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Abstract

Information on the life span of organisms in the field is essential for elucidating the evolution of life
span and aging. We present mark-recapture data (>30 000 marked individuals, >4000 recaptured at
least once) on forty-seven species of fruit-feeding butterflies in a tropical forest in Uganda. The data
reveal adult life spans in the field for several species that are significantly longer than previously
recorded in Lepidoptera (butterflies and moths). Longevity records for species of which more than
100 individuals were recaptured ranged from 67 (Bicyclus auricruda) to 293 days (Euphaedra
medon). In contrast to the majority of Lepidoptera which are short-lived, these all show exceptionally
long life spans, and may thus help to better identify factors that affect aging, particularly when
combined with information on temporal patterns in reproduction, strategies to avoid predation, and
nutritional ecology. These key traits are readily measurable in butterflies and thus studies on fruit-
feeding butterflies have much potential for gaining insight into the evolution of life span and aging,
especially given the tradition of field-research on butterflies.
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INTRODUCTION

For elucidating the evolution of life span and aging, information on the natural life span of
organisms in wild populations is essential. Field studies generate important new perspectives
and ideas because in the field one can determine what sorts of conditions are actually
experienced, and hence what sorts of selection pressures might be relevant. Moreover, novel
mechanisms/strategies may be discovered that are not apparent in laboratory populations
(Bronikowski and Promislow, 2005). In addition, the species diversity that field biologists deal
with can be used for comparative studies that test the generality of results obtained using model
organisms. Because the vast majority of aging studies are based exclusively on controlled
experiments in the laboratory on a small number of model organisms, there is a need for studies
of free-living animals to provide context, and assess the generality of these results (Austad,
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1993, Tatar et al., 1997). Because it is life span that evolves and aging is one of the factors
affecting mortality, measuring life span in natural populations may help determining the forces
that shape life span and aging. Life span in the field will also affect fluctuations in population
density and observed species diversity, and information on life span is, therefore, important
for understanding population dynamics and population-genetical processes, as well as for the
interpretation of monitoring data.

Aging has been expected to have negligible impact on organisms in their natural environment
(Williams, 1957) and its natural history is poorly known. However, it has now been recognized
as an intrinsic feature of wild populations (Kirkwood & Austad, 2000). African explorer Dr.
David Livingstone (2001) noted in 1860 that “sometimes wild animals suffer a great deal from
disease, and wearily drag on a miserable existence before relieved of it by a ravenous beast”,
after shooting an old pallah (Antilope melampus) that “was stone blind, had several tumors and
abroken leg, which showed no symptoms of ever having begun to heal”. Ricklefs (2000) argued
that in birds, the component of mortality related to aging does not differ significantly between
birds in the wild and in captivity. Mark-recaptures studies showed age-specific acceleration of
mortality in male guppies (Bryant and Reznick, 2004) and ungulates (Gaillard et al., 2004,
Loison et al., 1999). Senescence was also found in a demographic analyses of wild baboon
populations (Bronikowski et al. 2002). Especially for invertebrates however, the prevalence
of aging in the wild is not well known. It may well be an underestimated phenomenon,
especially because the stage of frailty can be shortened by predation, but the ultimate cause of
the mortality remains senescence.

Among adult insects, life spans differ by 5000 fold (one day for mayflies, twenty years for ant
queens). Lepidoptera are among the short-lived orders and show life spans that can differ by
50 fold (Carey, 2001, Jervis et al., 2005). A host of data on butterflies has been generated by
the work of aficionados and butterflies are an important insect field model in the study of insect
life history evolution. Interspecies comparisons in butterflies offer opportunities to exploit the
variety of strategies used to avoid predation, and variation in adult nutritional ecology, both
likely important for life span evolution. Their often bright and intricate color patterns
contributed much to butterfly popularity, and their function, often interpreted in the context of
predator avoidance, has been the focus of much research (e.g. (Hill and Vaca, 2004, Kassarov,
2003, Pinheiro, 1996, Pinheiro, 2003, Windig et al., 1994). Nutritional ecology has also been
a focus of butterfly research (e.g. (Boggs, 1987, Boggs and Freeman, 2005).

