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Abstract
Back-propagation artificial neural networks (ANNs) were trained on a dataset of 104 VMAT2 ligands
with experimentally measured log(1/Ki) values. A set of related descriptors, including topological,
geometrical, GETAWAY, aromaticity, and WHIM descriptors was selected to build nonlinear
quantitative structure-activity relationships. A partial least squares (PLS) regression model was also
developed for comparison. The nonlinearity of the relationship between molecular descriptors and
VMAT2 ligand activity was demonstrated. The obtained neural network model outperformed the
PLS model in both the fitting and predictive ability. ANN analysis indicated that the computed
activities were in excellent agreement with the experimentally observed values (r2 = 0.91, rmsd =
0.225; predictive q2 = 0.82, loormsd = 0.316). The generated models were further tested by use of
an external prediction set of 15 molecules. The nonlinear ANN model has r2 = 0.93 and root-mean-
square errors of 0.282 compared with the experimentally measured activity of the test set. The
stability test of the model with regard to data division was found to be positive, indicating that the
generated model is predictive. The modeling study also reflected the important role of atomic
distribution in the molecules, size, and steric structure of the molecules when they interact with the
target, VMAT2. The developed models are expected to be useful in the rational design of new
chemical entities as ligands of VMAT2 and for directing synthesis of new molecules in the future.

1. Introduction
Methamphetamine (METH), an amphetamine derivative, is an addictive psychostimulant drug
and a significant health concern due to its abuse liability and potential neurotoxic effects.1
Chronic use of METH may cause long-term neural damage in humans, with concomitant
deleterious effects on cognitive processes, such as memory and attention.2 Despite the serious
consequences of METH abuse, currently there is no FDA approved clinical treatment for
METH addiction. Thus, there is an increasing interest in identifying the underlying mechanisms
of METH action, as well as the relevant pharmacological targets to promote the development
of novel therapeutic agents as treatments for METH abuse.

The abuse liability of METH and structurally-related amphetamine compounds is thought to
be due to alterations in dopaminergic neurotransmission.3,4 In this respect, the dopamine
transporter (DAT) and the vesicular monoamine transporter-2 (VMAT2), presynaptic proteins
critical for dopamine storage and release, are the primary targets for METH action.3,4,5
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Specifically, METH interacts with VMAT2 to release dopamine from the synaptic vesicles
into the cytosol of the presynaptic terminal,6,7 METH also inhibits monoamine oxidase and
evokes the release of dopamine from the cytosol into the extracellular space via reverse
transport of DAT, leading to an increase in dopamine concentration in the extracellular space.
7,8,9

Lobeline, an alkaloidal constituent of Lobelia inflata LINN, is a nicotinic receptor ligand with
high affinity for α4β2* nicotinic receptors.10 Lobeline was previously investigated as a
therapeutic agent to treat tobacco dependence.10 Recent study indicated that lobeline has both
temperature-dependent and temperature-independent neuroprotective effects against METH
toxicity.11 Lobeline also inhibits dopamine uptake and promotes dopamine release from
storage vesicles within the presynaptic terminal via an interaction with the tetrabenazine
binding site on VMAT2.12 Lobeline attenuates d-amphetamine- and methamphetamine-
induced hyperactivity, and inhibits the discriminative stimulus effects and self-administration
of methamphetamine.13,14 However, lobeline does not support self-administration in rats,
15 suggesting a lack of addiction liability. Thus, the development of lobeline and lobeline
analogs with targeted selectivity at VMAT2, represents a novel approach for the treatment for
psychostimulant abuse.10, 12

To date, very few VMAT2 ligands have been reported in the literature; these include low
affinity ligands, such as 3-amino-2-phenylpropene derivatives,16 and high affinity
tetrabenazine derivatives.17,18 Tetrabenazine was introduced in 1956 as an antipsychotic
agent 19 and has currently been submitted for FDA approval as an anti-chorea drug.20
Recently, a small library of structural analogs of lobeline have been synthesized, and their
activity and selectivity for VMAT2 have been evaluated.9,21,22,23

In the discovery of novel and more potent and selective lobeline analogs, we consider
computational modeling as a valuable aid in drug design and optimization. In this respect, the
nature of the interaction of these novel ligands with the binding site(s) on VMAT2 is not known
due to the lack of crystal structure for this protein. Thus, a structure-based drug design approach
is not available. On the other hand, neural network analysis approach, particular back-
propagation network to data analysis, has received much attention over last decade. This
artificial system emulates the function of the brain, in which a very high number of information-
processing neurons are interconnected and are known for their ability to model a wide set of
functions, including linear and non-linear functions, without knowing the analytic forms in
advance.24 The rapid advancement of computing systems in the past 20 years is an important
factor leading to the success of this approach in various engineering, business, and medical
applications. So far, the neural network approach has been applied in a variety of biomedical
areas, which includes analysis of appendicitis25 and cancer imaging extraction and
classification,26 AIDS research and therapy.27 This approach has also been used in drug design
and discovery;24 as well as in pharmaceutical applications such as pharmaceutical production
development,28 pharmacodynamic modeling29 and mapping dose-effect relationships on
pharmacological response.30

