
Dominant retinitis pigmentosa
phenotype associated with a new
mutation in the splicing factor
PRPF31
Autosomal dominant retinitis pigmentosa
results from mutations in 14 known proteins,
and at least two further loci have been high-
lighted by genetic linkage in families (reviewed
by the RetNet website; http://www.sph.uth.tm-
c.edu/Retnet/). The known genes include those
encoding components of the phototransduc-
tion cascade, retinal transcription factors and
retinal structural proteins.1 The list also
includes four ubiquitously expressed splicing
factors: pre-mRNA processing factor 8
(PRPF8),2 PRPF31,3 PRPF34 and PAP-1, also
known as RP9.5 6

Splicing is a complex process that involves
the precise excision of introns from pre-mRNA
by a macromolecular structure called the
spliceosome. Three of the splicing factors
implicated in autosomal dominant retinitis
pigmentosa (ADRP) are components of the
U4/U6-U5 tri-snRNP particle, an essential
component of the spliceosome.7 8 Mutations
in one of these, PRPF31, have been reported to
cause between 5 and 20% of ADRP.9 10 In this
report, a new mutation in the PRPF31 gene is
described, together with the clinical phenotype.

Cases
The proband was a 33-year-old female with a
corrected visual acuity of 58 and 51 ETDRS
letters in the right and left eye, respectively
(approximate Snellen equivalents of 6/18 and
6/36). She had a myopic refraction with a
spherical equivalence of 22 dioptres in each
eye. Nyctalopia had been present since the
middle of the second decade, and she had
noticed a decrease in her central vision since
the beginning of the third decade. At the most
recent examination, she had early posterior
subscapsular cataract, bone spicule formation
in all four quadrants (fig 1a,b) attenuated
arterioles and pale optic discs in each eye. The
maculae appeared normal on clinical examina-
tion. On Goldman perimetry, the mean visual
field to the V4e target measured 6.5˚ from
fixation. Zeiss OCT 3 examination demon-
strated a foveal thickness of 170 and
144 microns, respectively, in the right and left
eyes, with absence of the third highly reflective
band.11

Her younger sister had a similar clinical
phenotype and age of onset. The 61-year-old
mother was asymptomatic, with unaided
visual acuities of 80 and 81 ETDRS letters
(Snellen equivalent of 6/7.5). Fundus exam-
ination revealed mild bone spicule attenuation
in the peripheral retina (fig 1c,d). Visual field
to the V4e target on Goldman perimetry was
slightly reduced from normal with a mean of
57.8˚ from fixation. Foveal thickness on Zeiss
OCT 3 examination was 223 and 249 microns
in the right and left eyes, respectively. The
father of the proband was also asymptomatic
with visual acuities of 85 ETDRS letters
(Snellen 6/6) in both eyes and normal ocular

examinations. No clinical information was
available from any other living relative along
the maternal line.

Mutation screening
DNA from the proband was included in a large
cohort of retinal dystrophy DNAs, which were
screened for mutations in a limited set of exons
or parts of exons of known retinal degenera-
tion genes. The exons screened were selected
from the available literature because they were
known mutation hotspots or locations of
common founder mutations. Screening was
carried out by radioactively labelled single-
strand conformation polymorphism/heterodu-
plex analysis (SSCP/HA).12

One of the sequences screened was PRPF31
exon 6. Screening of this sequence in the
proband revealed a large mobility shift sugges-
tive of a deletion. Sequencing revealed a novel
16 bp deletion present in the three female
members of the family but absent from the
father and from 120 control Caucasian geno-
mic DNAs (240 chromosomes). This sequence
change is denoted c.522–
527del&IVS6+1to+10del13 (fig 2). It deletes
codons 175 and 176, the last two in exon 6,
encoding glutamine and glycine residues.
However, it also deletes the first 10 bp of
intron 6, including the exon 6/intron 6 bound-
ary and splice donor site, the mutation
abolishing the exon 6 splice donor site. This
may give rise to an mRNA transcript which
includes intron 6, adding seven novel amino-
acids then terminating the encoded protein, or
could lead to the skipping of exon 6.

Discussion
This novel mutation in the PRPF31 gene causes
a severe phenotype in symptomatic cases, with
the onset of nyctalopia in the second decade
and loss of acuity from the third. Both the age
of onset and the phenotype observed are
similar to that described by Sato et al14 in
Japanese families. In addition, this report is the
first to demonstrate variable penetrance of the
phenotype in an asymptomatic carrier of the
mutation. A high level of non-penetrance has
been described previously, both in families
with confirmed PRPF31 mutations and in those
linked to the RP11 locus before mutations in
PRPF31 were identified.14–19 Evans et al15 used
the term bimodal expressivity to describe this
phenomenon. Sato and colleagues also identi-
fied asymptomatic carriers of the mutations in
the PRPF31 gene by genetic analysis. One of
these was an elderly relative of three genera-
tions of symptomatic RP sufferers, though he
himself had no ocular abnormalities except for
mild cataracts. In our report, the mother of the
proband had definite retinal findings and a
mildly reduced visual field on Goldman peri-
metry, though she was totally asymptomatic.
This may perhaps imply that the range of
phenotypes seen in PRPF31-RP could be better
described as a spectrum of severity, rather than
true bimodal expressivity.