While most butterfly species are primarily nectar feeders, in tropical forests many species feed
on fruit (DeVries, 1987, Larsen, 1991, Norris, 1936). These fruit-feeding butterflies range from
small satyrines to large and powerful charaxines. They are suitable for studies of life span
because they can be followed individually in the field through mark-recapture studies using
fruit-baited traps as they generally do not recognize the traps as food sources after release, thus
not biasing sampling (Hughes et al., 1998). In addition, most species can be kept in captivity
allowing a combination of laboratory and field work.

Longevity is a complex trait. Even in the absence of predation, longevity is dependent on sex
and environment (Carey and Liedo, 1995, Promislow, 2003) and there is extensive variation
in life span among individuals even in genetically identical organisms reared in a constant
environment (Kirkwood et al., 2005). Determining patterns of age specific mortality provides
the most insight into aging and puts single measures of longevity into perspective (Horiuchi,
2002). Such studies, however, require large numbers of individuals of which both begin and
end time of their life span is known or precise age measures are available (Promislow et al.,
1999). More simple measures of longevity include mean life expectancy and longevity records.
The latter do not represent so-called species specific maximal ages (Carey and Judge, 2000),
but represent an estimate of the age that can be obtained in a benign environment where
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senescence can be expected to be the cause of death. However, as is also demonstrated and
discussed in this paper, longevity records are sensitive to sample size.

Here we present life span and longevity records derived from a mark-recapture data set from
a moderately diverse community of fruit-feeding butterflies in Uganda (Molleman et al.,
2006). Because of the exceptionally high individual abundances and the five year duration of
the study, this probably represents one of the largest mark-recapture data sets of multiple
species in a single habitat. From these data we extract general principles and compare with
captive life spans of the same species when available.

MATERIAL AND METHODS

Field site

This study was conducted from April 2000 to July 2005 at Makerere University Biological
Field Station in Kibale Forest National Park, Western Uganda (0° 35' N 30° 20' E). The field
station borders selectively logged moist evergreen forest at an altitude of around 1500m and
is therefore classified as a transition towards montane forest. The mean maximum temperature
is 23.8 °C and the mean annual rainfall is 1749 mm and is bimodal in distribution but with only
mild seasonality (Chapman et al., 2005).

Mark-recapture

Butterflies were marked on the ventral side of the forewing with an individual number of up
to 4 digits, using a marking pen. We included only species that could be identified with certainty
in the field (excluding for example the Bicyclus smithi, golo, istaris-species group) and
excluded some further species that were hard to mark and closely related to other species
included (e.g. Bicyclus buea) or were migratory (e.g. Sevenia species). For every capture, we
noted; number, species, sex (when easy to determine in the field), a rough index of wing-wear,
location, and date.

In the main marking effort, the majority of butterflies were marked between March 2000 and
December 2003 when once every 4 weeks traps at 22 locations in an area of one kilometer
square of forest were baited and butterflies were marked from these traps for four consecutive
days. Additional butterflies were marked at other times from the same traps in 2000-2003.
Moreover, between January 2004 and July 2005 a more limited subset of common
representative species and all Charaxinae was marked once every 4 weeks from these 22
locations, with each an understory and a canopy trap, for four consecutive days, and these
species were also marked in nearby (<2 km) areas.

Recaptures and resightings were noted whenever they occurred during various experiments
and surveys in the area (Molleman et al., 2005a, Molleman et al., 2005b, Molleman et al.,
2005d). However, the bulk of recaptures were recorded during the main marking effort and
during the butterfly monitoring that followed a similar schedule, but started two weeks
afterwards and had an understory and a canopy trap at each of the 22 locations (Molleman, et
al., 2006). Thus, marked butterflies could be recaptured on the days within the same week, 2
weeks or 4 weeks et cetera later in 2000-2003, and on days within the same week or 4 weeks
later in 2004-2005.

For all recapture events, the number of days between marking and recapturing was calculated.
Subsequently, for each individual the longest time between marking and recapturing was taken
as minimum life span and these times were categorized in 30-day periods as summarized in
table 1. The longest minimum life span of an individual of a particular species was taken as
the longevity record. When possible, the sexes were treated separately. We have put the
maximum time between marking and recapturing into the perspective of the distribution of
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time-spans between marking and recapturing to identify outliers, and the data were corrected
for likely erroneous observations.