In this current study, the neural network analysis approach is used to build a quantitative
structure-activity relationship (QSAR) model on a set of 104 tetrabenazine and lobeline analogs
with known affinity for VMAT2. This is the first QSAR modeling study that addresses the
interaction of a small library of ligands at the VMAT2 binding site. The goals of the current
work are (i) to extract the relevant descriptors to establish the QSAR of the library of ligands,
(ii) to establish the high predictive power of neural network modeling on this library of
compounds, and (iii) to develop insights regarding the relationship between the descriptors of
the compounds and their affinity for VMAT2. The developed models are expected to be
valuable in the rational design of chemical modifications of first-generation VMAT2 ligands
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in order to identify the most likely candidates for synthesis and discovery of new lead
compounds.

2. Methods
2.1 Generation of the molecular database

Molecular modeling was carried out with the aid of the Sybyl discovery software
package.31a The software was used to construct the initial molecular structures utilized in the
geometry optimization (energy minimization) for all molecules evaluated in this study. The
geometry optimization was first performed by using the molecular mechanics (MM) method
with the Tripos force field and the default convergence criterion. Since the pKa values of the
basic nitrogen atoms in these compounds are between 8 and 10, and the synaptic vesicles are
acidic (pH 5-5.6)32, most microspecies of the compounds are expected to be protonated when
binding to VMAT233. Thus, in the construction of the initial molecular structures, the basic
nitrogen atoms in these compounds were protonated with a formal charge of +1 assigned to
the positively charged nitrogen atom. In this respect, the crystal structures of meso-transdiene
(MTD, compound T78 in Table 1) shown in Figure 1, the structure of lobeline in crystal
structure of acetylcholine-binding protein from aplysia californica in complex with lobeline
(PDB code 2BYS), and the crystal structure of (−)-α-9-O-desmethyldihydro-
tetrabenazine34a were utilized as a reference. It has been shown that only the (+)-isomer of
dihydrotetrabenazine exhibited high affinity for VMAT2.34b Protonation of nitrogen atom in
these molecules is also relevant, considering that some of the lobeline analogs in the dataset
include quaternary ammonium nitrogen atoms, such as T6, P6 and P7 in Table 1. All of the
obtained conformations optimized at the MM level were further refined to their lowest energy
states with MOPAC, a semi-empirical molecular modeling routine, utilizing the PM3
Hamiltonian.

The 104 molecules listed in Table 1 constitute a database for the structure-activity relationship
analysis. These data are a combination of 10 previously reported compounds with experimental
Ki values,17,18 and 94 compounds with experimental Ki values from our own laboratory.9,
21–23 A dataset of 89 molecules (T1–T89) was used for model training and leave-one-out
(LOO) validation. A dataset of 15 molecules (P1–P15) from a different compound series was
used for external testing. Table 1 also lists the experimental Ki values for each of these
compounds, providing the pharmacological parameter which characterizes the interaction with
the VMAT2 binding site. For the set of the 104 molecules utilized, the Ki values of 13 molecules
were ≤ 0.01 μM, 10 molecules had Ki values in the range 0.1–1 μM, 63 molecules had Ki values
in the range 1–10 μM, and 14 molecules had Ki values ≥ 10 μM.

2.2 Generation of molecular descriptors
The optimum three-dimensional conformations were used for generation of descriptors, some
of which were geometry-dependent. A total of 807 molecular descriptors, consisting of zero-
dimensional (constitutional descriptors), one-dimensional (functional groups, empirical
descriptors, physical properties), two-dimensional (topological descriptors), as well as three-
dimensional (geometrical, WHIM, GETAWAY, aromaticity descriptors) variables, were
created by the DRAGON program.35a A reduced set of 149 descriptors was obtained after the
constant and near constant descriptors and the highly inter-correlated (>0.95) descriptors were
discarded.

2.3 Partial least squares regression analysis
Partial least squares (PLS) analysis was performed using the QSAR module of Sybyl version
7.0, with the NIPALS algorithm to extract the original variable into PLS components. All
variables were initially auto-scaled to zero mean and unit variance. This method produces new
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variables by a linear combination of the original descriptors and uses them to predict the
biological activities. The advantage of this method is that the method can be used for strongly
correlated, noisy data with numerous independent variables (e.g. in modeling data sets where
the number of descriptors greatly exceeds the number of observations).36

2.4 Target properties
Experimental Ki values of lobeline and its analogs were measured according to the procedure
described by Zheng et al.9 Experimental Ki values of tetrabenazine and its analogs, except for
tetrabenazine and Ro4-1284 (P13 and P14 in Table 1 respectively) were taken from Lee et al.
17 and Conney et al.18 The Ki values for tetrabenazine and Ro4-1284 were also measured in
our laboratory to compare the Ki values with those from the other laboratories. The Ki values
for P13 and P14 obtained from our own assays (0.013 μM and 0.028 μM, respectively) were
used in this study. These Ki values are very similar to the literature values for these compounds
(i.e., 0.0081 μM and 0.042 μM, respectively) reported by Lee et al.17 Conney et al. 18 also
reported a Ki value of 0.0067 μM for tetrabenazine. The log(1/Ki), with Ki values expressed
as molar, was used as the target pharmacological criterion to derive the QSARs.

