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Opposing mitochondrial fission and fusion reactions determine
the shape and interconnectivity of mitochondria. Dynamin-
related protein 1 (Drp1) is an ancient mechanoenzyme that uses
GTP hydrolysis to power the constriction and division of
mitochondria. Although Drp1-mediated mitochondrial fragmen-
tation is recognized as an early event in the apoptotic
programme, acute regulation of Drp1 activity is poorly under-
stood. Here, we identify a crucial phosphorylation site that is
conserved in all metazoan Drp1 orthologues. Ser 656 is phos-
phorylated by cyclic AMP-dependent protein kinase and depho-
sphorylated by calcineurin, and its phosphorylation state is
controlled by sympathetic tone, calcium levels and cell viability.
Pseudophosphorylation of Drp1 by mutation of Ser 656 to
aspartic acid leads to the elongation of mitochondria and
confers resistance to various pro-apoptotic insults. Conversely,
the constitutively dephosphorylated Ser656Ala mutant Drp1
promotes mitochondrial fragmentation and increases cell
vulnerability. Thus, Drp1 phosphorylation at Ser 656 provides a
mechanism for the integration of cAMP and calcium signals in the
control of mitochondrial shape, apoptosis and other aspects of
mitochondrial function.
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INTRODUCTION
Mitochondria are dynamic organelles that constantly fuse and
divide, and correct regulation of the mitochondrial fission–fusion
equilibrium is essential for cellular homoeostasis. Indeed, muta-
tions in optic atrophy 1 (Opa1) and mitofusin 2 (Mfn2)—two
mitochondrial GTPases that are necessary for the fusion of the
inner and outer membrane of the organelle, respectively—cause

neurodegenerative diseases (Alexander et al, 2000; Delettre et al,
2000; Zuchner et al, 2004), and a dominant-negative mutation in
the mitochondrial fission enzyme dynamin-related protein 1
(Drp1; also DLP1 for dynamin-like protein 1) was recently
implicated in a fatal human birth defect (Waterham et al, 2007).

Drp1 is a member of the dynamin family of large GTPases.
Functional domains in Drp1 include the amino-terminal GTPase
domain and a carboxy-terminal GTPase effector domain (GED;
Fig 1B), the latter participating in intra- and intermolecular inter-
actions, and regulation of GTPase activity (Hoppins et al, 2007).
Drp1 is recruited from the cytosolic compartment to mitochondria
by adaptor proteins, including the outer mitochondrial transmem-
brane protein Fis1. In a manner similar to the endocytosis motor
dynamin, Drp1 is thought to polymerize into ring- or spiral-shaped
superstructures that constrict and eventually sever mitochondria
by a GTP hydrolysis-dependent mechanism (Hoppins et al, 2007).
While necessary for biogenesis of the organelle, Drp1-dependent
mitochondrial fragmentation is also an early and critical event in
apoptosis, coinciding roughly with activation of the pro-apoptotic
B-cell lymphoma 2 (Bcl2) family member Bax and permeabili-
zation of the outer mitochondrial membrane (Martinou &
Youle, 2006).

Despite the central importance of Drp1 in mitochondrial fun-
ction, post-translational regulation of this membrane-remodelling
enzyme is not well understood. Previous work suggested a role for
sumoylation and ubiquitination in the morphogenetic activity of
Drp1 (Harder et al, 2004; Nakamura et al, 2006; Wasiak et al,
2007), and a recent report identified a cyclin-dependent kinase
(Cdk) site in Drp1, phosphorylation of which might be responsible
for a transient breakdown of the mitochondrial reticulum during
mitosis (Taguchi et al, 2007).

Here, we identify a conserved phosphorylation site in Drp1,
which is targeted by a second messenger-dependent kinase and
phosphatase, cyclic AMP-dependent protein kinase (PKA) and
calcineurin (also called protein phosphatase 2B; PP2B). Drp1
mutants with dephosphorylation- and phosphorylation-mimicking
substitutions exert opposite effects on mitochondrial morphology
and apoptotic sensitivity. Our results indicate that cAMP could
mediate survival, in part, through inhibition of Drp1 and
that stimulation of the mitochondria-restructuring activity of
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Drp1 by Ser 656 dephosphorylation is important for programmed
cell death.