Life span in captivity

RESULTS

This experiment focused on species that were expected to do well in a large cage. Thus, species
did not include small butterflies or those that were flying continuously against the mesh and
had life spans in captivity of less than three days. Butterflies that had no or very little wing-
damage were collected from the forest to represent young individuals and kept in a cage of 3
x 5 x 2 meters under a tin roof and with a concrete floor in a clearing close to the forest edge.
They were provided with mashed banana on dishes on the ground and in containers hanging
in the corner, where most butterflies spend the majority of their time. Water was sprayed on
the floor daily to prevent butterflies from desiccating. All butterflies were marked individually
and dead butterflies were collected daily. In addition, Charaxes fulvescens females collected
from the forest were kept individually in small cylindrical cages (25 x 35 cm), with a diet of
sugar water (10%), banana, or sugar water with amino acids, and host-plants as an egg-laying
substrate. Deaths were recorded al least thrice a week.

Mark-recapture

Meaningful data for all species are summarized in table 1. Over 30 000 butterflies were marked,
divided over 62 species. For 35 species, more than 100 individuals were marked, while for 11
species more than 1000 butterflies were marked (fig. 1 a). 4793 individuals were recaptured
or resighted at least once (fig. 1 b). Recapture rates for species ranged from 0 to 33%, averaging
11.6 % of the marked individuals (fig. 1 c). The sexes often showed markedly different
recapture probabilities (e.g.: Euphaedra zaddachi female 9.3%, male 40.9 %), with males
usually having higher recapture rates (t-test for paired samples for species in which for both
sexes at least 10 individuals were recaptured N=21 species, t=—2.66, p=0.0075; exceptions
were Bebearia sophus, E. eusemoides, Bicyclus mollitia and Gnophodes betsimena).

The maximum recorded longevity of a species was a function of the number of individuals of
that species recaptured (fig 2 a) and the percentage recaptured (fig 2 b; GLM: N= 46 species
R2= 71%, number of recaptured individuals F= 58.9, p<0.001, proportion recaptured F=6.3,
p=0.016). The latter variable can be considered a proxy for dispersal or probability of moving
outside the trapping site: most recaptures took place within a few days, and 80% within 30
days after marking, so most individuals that were not recaptured within two weeks are more
likely to have moved from the study area than to have died, as most life span records exceeded
60 days. Maximum recorded life spans for species of which more than 100 individuals were
recaptured ranged from 67 (B. auricruda) to 293 days (E. medon). Individuals of twelve species
lived longer than five months, and of five species longer than seven months.

Life span in captivity

We collected 640 butterflies with little or no wing damage from the forest representing 31
species and kept them in a large cage. The maximum life span ranged from 7 to 96 days, the
mean being 39 days (table 2). While the species with the longest-lived individual was
represented by only a single individual (B. golo, 96 days), maximum life span per species per
sex was positively correlated with sample size (Fig. 3; Regression: F=13.5, p=0.0007), while
the median life span per species was not (Regression: F=0.48, p=0.49). The survival curves of
E. alacris and C. fulvescens showed high mortality shortly after capture, followed by a steady
decline and then few individuals surviving exceptionally well. Twenty out of twenty-six
species had a lower maximum life span in captivity than in the mark-recapture study in the
wild. Charaxes fulvescens females kept individually in small cages lived about 43 days on
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average and the maximum was 200 days (N=212). The mark-recapture data showed that this
species can reach that age in the field (longevity record is 230 days), while in the large cage,
the maximum life span was only 82 days (N=142).

DISCUSSION

We have presented adult life span data from a large mark-recapture study covering 62 species
of fruit-feeding butterflies collected over a five year period in a tropical forest. Examples of
long life spans were recorded for many species even though mark-recapture studies are
associated with many caveats including loss of individuals due to dispersal, and part of the
actual life span being before marking and after recapturing. For some species we were also
able to compare data for individuals held in captivity.