2.5 ANN QSAR modeling
Feed-forward, back-propagation-of-error networks were developed using a neural network C
program.37 Network weights (Wji(s)) for a neuron “j” receiving output from neuron “i” in the
layer “s” were initially assigned random values between −0.5 and +0.5. The sigmoidal function
was chosen as the transfer function that generates the output of a neuron from the weighted
sum of inputs from the preceding layer of units. Consecutive layers were fully interconnected;
there were no connections within a layer or between the input and the output. A bias unit with
a constant activation of unity was connected to each unit in the hidden and output layers.

The input vector was the set of descriptors for each molecule in the series, as generated by the
previous steps. All descriptors and targets were normalized to the [0,1] interval using the
following formula:

Xij′ =
Xij − X j,min

X j,max − X j,min
(1)

Where Xij and Xij′ represents the original value and the normalized value of the j-th (j=1,…k)
descriptor for compound i (i=1,…n). Xmin and Xmax represent the minimum and maximum
values for the j-th descriptor. The network was configured with one or more hidden layers.
During the ANN learning process, each compound in the training set was iteratively presented
to the network. That is, the input vector of the chosen descriptors in normalized form for each
compound was fed to the input units, and the network’s output was compared with the
experimental “target” value. During one “epoch”, all compounds in the training set were
presented, and weights in the network were then adjusted on the basis of the discrepancy
between network outputs and observed log(1/Ki) values by back-propagation using the
generalized delta rule.

2.6 Cross-validation and testing
Models were cross-validated using the “leave-one-out” approach.38

Generated models were then tested using a subset of 15 compounds (P1–P15 in Table 1). They
were randomly selected to cover the experimental activity range as uniformly as possible, and
were not used in either the variable selection or the model building processes.
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2.7 Evaluation of the QSAR models
QSAR models were assessed by Pearson correlation coefficient r2, root mean square deviation
(rmsd), and predictive q2

, which is defined as

q 2 = SD − PRESS
SD (2)

Where SD is the sum of squared deviations of each measured log(1/Ki) value from its mean,
and PRESS is the sum of squared differences between actual and predicted values.

3. Results and Discussion
3.1 PLS analysis and neural network configuration

To provide a comparison with the neural network model, a linear PLS analysis was carried out
on the affinity for the training set of 89 compounds. Variable selection from 149 descriptors
generated as described in section 2.2 was used to build the PLS model. After stepwise exclusion
of low contribution variables, 12 variables were included in the model, resulting in an equation
in which only variables that significantly increased the predictability of the dependent variable
were included. During the PLS analysis, five components (latent vectors) that explain the most
covariance between the 12 descriptors and experimental log(1/Ki) values are obtained. The
linear model built with these five components corresponds to the highest q2 (0.780) and lowest
LOO rmsd (0.353). A final set of 12 descriptors which gave the best PLS model is listed in
Table 2.

To identify the best neural network QSAR model, an exhaustive search of all possible models
with various numbers of descriptors was carried out.24c The 12 descriptors used in the PLS
model were first examined based on different neural network configurations. Of these
descriptors, seven having small contributions were removed. A step forward descriptor
selection procedure was used to select additional descriptors which are important to the neural
network analysis. To find the optimal number of neurons in the hidden layer, neural network
architectures with n: h: 1 where n = 8 to 12 and h = 2 to 7, were respectively trained. The most
promising descriptor combinations and network configuration were selected by the LOO cross-
validation procedure. The best descriptor combinations with different numbers of descriptors
and configurations selected by the internal LOO validation processes were applied to the 15
external compounds, which were put aside at the beginning of the analysis. The same training
and (internal and external) validation sets were always used for model quality comparison. The
calculated internal q2 as well as the LOO root mean square derivation (loormsd), and the
external r2 and rmsd values for these molecules were used to demonstrate the predictive ability
of the selected descriptor combinations and network configuration. As seen in Table 3, the
predictivity of the neural network models increases from 8 to 11, and drops thereafter with the
11 descriptors. A network with more weights was generally trained to their best configuration
with a relatively lower number of epochs, with the exception of NN8-4-1, which has an irregular
loormsd variation between 0 and 100000 training epochs. When the input vector of the neural
network was fixed with the 11 descriptors, its fitting ability is good. Further examination shows
that whereas r2 from the whole training set always increases with increasing numbers of hidden
neurons, Figure 2 and Table 3 shows that the 11:3:1 neural network architecture exhibited a
good internal validation and externally predictive performance, when the optimal training
epochs was set to 200000 (Figure 3).

