22 (152 

 

±

 

91%, 

 

P

 

 

 

< 0.001). There were no significant differences
in the basal plasma UdR (56.2 ± 18.2 and 49.3 ±
20.8 nmol l−1) and TdR (9.98 ± 3.85 and 12.1 ±
3.83 nmol l−1) concentrations in normal volunteers and
cancer patients, respectively.

Tumour response (complete response (CR) + partial
response (PR)) was observed in 23% (6/26) of patients.
The most common nonhaematological toxicities were
nausea (8/26), hand–foot syndrome (4/26), stomatitis (3/
26) and vomiting (2/26). Toxicity was generally mild
with grade I and grade II toxicities seen in 8/26 and 9/

26 patients, respectively. There were no grade III or IV
toxicities observed. There were no significant differ-
ences between baseline or maximum increased post-
treatment plasma nucleoside ratios and toxicity (base-
line, F = 0.40, P < 0.67; post-treatment, F = 0.38,
P < 0.69) or response (pretreatment t = 0.29, P < 0.77;
post-treatment, t = 0.97, P < 0.34) as shown in Figure 4.

The PCR-RFLP analyses of the VNTR and G→C
SNP of 12th nucleotide of the second repeat of TSER*3
allele are shown in Figure 5. Individuals homozygous
for the presence of the TSER*2 or TSER*3 were char-
acterized by a single fragment of 220 or 250 bp, respec-
tively. For the SNP (12th nucleotide/TSER*3), HaeIII
digestion produced 66- and 47-bp bands for the *3G
allele and 94- and 47-bp bands for the *3C allele. The
genotype and allele frequencies of TSER polymorphism
in the study patients are shown in Table 1. The TSER
genotype frequencies of TSER*2/TSER*2, TSER*2/
TSER*3 and TSER*3/TSER*3 were 7.7%, 50% and
42.3%, respectively, which are similar to those previ-
ously reported  in  White  populations  [41,  42]. The
SNP allele frequencies for TSER*2, TSER*3G and
TSER*3C were 32.7%, 44.2% and 23.1%, respectively.
There were no significant differences in either pretreat-
ment or maximum post-treatment plasma nucleoside
ratios as a function of TSER genotyping for VNTR
(pretreatment, F = 0.58, P < 0.57; post-treatment, F =
0.04,  P < 0.96).  Statistical  analysis  was  not  carried
out on TSER SNP because of inadequate sample
numbers.

Figure 3 
Percentage ratio changes of plasma deoxyuridine (UdR)/thymidine (TdR) 

during the course of capecitabine treatment (n = 26). Data are mean ± 

SD. †P < 0.001 when compared with baseline value (paired t-test)
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Discussion
The present findings are the first to describe the meta-
bolic relationship of endogenous nucleoside concentra-
tion during capecitabine treatment in CRC patients. The
plasma levels of UdR in CRC patients treated with 2 g
capecitabine twice daily orally for 2 weeks of a 3-week

cycle were significantly elevated for the entire 3-week
treatment period. These results suggest that TS is inhib-
ited during the course of capecitabine treatment and
support the use of plasma UdR as a surrogate marker of
TS inhibition [14, 16, 17, 20, 43, 44]. The data also
support the view that the antiproliferative mechanism of
capecitabine is at least partly due to the inhibitory
effects on TS of its active metabolite FdUMP and that
inhibition of TS by the standard regimen of capecitabine
is durable. This may help to explain its superior
response rates compared with standard intravenous 5-
FU/LV (Mayo Clinic regimen) as first-line treatment for
metastatic CRC [7–9]. Early preclinical studies have
demonstrated that the duration of TS inhibition was
significantly longer following treatment with FUdR than
with 5-FU and resulted in improved antitumour effect
without increased toxicity [45]. This suggests that, in
order to improve the therapeutic efficacy of TS inhibi-
tors, it is necessary to provide sustained inhibition.
Therefore, the duration of TS inhibition, as demon-
strated by sustained elevation of plasma UdR, may be
an important determinant of the activity of TSI. This
finding has recently been supported by clinical studies
of different schedules of 5-FU regimens in cancer
patients. Ford and colleagues reported that plasma UdR
concentrations were elevated for <8 days in CRC
patients receiving 5-FU 425 mg m−2 day−1 with leucov-
orin (LV) 20 mg m−2 day−1 (Mayo Clinic regimen) as a
daily bolus dose for the first 5 days of a 4-week cycle
[20]. Although TS inhibition was more prolonged with
a continuous infusion of 5-FU 300 mg m−2 day−1 for
12 weeks, there was less toxicity than with the Mayo
Clinic regimen. This suggests that part of the toxicity
may not be due to TS inhibition but possibly result from
fraudulent base incorporation. Therefore, on the basis of
these previous observations, the present findings provide
additional evidence that the improved therapeutic index
of capecitabine might result from prolonged TS inhibi-
tion. These data also suggest that capecitabine mimics