To provide accurate estimates of mean life expectancy, mark-recapture data have to take into
account dispersal rates and chances of capture in the absence of mortality and dispersal.
Longevity records are a problematic demographic concept because it is dependent on sample
size and environment as is also demonstrated by our data (fig 2 and 3.) and it is difficult to
determine some form of confidence interval for it. With large enough sample sizes, intensive
trapping and reasonably limited dispersal as in our field study, longevity records can be
expected to be less sensitive to these caveats.

We found remarkable differences among the sexes within species in numbers captured,
percentage recaptured, and longevity records. These differences may be explained by
differences in movement patterns, and the number of feeding bouts, as well as genuine
differences in life span. Fermon (2003) showed that among fruit-feeding butterflies in a tropical
forest in Benin, the sexes differ in movement patterns: in all surveyed species of Nymphalinae
and Satyrinae the males tended to move shorter distances, while in species of Charaxinae no
trend or the opposite was found. Longer flights and time intervals between captures as well as
lower numbers captured might also indicate that females spend less time foraging than males.

Insight into differences between life span patterns in captive environments and in the wild can
provide insight into the proportion of mortality that is due to aging in the wild (Ricklefs,
2000). Captive life spans in our study were long for several species compared to species
reported on in the literature (Jervis, et al., 2005), but tended to be shorter than those obtained
from our mark-recapture data (20 out of 26 species). This is striking because it concentrated
on fresh looking individuals and exact date of death was noted rather than day last seen. In
addition, life span of C. fulvescens was longer when kept individually in small caged than in
the large cage. The pattern of mortality in the large cage for the two most intensively sampled
species indicates that mortality there was not age related, but rather represented extrinsic
conditions: the cage being a harsh environment. Therefore, it appears that captive conditions
can modify butterfly longevity to a large extent and usually towards shorter life spans than are
possible in the wild. That life spans in the field can be at least as long as in captivity indicates
that butterflies live long enough in the wild to senesce. However, more extensive data are
needed to confirm this because samples sizes are generally lower for the captivity experiments,
and longevity measurements strongly depend on the number of observations (figure 2).

Heliconius butterflies are known for their exceptional long reproductively active life spans
(Boggs, 1979, Erhardt and Baker, 1990, Jervis, et al., 2005). However, the longevity records
reported here were up to two-fold higher than those reported for Heliconius species (i.e.:
Heliconius charitonius >120 days). That our data show life spans that are exceptionally long
compared to the literature suggests that for butterflies, fruit-feeding in tropical forests is
associated with selection pressures that favor the evolution of long life spans. However,
systematic data on life spans of butterflies that do not feed as adults on fruit from the same
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tropical forests, as well as for species from other tropical biotopes, are scarce. Fruit-feeding
butterflies in neo-tropical forests can have similarly long life spans (P. J. DeVries unpublished
data). Bicyclus butterflies in more open and seasonal forests in Malawi can survive for many
months in the field during the dry season in reproductive diapause (Brakefield and Reitsma,
1991), while wet-season forms of B. anynana from that location can survive up to three months
in the laboratory (Brakefield and Kesbeke, 1995). These life spans are within the range of those
found among Bicyclus at our study site in Uganda that has a much less seasonal environment.
However, Swedish satyrine butterflies living in forest habitats were shown to live shorter than
species from open habitats (Karlsson and Wiklund, 2005), and it would be interesting to know
if this trend is consistent among butterfly taxa and climates, and what selection pressures could
be responsible.

Insight into seasonal reproduction and adult diapause is important for the understanding of
aging (Tatar and Yin, 2001). At least some of the remarkably long-lived butterflies in our study
also appear to be reproductively active throughout their lives (Molleman, et al., 2005b), and
therefore their life spans are not extended due to any adult diapause or reproductive dormancy.
However, this is not the case for Gnophodes chelys of which the egg-laying of this species has
been monitored since 2001. The adults appear unmated throughout the dry season (Molleman,
et al., 2005b), and almost all eggs are laid within a four-week period at the beginning of the
next rainy season (there are 2 rainy seasons per year, F. Molleman, M. van Dijk, P. Boons
unpublished data).