A common belief about neural network systems is that the number of parameters in the network
should be related to the number of data points in the dataset, and the expressive power of the
network.39 For the current dataset, the results from the search for various configurations (Table
3) shows that the weights used in the neural network configuration to obtain better internal and
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external prediction are between 33 and 40. Comparing the NN11-3-1 model with the NN8-4-1
model, both configurations include 36 weights. While the numbers of descriptors used in both
configurations are not overwhelmed (i.e., the ratio of the number of compounds in the training
set to the number of descriptors is 8 and 11, respectively for NN11-3-1 and NN8-4-1), the
former model includes more information from compounds themselves (i.e., a greater number
of descriptors was used), and provides higher internal and external prediction ability (Table
3). Therefore, the best ANN model is an 11-descriptor model with 3 hidden neurons consisting
of the following descriptors: Ram, PW5, LP1, SEige, VEp2, DISPm, G(N..N), H7m, RARS,
R1p+, HOMT with 3 hidden nodes. Brief summaries of these descriptors can be found in Table
2.

3.2 Computational results
PLS analysis—The best PLS model for calculated descriptors is a 5-component model of
12 descriptors (Ram, PW5, DISPm, G(N..N), RCON, DISPp, HATS5u, R5u, R4u+, R1v+,
R5v+, R5e+). The r2 values for the training and for the LOO cross-validation runs are 0.83 and
0.78, respectively; the corresponding rmsd values are 0.303 and 0.353, respectively. For the
15 test compounds, the r2 value is 0.87 and the rmsd is 0.415 (Table 4). Figure 4 shows the
relationships of the trained, LOO and external predicted log(1/Ki) values versus the
experimental log(1/Ki) values for the PLS model. The calculated log(1/Ki) values by the PLS
model for the 104 molecules are shown in Table 1.

ANN analysis—The best 11-descriptor neural network model consists of the following
descriptors: Ram, PW5, LP1, SEige, VEp2, DISPm, G(N..N), H7m, RARS, R1p+, HOMT.
The statistical results for this model are as follows: r2 =0.91, rmsd =0.225, q2 = 0.82, and
loormsd = 0.316. The QSAR model demonstrated good predictivity in the test set: r2 =0.93,
and rmsd = 0.282 (Table 4). Comparing the values of correlation coefficients and root mean
square deviations listed in Table 4, the ANN model is better than the PLS model. The predictive
ability of NN11-3-1 can also be judged from the plots of the trained, LOO and external test
predicted versus experimental log(1/Ki) values shown in Figure 5. The computed log(1/Ki)
values of the model for the 104 molecules in the database are listed in Table 1.

Descriptor contribution analysis—The statistics of the PLS model are summarized in
Table 5. The X weights obtained from the PLS analysis are displayed in Table 6; the definition
of the descriptors used in the model can be found in Table 2. Since q2 beyond the 5th component
basically remains a constant for the PLS model, the most important descriptors may be located
from the first 4 components only. In component 1, it is clear that PW5 and R5v+ are the most
heavily weighted descriptors. PW5 is topological descriptors related to molecular shape;35h

R5v+ is one of the GETAWAY descriptors. According to the definition, GETAWAY
descriptors are a type of descriptor encoding both geometrical information given by the
influence molecular matrix and the topological information given by the molecular graph,
weighted by chemical information encoded in selected atomic weightings.35f GETAWAY
descriptors are related to a molecular 3D structure. In the 2nd component, the most weighted
descriptors are two 3D descriptors - RCON and G(N..N), among which G(N..N) is a 3D
geometrical descriptor and characterizes the geometrical distance between nitrogen and
nitrogen in those molecules that contain more than one N-atom; RCON is referred to R-
connectivity index, which is sensitive to the molecular size, conformational changes and
cyclicity.35f Accordingly, other relatively important descriptors identified by the component
analysis were HATS5u, DISPp, R5e+ and DISPm. HATS5u and R5e+ are GETAWAY
descriptors; DISPp and DISPm are geometrical descriptors. The details of these descriptors
can be found in the previously published study.35(b)–(h)
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The descriptors important for the NN11-3-1 model are plotted in Figure 6 according to a
previous described procedure.24c, 40 The three most important descriptors are H7m, G(N..N)
and DISPm. These descriptors indicate that molecular size, shape and atomic distribution in
the molecules are important. The most important descriptor is the GETAWAY descriptor H7m.
The second most significant descriptor, G(N..N), which is also an important descriptor in the
PLS model. DISPm is related to the molecular geometry as well as molecular size; the other
two important topological descriptors, PW5 and VEp2, also emphasize these important
features. Among these important descriptors, PW5, G(N..N), and DISPm are common to both
the PLS and the NN11-3-1 models. Analysis of the relationship between the values of the
descriptors and the experimental endpoints of the compounds, several features were observed.
To obtain an VMAT2 binding affinity Ki < 0.1 μM, it is shown that PW5 needs to be 0.12;
H7m needs to be > 0.05 (most are between 0.05 and 0.15); VEp2 needs to be between 0.18
and 0.20; DISPm needs to be between 7.5 and 10.85; G(N..N) needs to be 0 or 4.34; and R1p
+ needs to be between 0.03 and 0.05.