The mutation described above is likely to
result in a grossly abnormal transcript which
may be subject to nonsense mediated decay.20

This brings to 18 the number of published
PRPF31 mutations in the literature, comprising
six deletions (ranging from one base pair to the
whole gene), five splice-site mutations, two
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Figure 1 Electropherogram of the mutated (upper) and normal (lower) sequence of PRPF31 in. As the
mutation is heterozygous, the upper image shows both the mutated and normal sequences
superimposed. The arrow on the mutated sequence denotes the beginning of the deleted sequence,
while the arrow on the normal sequence marks the boundary between exon 6 and intron 6. Sequence
was generated from PCR-amplified DNA on a Pharmacia MegaBACE automated DNA sequencer.
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insertion/deletion events, one duplication, one
insertion and only three missense muta-
tions.3 14 18 19 21–24 The lack of missense changes
has led others to speculate that mutations in
PRPF31 cause RP due to haploinsufficiency and
consequent insufficiency of splicing activity.18

Wilkie et al25 concluded that reduced mutant
protein solubility in two of the known mis-
sense mutations, A194E and A216P, also led to
splicing insufficiency.

This hypothesis is further supported by the
finding that high-expressing alleles of PRPF31
from the normal parent compensate for a
potentially RP-causing mutation on the oppos-
ing chromosome.26 This phenomenon accounts
for the variation in severity described above and
predicts that the normal second allele of PRPF31
in the mother from the family described herein
is a high-expressing variant which masks the RP
symptoms. However, the alleles inherited by her
daughters from their normal father are less well
expressed, and so these individuals have a much
more severe form of RP. To date, the mechanism
controlling this level of expression remains
unknown. A bimodal phenotype might be
explained by a single diallelic polymorphism in
a sequence involved in transcription regulation,
whereas a spectrum of severity, as observed
herein, might imply a more complex interplay
between several such polymorphisms.
Understanding the basis of this variation in
severity, together with the finding of haploin-
sufficiency as a cause of disease, could have
important implications for the testing of poten-
tial new treatments for this relatively common
retinal degeneration.
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Yoga can be dangerous—
glaucomatous visual field defect
worsening due to postural yoga
The relationship between the head-down body
position and increased IOP is well known.1–6

We present a 46-year old woman who pre-
sented with a worsening of glaucomatous
visual field defects one year after starting to
perform regularly a particular postural head-
stand yoga exercise, reversible after cessation
of the exercise.

In 10 non-yoga-practising volunteers intrao-
cular pressure (IOP) was measured by Tono-
Pen in sitting and immediately after assuming
a headstand position. A more than twofold
increase of the IOP was measured in the
headstand position. Therefore postural (head-
down) yoga exercises are clearly not recom-
mended for patients suffering from glaucoma.

Case report
A 46-year-old Caucasian woman followed at
our clinic for a bilateral juvenile open-angle
glaucoma presented on a routine examination
a significant worsening of her visual field
defects on both eyes (fig 1). Twenty years
previously a bilateral trabeculectomy had been
performed and since then intraocular pressures

had always been stable without treatment
(between 14 and 16 mm Hg). Slit-lamp exam-
ination revealed no apparent reason for the
visual field deterioration. Detailed history
taking finally showed that she had started
one year previously (shortly after the last visual
field examination) regularly to practise yoga,
particularly a headstand position, called ‘‘sir-
sasana’’. Measurement of the IOP by Tono-Pen
in the headstand position showed a twofold
increase of IOP compared to IOP in the sitting
position (32 compared to 16 mm Hg). We
asked the patient to stop any yoga exercise
with the head-down position and some
months later the visual field defects improved
significantly.

Comment
Postural yoga (‘‘asanas’’), including headstand
posture (‘‘sirsasana’’), is along with breathing
exercises (‘‘pranayama’’) and meditation
(‘‘dhyana’’) one of the three basic components
of hatha yoga, the system on which much of
western yoga is based. Yoga has become a
popular practice in the western world. In 1998
an estimated 15 million American adults had
used yoga at least once in their lifetime, 7.4
million during the previous year.7 Sirsasana is a
preferred position that seems to induce euphoria
and comfort after performing the posture.6

To evaluate the increase of IOP due to
headstand position we measured IOP in 10
non-yoga-practising volunteers (4 women and
6 men, mean age 37.3 ¡ 11.3 years) in a sitting
position and immediately after assuming a
headstand position. IOP was measured by a
single examiner using the Tono-Pen XL
(Medtronic Solan, Jacksonville, Florida) in

the left eye after application of oxybuprocaine
0.4% eye drops. IOP was measured four times
consecutively and the mean IOP was calcu-
lated. All volunteers were in good health and
did not present any known ocular pathology.
The mean sitting IOP was 13.9 ¡ 1.76 mm Hg
(range: 10.75–18.5). Immediately after assum-
ing a headstand position the mean IOP
increased to 31.8 ¡ 4.22 mm Hg (range:
23–38.75). These findings agree with a recent
study (including 75 experienced yoga practi-
tioners) that recorded a uniform twofold
increase in the IOP during sirsasana, which
was maintained during the posture and
returned to near baseline level immediately
after resuming a sitting posture.6 Increased IOP
has been explained with raised episcleral
venous pressure1 or increased choroidal volume
by vascular engorgement.8 9

This case shows once more the importance of
a good history taking and how sometimes
unexpected personal habits can influence
ophthalmologic pathologies. Patients suffering
from glaucoma should be advised against
practising postural (head-down) yoga exercises.
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Figure 1 Visual field some months before and one year after starting postural yoga and one year after stopping it.
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