Some of the fore-mentioned Heliconius butterflies are also tropical forest dwellers and their
long life spans have been linked to their ability to use nutrients derived from pollen for egg-
production (Dunlap-Pianka et al., 1977, Gilbert, 1972, O'Brien et al., 2003). Feeding ecology
may also play a similar role in life span evolution in fruit-feeding butterflies. Fruits can be
enriched in amino acids compared to nectar (Molleman, et al., 2005d), but see reference to fruit
nutrient content in Fischer et al. (2004). Although earlier studies failed to provide evidence for
arole of amino acids in the adult diet in the fruit-feeding butterfly B. anynana (Bauerfeind and
Fischer, 2005, Molleman, 2004), unpublished data (F. Molleman) on C. fulvescens show that
some species can use amino acids in the adult diet for egg production. Fruit-feeding also
supported the conservation of egg weight with age in the Australian satyrine Mycalesis
terminus (Braby and Jones, 1995). In addition, wild caught male fruit-feeding butterflies in a
Bornean rainforest tended to live longer on an amino acid enriched diet than on sugar only
(Beck, InPress). Therefore, it is likely that some fruit-feeding butterfly species use nitrogenous
compounds in the adult diet in a similar manner to some nectar and pollen feeders (Boggs and
Dau, 2004, Mevi-Schutz and Erhardt, 2005), which may partly explain long active life spans
in this group.

Feeding efficiency could also be associated with life span. Based on variation in proboscis
morphology and feeding behavior, fruit-feeding butterflies can be divided in two groups: 1)
piercing butterflies that are efficient at foraging on soft substrates (all Charaxinae), and 2)
sweeping butterflies that can use a wide range of substrates, but have lower intake rates (all
other fruit-feeding butterflies; (Molleman et al., 2005c). However, Charaxinae did not have
longer longevity records than sweeping butterflies in our study, which may be attributed to low
population densities and high dispersal rates in Charaxinae (Fermon, et al., 2003).

While nutritional ecology may be important for long reproductively-active life spans, the
distribution of suitable hosts (for females) or receptive females (for males; (Gotthard et al.,
2000), and the ability to avoid or escape predators must also shape life spans. While much is
known about predator avoidance strategies in butterflies (e.g. aposematism, mimicry, eyespots,
crypsis, flight allometry), systematic quantification that could provide a link with life span is
lacking.
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Our data on fruit-feeding butterflies in Uganda include the longest published active life spans
of butterflies. Because the majority of Lepidoptera (butterflies and moths) are short-lived, these
butterfly species with remarkably long life spans can help to identify factors that affect life
span evolution and aging. We view life span evolution in the light of investment in survival
(including strategies to avoid predation) and resulting fitness (depending on temporal patterns
in reproduction that in turn can evolve in response to host-plant traits and nutritional ecology
of the adult). Because for butterflies there is a long tradition of field-research on nutritional
ecology and predator avoidance strategies, studies on fruit-feeding butterflies have much
potential for gaining insight into the evolution of life span and aging.
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Figure 1.

Summary of mark recapture dataset on 47 species of fruit-feeding butterflies in Kibale Forest,
Uganda; a)the number of individuals marked per species: for most of the species less than 500
individuals were marked, for one species, Bicyclus mollitia 3808 were marked; b) number of
individuals recaptured per species: for most species less than 100 individuals were recaptured,
but for one species, Euphaedra medon, 1036; and c) percent recaptures per species ranged
between 0 and 33, averaging 11.6%.
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Figure 2.

Longevity records for 47 species of fruit-feeding butterflies in Uganda with a) number
individuals recaptured; and b) percent of recaptured individuals. The percent recapture is a
proxy for rate of dispersal from the study area. Higher recapture rates and larger sample size
are both associated with higher longevity records (GLM: N=47 species, R2=71%, percent
recaptured F=6.3, p=0.016, number of individuals recaptured F=58.9, p<0.001).
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Figure 3.

Maximum life span in captivity for 31 species of fruit-feeding butterflies collected from a
tropical forest in Uganda, was correlated with the number of individuals tested (Regression:
F=13.5, p<0.001).
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