The linear PLS model and the NN11-3-1 model have five descriptors in common (Ram, PW5,
DISPm, G(N..N), RCON). These descriptors are expected to significantly encode the linear
relationship between the variables and the target bioactivity values. The neural network model
contains five topological (Ram, PW5, LP1, SEige, VEp2) and six 3D descriptors (DISPm, G
(N..N), H7m, RCON, R1p+, HOMT). These descriptors contain chemical information
concerning size, symmetry, shape and distribution of the molecular atoms in the molecule.
When compared to the linear model, the data show that the neural network model has been
able to capture a more detailed analysis of the structure-activity relationships, and affords a
high correlation with low root-mean-square-deviation.

Model stability analysis—To test the stability of the best neural network and PLS model,
the dataset of 104 molecules was randomly divided into two sets; one set of 89 molecules for
training and LOO validation, and the other set of 15 molecules for external testing. This process
was randomly repeated five times. Among each division, the dissimilarity of one test set from
the test set of another division was greater than 90%, i.e., less than one compound in 15 in one
test set was the same as the compounds in another test set. The same eleven descriptors and
the same neural network architecture, i.e., eleven input neurons, three hidden neurons and one
output neuron, were used to train and test the neural network models. Learning epochs was set
to 200,000. For the PLS model, the same twelve descriptors listed in Table 2 were used.
Interestingly, during the five times training with the different set of eighty-nine molecules to
build the PLS models, it was observed that the best PLS models are always those utilizing only
five components of the twelve descriptors models for the five sets of data. The calculated results
were listed in Table 7.

The data in Table 7 indicate that the generated models are stable with regard to the data division.
The neural network model has a higher predictive power than the PLS model. These results
are consistent with the conclusions drawn previously (see section on descriptor contribution
analysis).

4. Conclusion
In this study, PLS and neural network approaches were used to build linear and nonlinear QSAR
models for a set of tetrabenazine and lobeline analogs that are ligands at the VMAT2. These
are the first models to predict Ki values for the interaction of these two families of compounds
with VMAT2. While the linear PLS model is predictive, it was demonstrated that the fully
interconnected three-layer neural network model trained with the back-propagation procedure
was to be superior in learning the correct association between a set of relevant descriptors of
compounds and these log(1/Ki) for VMAT2. The trained neural network model (NN11-3-1)
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including eleven-input and three-hidden neurons exhibited a high predictive power (r2=0.91,
rmsd=0.225 and q2=0.82, loormsd=0.316). This model succeeded in predicting the Ki values
of an additional set of 15 tetrabenazine and lobeline analogs which were not included in the
model training (external r2=0.93, rmsd=0.282). The stability test of the model with regard to
data division was found to be positive. Evaluation of the contributions of the descriptors to the
QSAR reflected the importance of atomic distribution in the molecules, molecular size and
steric effects of the ligand molecules, when interacting with their target binding site on the
VMAT2. The nonlinear relationship between these factors and the endpoint bioactivity values
has been clearly demonstrated. These results indicate that the generated neural network model
is reliable and predictive. Thus, this new neural network model, reported herein, will be
valuable for future rational design of novel second generation ligands targeted to VMAT2,
aimed at developing novel therapeutics for the treatment of methamphetamine abuse.
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Figure 1.
Crystal structure of meso-transdiene (MTD).
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Figure 2.
The dependence of q2 on the number of hidden neurons of the 11-descriptor neural network
model.
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Figure 3.
The training rmsd, LOO rmsd and testing as a function of the number of training cycles of
NN11-3-1.
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Figure 4.
The calculated versus experimental activity data for the training (shown in squares), LOO
cross-validation (shown in triangles) and test set runs (shown in diamonds) for the PLS QSAR
model with VMAT2 ligands. The solid line represents a perfect correlation.
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Figure 5.
The calculated versus experimental activity data for the training (shown in squares), LOO
cross-validation (shown in triangles) and test set runs (shown in diamonds) for the best
NN11-3-1 QSAR model with VMAT2 ligands. The solid line represents a perfect correlation.
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Figure 6.
Relative contribution of descriptor plot for the NN11-3-1 neural network model built using the
89 VMAT2 ligands.