RESULTS
Drp1 Ser 656 is a major PKA phosphorylation site
We immunoprecipitated endogenous Drp1 from rat phaeochromo-
cytoma PC12 cells that had been metabolically labelled with
32PO4

2�. Basal 32P incorporation was enhanced severalfold by
inhibition of PP1 and PP2A family serine/threonine phosphatases
with calyculin A and okadaic acid. Stimulation of cAMP
production by forskolin led to a smaller but statistically significant
increase in Drp1 phosphorylation (Fig 1A). As cAMP–PKA
signalling was implicated in mitochondrial dynamics (Alto et al,
2002; Muller et al, 2005), we scanned the Drp1 sequence for
consensus PKA phosphorylation sites. Ser 656 (numbering of rat
Drp1 splice variant 1) at the N-terminal border of the GTPase
effector domain is highly conserved among metazoan Drp1
orthologues (Fig 1B). All evolutionary substitutions preserve the
PKA consensus motif (R-[R/K]-� -[S/T]).

In vitro phosphorylation of wild-type and Ser 656 mutant GST–
Drp1643–755 fusion proteins showed that Ser 656 is the only PKA
site within this domain (Fig 1C). As shown by transient expression
of epitope-tagged complementary DNAs in COS cells, Ser 656
mutation decreased metabolic 32P incorporation into Drp1 to

approximately half (52±6%, n¼ 6; Fig 1D). Coexpression of wild-
type Drp1 with the PKA catalytic subunit led to a marked
enhancement of Drp1 phosphorylation (Fig 1E; 170±19%, n¼ 6),
whereas the Ser656Ala mutation blunted this effect (71±6%
incorporation compared with wild-type Drp1 without PKAc).
Thus, Ser 656 is a major PKA phosphorylation site conserved
in evolution.

Drp1 phosphorylation inhibits mitochondrial fission
Drp1 assembles into dimers, tetramers and higher order oligo-
mers, and oligomerization accelerates GTP hydrolysis (Hoppins
et al, 2007). Chemical crosslinking of cell extracts expressing
epitope-tagged Drp1 showed that neither the dephospho-mimetic
Ser656Ala mutation nor the phospho-mimetic Ser656Asp muta-
tion affects Drp1 oligomerization (supplementary Fig 1A online).
GTP-agarose pull-down assays from similar extracts indicated that
Ser 656 phosphorylation has no qualitative influence on GTP
binding (supplementary Fig 1B online). Similarly, [g-32P]GTP
hydrolysis assays carried out with recombinant Drp1 suggested
that Ser 656 phosphorylation does not modulate the intrinsic
GTPase activity of Drp1 (supplementary Fig 1C online).

To analyse the effect of Ser 656 phosphorylation on the
mitochondria-restructuring activity of Drp1, we combined
Ser 656 mutant Drp1 expression with RNA interference

5A B

C

ED

4

3

R
el

.32
P

 in
co

rp
or

at
io

n

Con
tro

l

OA Caly
c A

Fo
rs

ko
lin

2

Protein

W
T

WT
– + – +

Ser
65

6A
la

Ser656Ala
W

T
Ser

65
6A

la

GFP
3HA

Ser
65

6A
sp

GST–Drp1GED

IP: Drp1

IP/IB:

Drp1

IB: Drp1

IB: Drp1

IP: HA

3HA–Drp1
Drp1 PKAc

32P 

32P 

32P 
32P 

1

0

GTP MID VD GED

8348
n=

*

*

*

Drp1 (vertebrate)
Drp1 (fly)
Drp1 (worm)
Dynamin 1

Fig 1 | Identification of Drp1 Ser 656 as a PKA phosphorylation site. (A) Endogenous Drp1 was immunoprecipitated (IP) from PC12 cells that had been

metabolically labelled with 32PO4
2�. Cells were treated with okadaic acid (OA, 300 nM, 2 h), calyculin A (Calyc A, 25 nM, 1 h), forskolin (20 mM, 1 h) or

vehicle (control) before collection. The bar graph shows 32P incorporation normalized to Drp1 levels and relative to control (mean±s.e.m. of n¼ 3–8

experiments, *Po0.0005 by Student’s t-test). (B) Domain diagram of Drp1 and sequence alignment of the boundary between the variable domain (VD)

and the GTPase effector domain (GED; PKA consensus underlined). (C) GST–Drp1GED (aa 643–755) fusion proteins were phosphorylated in vitro with

PKA and [g-32P]ATP. (D) GFP and 3� haemagglutinin (HA)-tagged wild-type (WT) and Ser656Ala Drp1 were expressed in COS cells metabolically

labelled with 32P and then immunoprecipitated with a Drp1 antibody. (E) 3� HA–Drp1 (WT/Ser656Ala) was coexpressed with empty vector (�) or

PKAc (catalytic subunit) in COS cells metabolically labelled with 32P and analysed after HA IP. Drp1, dynamin-related protein 1; GFP, green fluorescent

protein; GST, glutathione S-transferase; GTP, GTPase domain; IB, immunoblotting; MID, middle domain; PKA, cAMP-dependent protein kinase.