Table 1
Genotype frequency of TSER polymorphism in colorectal cancer patients (number within parentheses indicates percentage)

TSER*2/*2
*2/*2

TSER*2/*3 TSER*3/*3
*2*/3G *2/*3C *3G/*3G *3G/*3C *3C/*3C

Male 0 5 (31.2) 3(18.8) 4(25) 3 (18.8) 1 (6.3)
Female 2 (20) 3 (30) 2 (20) 1 (10) 2 (20) 0
Total 2 (7.7) 8 (30.8) 5 (19.2) 5 (19.2) 5 (19.2) 1 (3.8)

7.7% 50% 42.3%

Figure 5 
Polymerase chain reaction–restriction fragment length polymorphism 
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continuous infusion of 5-FU to achieve sustained cellu-
lar TS inhibitory effects.

The TS inhibitory effects on de novo thymidine triph-
osphate (TTP) synthesis might be expected to result in
the activation of the TdR salvage pathway by phospho-
rylating extracellular TdR to make thymidine monophos-
phate (TMP) available for DNA synthesis (Figure 1).
However, the importance of TdR salvage in humans is
unknown. Early reports indicated that plasma levels of
TdR in normal subjects and advanced solid tumour
patients exhibited marked variation (>20-fold) in the
range of 50–900 nmol l−1 [46–51]. However, using
sophisticated mass spectrometry techniques, we have
shown no significant difference in basal plasma TdR
concentrations among normal subjects and CRC cancer
patients [39]. Interestingly, human plasma TdR levels
are much lower than previously indicated, in the range
of 7–15 nmol l−1. This is in marked contrast to the 100-
fold and 300-fold higher concentrations observed in rats
and mice, respectively [39]. The present study has shown
that TdR concentrations fall modestly after treatment
with capecitabine to a maximum of 86% of baseline on
day 8, but return to basal concentrations on day 15. These
data concur with previous studies in mice, which dem-
onstrated a 50% reduction of plasma TdR 24 h after five
daily injections of RTX (5 mg kg −1 × 5 days) [18]. The
small number of patients in the current study precludes
any major conclusions being drawn from statistical anal-
ysis of the data. In particular, the incidences of tumour
response and severe toxicity with single agent capecit-
abine were relatively low and did not appear correlated
with either plasma TdR concentration or the UdR/TdR
ratio. Also, the depletion of endogenous plasma TdR in
the first week did not correlate with elevations in plasma
UdR concentration. The unsustained reduction of plasma
TdR observed in this study is contrary to what might
have been expected from the prolonged elevation in
plasma UdR concentration. Nevertheless, it may indicate
differences in the relative contributions of de novo syn-
thesis and salvage synthesis in different tissue pyrimidine
nucleotide pools [52]. The large differences in the basal
plasma TdR observed between man and rodent [39]
indicate that rodent tumour models (or human tumour
xenografts) might not be suitable models in which to
evaluate antitumour activity or host toxicity of anticancer
drugs designed to inhibit the de novo synthesis of TS
prior to clinical studies. Furthermore, the TSER VNTR
genotype, which has previously been proposed as a pre-
dictor for TS activity [30–33], was not significantly asso-
ciated with either baseline or post-treatment levels of
either nucleoside.

In summary, we have shown PD changes consistent

with TS inhibition following capecitabine. Although
plasma UdR and TdR concentrations and the UdR/TdR
ratio can provide some pharmacodynamic indication of
TS inhibition, they are unlikely to predict therapeutic
response or toxicity accurately of capecitabine treatment
in patients. Capecitabine mimics continuous infusion of
5-FU to achieve sustained cellular TS inhibitory effects
and suggests the antiproliferative mechanism of capecit-
abine is at least partly due to TS inhibition through its
active metabolite FdUMP. The superior therapeutic
index of capecitabine compared with intravenous regi-
mens of 5-FU/LV might result from prolonged tumoral
TS inhibition during the course of treatment, as much
as the more selective inhibition mediated by differential
levels of thymidine phosphorylase between tumour and
normal tissues. The data described in this study may
assist in the evaluation and dose scheduling of TS
inhibitors.
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