Zheng et al. Page 15

Bioorg Med Chem. Author manuscript; available in PMC 2007 October 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 16

Table 1
Structures, experimental log(1/Ki ) values (Ki values are expressed as molar), and log(1/Ki) values calculated by
the trained NN11-3-1 and PLS models, and their leave-one-out (LOO) validation results

Compound Structure log(1/
Ki)

(Expt.)

log(1/
Ki)

(NN)

log(1/Ki)
(NNLOO)

log(1/
Ki)

(PLS)

log(1/Ki)
(PLSLOO)

P1 5.89 5.61 5.84

P2 5.40 5.25 5.34

T1 5.86 5.91 5.89 5.78 5.52

P3 5.32 5.38 5.87

T2 5.41 5.47 5.54 5.92 6.04

T3 5.19 5.46 5.54 5.42 5.43

T4 5.29 5.36 5.36 5.34 5.39

T5 5.22 5.43 5.45 5.32 5.35

P4 5.60 5.38 5.54

T6 5.28 5.23 5.24 5.30 5.35

T7 5.03 4.95 5.00 4.96 4.95

P5 5.70 5.51 5.52

T8 5.52 5.55 5.53 5.48 5.55

T9 5.51 5.58 5.59 5.39 5.42

T10 5.57 5.49 5.46 5.67 5.69

T11 5.27 5.18 5.21 5.26 5.28
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Compound Structure log(1/
Ki)

(Expt.)

log(1/
Ki)

(NN)

log(1/Ki)
(NNLOO)

log(1/
Ki)

(PLS)

log(1/Ki)
(PLSLOO)

P6 4.78 5.22 5.64

T12 5.15 5.24 5.24 5.24 5.19

T13 5.19 5.18 5.14 5.41 5.48

T14 5.64 5.40 5.36 5.53 5.55

P7 4.61 5.12 5.17

T15 5.63 5.68 5.59 5.63 5.55

T16 6.28 6.17 5.96 5.93 5.78

T17 5.48 5.58 5.62 5.69 5.80

T18 5.76 5.92 5.92 5.68 5.82

T19 5.49 5.52 5.52 5.34 5.34

T20 5.36 5.55 5.66 5.25 5.28

P8 5.90 5.59 5.75

T21 6.01 5.95 5.96 5.88 5.86

T22 5.52 5.52 5.19 5.50 5.52

T23 5.33 5.61 5.81 5.73 5.68

P9 6.20 5.78 5.68

T24 5.88 5.85 5.82 5.76 5.73

T25 5.98 6.14 6.38 6.12 6.16

T26 5.78 5.66 5.64 6.06 6.15
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Compound Structure log(1/
Ki)

(Expt.)

log(1/
Ki)

(NN)

log(1/Ki)
(NNLOO)

log(1/
Ki)

(PLS)

log(1/Ki)
(PLSLOO)

T27 6.37 5.83 5.70 6.00 6.08

T28 5.42 5.38 5.35 5.53 5.51

P10 5.00 5.21 5.63

T29 5.82 5.83 5.87 5.69 5.64

T30 5.69 5.45 5.26 5.42 5.30

T31 5.23 5.19 5.68 6.00 6.20

T32 5.32 5.42 5.98 5.52 5.62

T33 5.28 5.47 5.72 5.47 5.62

T34 5.68 5.32 5.27 5.17 5.12

T35 5.29 5.40 5.40 5.39 5.38

T36 4.97 4.93 5.17 5.38 5.47

T37 5.73 5.81 5.86 5..60 5.68

T38 6.24 6.00 5.90 5.46 5.36

T39 5.80 5.58 5.50 5.48 5.48

T40 5.97 6.13 6.11 5.52 5.45

T41 5.80 5.74 5.84 5.80 5.80

T42 6.24 5.99 5.91 5.98 5.96
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Compound Structure log(1/
Ki)

(Expt.)

log(1/
Ki)

(NN)

log(1/Ki)
(NNLOO)

log(1/
Ki)

(PLS)

log(1/Ki)
(PLSLOO)

P11 5.47 5.57 5.79

T43 5.73 5.81 6.02 5.74 5.78

T44 5.21 5.41 5.40 5.32 5.33

P12 5.06 4.78 5.28

T45 4.93 5.37 5.43 5.23 5.26

T46 5.03 5.00 4.95 5.22 5.17

T47 4.98 5.39 5.43 5.15 5.18

T48 5.39 5.37 5.39 5.17 5.17

T49 5.02 4.96 4.98 5.40 5.36

T50 5.40 5.43 5.43 5.34 5.30

T51 4.89 5.02 5.15 5.36 5.28
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Compound Structure log(1/
Ki)

(Expt.)

log(1/
Ki)

(NN)

log(1/Ki)
(NNLOO)

log(1/
Ki)

(PLS)

log(1/Ki)
(PLSLOO)

T52 4.85 5.01 5.02 5.38 5.41

T53 5.73 5.46 5.41 5.68 5.63

T54 5.48 5.71 5.80 5.36 5.36

T55 5.61 5.82 5.95 5.49 5.51

T56 5.48 5.41 5.39 5.33 5.38

T57 5.51 5.58 5.59 5.30 5.35

T58 5.48 5.30 5.27 5.29 5.33

T59 4.43 4.75 4.95 4.88 4.98

T60 5.21 5.08 4.69 4.95 4.88

T61 4.85 5.21 5.29 5.32 5.37
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Compound Structure log(1/
Ki)