Drp1 phosphorylation controls apoptosis

J.T. Cribbs & S. Strack

EMBO reports VOL 8 | NO 10 | 2007 &2007 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION

scientificreport

940



(RNAi)-mediated silencing of the endogenous protein. To this end,
plasmids were constructed that coexpressed a Drp1-directed short
hairpin (sh) RNA and green fluorescent protein (GFP)-tagged
Drp1, which was rendered RNAi resistant by silent mutations in
the shRNA target sequence (supplementary Fig 2A online). CV1
fibroblasts were transiently transfected to substitute endogenous
Drp1 with GFP-tagged wild-type and mutant Drp1, and changes
in mitochondrial shape were assessed by digital morphometry of
epifluorescence images. Compared with cells substituted with
wild-type GFP–Drp1, expression of the phosphomimetic mutant
resulted in marked elongation and often perinuclear clustering of
mitochondria (Fig 2A,B), presumably because of unbalanced
mitochondrial fusion. The opposite phenotype—an abundance of
short and dispersed mitochondria—was associated with Drp1
Ser656Ala, indicating that this mutant is hypermorphic (Fig 2A,B).
These bidirectional effects are best explained by phosphorylation
at Ser 656 inhibiting the scission activity of Drp1.

To confirm these results using different methods in a different
cell type, clonal PC12 cell lines were generated in which
endogenous Drp1 was stably replaced with wild-type and
Ser 656 mutant GFP–Drp1 (supplementary Fig 2B online).
Measuring mitochondrial profiles in transmission electron micro-
graphs of ultrathin sections, we detected a significant increase in
the cross-sectional area and length (major axis) of mitochondria in

Drp1 Ser656Asp- and a decrease in Ser656Ala-expressing PC12
cells compared with wild type (supplementary Fig 3C online). Cells
harbouring the hypermorphic (Ser656Ala) mutant had ultrastructu-
rally normal mitochondria, whereas expression of the hypomorphic
(Ser656Asp) Drp1 frequently resulted in swollen mitochondria with
christae in various stages of dissolution. In addition, we sometimes
noted separation of inner and outer mitochondrial membranes in
Drp1 Ser656Asp-harbouring cells (supplementary Fig 3A,B online).
Therefore, inhibition of mitochondrial division by prolonged
expression of Drp1 Ser656Asp leads to mitochondrial dysfunction.
The slower growth rate and increased acidification of the media
that we observed in these Drp1-inhibited cells (data not shown) is
consistent with decreased ATP production and a switch from
oxidative to glycolytic metabolism.

Sympathetic activity promotes Drp1 phosphorylation
A phosphorylation-specific Drp1 antibody was produced to track
Drp1 activity in vivo. We focused on cardiac muscle as a
prototypical system for adrenergic regulation of PKA activity.
Intraperitoneal injection of the b-adrenergic agonist isoproterenol
resulted in reproducible increases in Ser 656 phosphorylation of
Drp1 immunoprecipitated from rapidly dissected heart tissue.
Mice subjected to a stress and exercise regimen (15 min forced
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Fig 2 | Effects of phosphorylation site mutant Drp1 on mitochondrial

morphology. (A) Epifluorescence micrographs of immunofluorescently

labelled mitochondria from CV1 fibroblasts in which endogenous Drp1

was replaced with wild-type (WT), Ser656Ala and Ser656Asp GFP–Drp1

(transfected cells are outlined). (B) Quantification of the mitochondrial
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swimming) also showed hyperphosphorylation of heart-derived
Drp1 at the PKA site (Fig 3A).

Calcium-dependent dephosphorylation of Drp1 by PP2B
Next, we sought to identify the phosphatase that activates Drp1
through dephosphorylation of Ser 656. Unexpectedly, given that
the PP1/PP2A inhibitors calyculin A and okadaic acid increased
overall 32P incorporation into Drp1 endogenous to PC12 cells
(Fig 1A), neither inhibitor enhanced Drp1 Ser 656 phosphorylation
(data not shown). We conclude that PP1/PP2A target sites other
than Ser 656. Implicating the calcium-dependent phosphatase
calcineurin in the regulation of Drp1, activation of L-type calcium
channels by combined membrane depolarization and channel
agonist treatment (25 mM KCl, 0.1 mM BayK8466) promoted rapid
dephosphorylation of Ser 656 after forskolin pretreatment (Fig 3B).
Calcium ionophoresis (2 mM A23187) and calcium release from
intracellular stores (10 mM cyclopiazonic acid) also led to Drp1
dephosphorylation (data not shown). Calcium-dependent dephos-
phorylation was prevented by the calcineurin inhibitors FK506
and cyclosporin A but not by calyculin A (Fig 3B), indicating that
calcineurin most likely dephosphorylates Drp1 Ser 656 directly.