(Expt.)

log(1/
Ki)

(NN)

log(1/Ki)
(NNLOO)

log(1/
Ki)

(PLS)

log(1/Ki)
(PLSLOO)

T62 5.87 5.46 5.40 5.44 5.37

T63 5.58 5.23 5.19 5.34 5.33

T64 5.28 5.42 5.43 5.42 5.44

T65 6.23 5.53 5.51 5.23 5.19

T66 5.18 5.62 5.71 5.54 5.63

T67 5.40 5.57 5.66 5.32 5.45

T68 5.39 5.40 5.52 5.53 5.55

T69 5.51 5.20 5.12 5.14 5.10

T70 5.66 5.63 5.63 5.66 5.57

T71 6.01 5.31 5.24 5.79 5.83

T72 4.88 5.25 5.34 5.43 5.54

T73 5.49 5.45 5.47 5.46 5.38

T74 5.56 5.56 5.59 5.53 5.53

T75 5.00 5.32 5.36 5.35 5.36
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Compound Structure log(1/
Ki)

(Expt.)

log(1/
Ki)

(NN)

log(1/Ki)
(NNLOO)

log(1/
Ki)

(PLS)

log(1/Ki)
(PLSLOO)

T76 5.15 5.03 5.01 5.23 5.18

T77 5.15 5.25 5.26 5.03 5.49

T78 5.47 5.46 5.07 5.03 4.77

T79 4.76 4.84 4.85 5.19 5.16

T80 4.60 4.71 4.72 4.51 4.35

T81 7.89 8.31 8.40 7.98 7.93

P13 7.55 7.63 7.87

T82 8.59 8.22 8.05 7.87 7.73

T83 7.92 8.02 8.01 7.96 7.94

P14 7.70 8.00 7.69

T84 7.08 7.27 7.40 7.41 7.49

T85 6.87 7.04 7.43 7.16 7.27

T86 7.48 7.24 7.13 7.04 7.01
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Compound Structure log(1/
Ki)

(Expt.)

log(1/
Ki)

(NN)

log(1/Ki)
(NNLOO)

log(1/
Ki)

(PLS)

log(1/Ki)
(PLSLOO)

P15 8.12 8.11 7.79

T87 7.59 7.57 7.52 7.76 7.90

T88 7.49 7.55 7.21 7.35 7.07

T89 6.14 6.10 6.21 6.31 6.34
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Table 2
Brief description of the descriptors used in the PLS and nonlinear neural network analyses

Descriptor Definition Typec

Ram, ab Ramification index. 1
DISPpa d COMMA2 value/weighted by atomic polarizabilities. 2
HATS5ua Leverage-weighted autocorrelation of lag 5/unweighted. 3
R5ua R autocorrelation of lag 5/unweighted. 3
R1v+a R maximal autocorrelation of lag 1/weighted by atomic van der Waals volumes. 3
R5v+a R maximal autocorrelation of lag 5/weighted by atomic van der Waals volumes. 3
R5e+a R maximal autocorrelation of lag 5/weighted by atomic Sanderson electronegativities. 3
R4u+a R maximal autocorrelation of lag 4/unweighted. 3
PW5, ab Path/walk 5-Randic shape index. 1
LP1b Lovasz-Pelikan index [leading eigenvalue]. 1
SEigeb Eigenvalue sum from electronegativity weighted distance matrix. 1
VEp2b Average eigenvector coefficient sum from polarizability weighted distance matrix. 1
DISPm, ab d COMMA2 value/weighted by atomic masses. 2
G(N..N), ab Sum of geometrical distances between N..N. 2
H7mb H autocorrelation of lag 7/weighted by atomic masses. 3
RCON, ab Randic-type R matrix connectivity. 3
R1p+b R maximal autocorrelation of lag 1/weighted by atomic polarizabilities. 3
HOMTb HOMA (harmonic oscillator model of aromaticity index) total. 4
G1ub 1st component symmetry directional WHIM Index/unweighted. 5

a
Descriptor used in the PLS model

b
Descriptor used in the neural network models.

c
1. Topological; 2. Geometrical; 3. GETAWAY; 4. Aromaticity indices; 5. WHIM

Bioorg Med Chem. Author manuscript; available in PMC 2007 October 5.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 25

Table 3
Results for variable selection and model building a

NN topology Training cycles r2 (rmsd) q2(loormsd) Test r2(rmsd)

NN8-4-1 300000 0.92(0.232) 0.79(0.372) 0.82(0.464)
NN9-4-1 170000 0.90(0.253) 0.80(0.359) 0.88(0.365)
NN10-3-1 200000 0.90(0.229) 0.82(0.344) 0.88(0.372)
NN11-3-1 200000 0.91(0.225) 0.82(0.316) 0.93(0.282)
NN12-3-1 180000 0.92(0.232) 0.79(0.368) 0.92(0.309)

a
r2: Pearson correlation coefficient, q2: LOO cross-validated correlation coefficient, rmsd: root-mean-square deviation, loormsd: LOO root-mean-square

deviation, Training cycles: the number of cycles that training was performed.
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Table 4
Statistical results for the best neural network model NN11-3-1 and the PLS model

Model r2 rmsd q2 loormsd

NN11-3-1
 TSET 0.91 0.225 0.82 0.316
 PSET 0.93 0.282
PLS
 TSET 0.83 0.303 0.78 0.353
 PSET 0.87 0.415
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Table 5
Summary of the PLS analysis for the 89 molecule training seta

Component r2 rmsd F q2 loormsd

1 0.662 0.420 170.0 0.615 0.448
2 0.772 0.347 145.8 0.681 0.409
3 0.817 0.312 126.8 0.750 0.365
4 0.825 0.307 99.3 0.762 0.358
5 0.832 0.303 81.9 0.780 0.353
6 0.835 0.302 69.2 0.771 0.356
7 0.837 0.302 59.3 0.772 0.357
8 0.838 0.303 51.6 0.774 0.357
9 0.838 0.305 45.3 0.772 0.361
10 0.838 0.307 40.3 0.772 0.364
11 0.838 0.309 36.1 0.772 0.366
12 0.838 0.311 32.7 0.772 0.369

a
r2: Pearson correlation coefficient, rmsd: root mean square deviation, F: Fishers estimate of statistical significance, q2: defined by Eq. (2), loormsd:

LOO root mean square deviation.
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Table 6
X-Weights for the PLS components from the PLS analysis summarized in Table 5

No.* Descriptor

Ram PW5 DISPm G(N.N) RCON DISPp

1 0.374 0.460 0.310 0.060 0.275 −0.002
2 −0.245 0.229 0.378 −0.411 −0.541 −0.059
3 −0.356 −0.009 −0.264 −0.032 −0.328 −0.455
4 −0.431 −0.083 0.166 0.572 0.106 0.012
5 −0.268 −0.355 0.455 −0.379 0.128 0.330
6 0.045 −0.186 −0.192 −0.218 0.183 −0.457
7 −0.076 0.175 −0.051 0.242 −0.329 0.136
8 0.205 0.323 −0.391 −0.173 −0.245 0.245
9 0.398 −0.182 0.262 0.237 −0.466 0.110
10 −0.184 −0.086 −0.430 −0.166 0.064 0.593
11 0.208 −0.509 −0.105 0.239 −0.271 0.085
12 0.360 −0.366 −0.001 −0.279 −0.006 −0.149

No.* Descriptor

HATS5u R5u R4u+ R1v+ R5v+ R5e+

1 0.092 0.373 −0.136 −0.339 0.437 0.033
2 −0.166 −0.128 −0.209 0.041 0.236 −0.367
3 0.460 0.363 0.098 −0.308 0.082 0.181
4 −0.249 0.354 0.143 −0.021 0.007 −0.482
5 −0.031 0.408 0.074 0.001 −0.093 0.380
6 −0.637 0.147 −0.348 −0.274 −0.108 0.038
7 −0.498 −0.145 0.379 −0.172 0.267 0.512
8 −0.176 0.582 0.086 0.338 −0.222 −0.100
9 0.044 0.050 −0.098 −0.441 −0.493 −0.054
10 0.033 −0.086 −0.139 −0.530 0.168 −0.233
11 0.023 0.167 −0.400 0.292 0.519 0.079
12 −0.044 0.036 0.664 −0.096 0.255 −0.342

*
Component number.
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Table 7
Stability analysis of the predictive models built from the set of 104 tetrabenazine and lobeline analogs

NN11-3-1 model

No. Train r2 (rmsd) LOO q2 (rmsd) Test r2 (rmsd)

1 0.91 (0.225) 0.82 (0.316) 0.93 (0.282)
2 0.93 (0.207) 0.83 (0.330) 0.89 (0.341)
3 0.93 (0.220) 0.81 (0.358) 0.92 (0.303)
4 0.92 (0.235) 0.84 (0.339) 0.88 (0.353)
5 0.93 (0.223) 0.80 (0.370) 0.94 (0.246)

Avg. 0.92 (0.222) 0.82 (0.343) 0.91 (0.305)

PLS model

No. Train r2 (rmsd) LOO q2 (rmsd) Test r2 (rmsd)

1 0.83 (0.303) 0.78 (0.352) 0.87 (0.415)
2 0.84 (0.319) 0.79 (0.373) 0.86 (0.380)
3 0.83 (0.330) 0.78 (0.388) 0.91 (0.301)
4 0.85 (0.338) 0.80 (0.379) 0.86 (0.330)
5 0.85 (0.320) 0.80 (0.373) 0.83 (0.403)

Avg. 0.84 (0.322) 0.79 (0.373) 0.87 (0.366)
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