Staurosporine antagonizes Drp1 phosphorylation
As PKA is a well-established pro-survival kinase, and because
Drp1-mediated mitochondrial fission is important for cytochrome
c release from the mitochondria (Martinou & Youle, 2006), we
examined the effects of the classical apoptosis inducer stauro-
sporine on Drp1 Ser 656 phosphorylation. Staurosporine blocked
forskolin-dependent phosphorylation of endogenous Drp1

apparently by inhibiting PKA activity, as it also prevented tyrosine
hydroxylase phosphorylation at Ser 40 (Fig 3C), an established
PKA/PP2A site. The staurosporine effect did not involve stimula-
tion of calcineurin activity, as FK506 only marginally increased
Drp1 Ser 656 phosphorylation under these conditions (Fig 3C). We
also observed staurosporine-induced Ser 656 dephosphorylation
at basal cAMP levels (without forskolin), both of stably expressed
GFP–Drp1 and endogenous Drp1 (Fig 3D; data not shown).

Drp1 Ser 656 determines apoptotic sensitivity
To examine whether the calcium- or staurosporine-induced
dephosphorylation and activation of Drp1 is relevant to pro-
grammed cell death, we turned to the PC12 cell lines in which
endogenous Drp1 was replaced with wild-type, Ser656Ala mutant
and Ser656Asp mutant GFP–Drp1. Two or three independently
isolated clones of each Drp1 variant were characterized to control
for clonal selection artefacts. Cell morphology, growth rates and
spontaneous cell death were comparable in all cell lines except
that GFP–Drp1 Ser656Asp-expressing cell lines proliferated at
approximately half the rate of other lines, mirroring the phenotype
of HeLa cells depleted of Drp1 by RNAi (Benard et al, 2007). In
terms of sensitivity to apoptotic stimuli, cell lines expressing
wild-type GFP–Drp1 were indistinguishable from GFP-negative
cell lines selected in parallel (data not shown).

Hypo- and hypermorphic Drp1 mutants showed opposite
effects on cell viability in response to several apoptosis inducers.
Despite their ultrastructurally abnormal mitochondria, cells
expressing the pseudophosphorylated Drp1 hypomorph (Ser656Asp)
remained viable in 1 mM staurosporine much longer than
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wild-type and Drp1 Ser656Ala-expressing cells (Fig 4A). Drp1
Ser656Asp-expressing cells also showed greatly attenuated
caspase activation in response to staurosporine (Fig 4B) and
showed partial resistance to the topoisomerase inhibitor etopo-
side, the calcium ionophore A23187 and hydrogen peroxide.
Conversely, and in comparison to wild-type Drp1, the constitu-
tively dephosphorylated Ser-Ala mutant conferred increased
sensitivity to the same set of insults (shown for two clonal cell lines
in Fig 4C,D and supplementary Fig 4A online). One exception was
the chemotherapeutic agent doxorubicin, which has pleiotropic
effects and promotes cell death by both apoptotic and non-
apoptotic mechanisms (Gewirtz, 1999). Doxorubicin killed cells
largely indiscriminately of the Drp1 genotype (supplementary
Fig 4B online). These experiments indicate that the
phosphorylation state of Drp1 at Ser 656 sets the threshold for
apoptotic cell death.

DISCUSSION
Here, we report on the identification of a conserved phosphoryla-
tion site in the large GTPase Drp1, which controls the
mitochondria-severing activity of the enzyme and mitochondria-
dependent cell death. Ser 656 phosphorylation is mediated by
PKA in vitro and in intact cells, and occurs in response to
sympathetic activity in vivo. Calcium mobilization leads to
dephosphorylation of this site, and studies with specific inhibitors
have identified calcineurin as the relevant phosphatase. Blocking
phosphorylation of Ser 656 by mutation to alanine renders
Drp1 hyperactive and sensitizes cells to diverse apoptotic
insults, whereas pseudophosphorylation of Drp1 by the
Ser656Asp mutation has the opposite effect. These results
underscore the pivotal role of Drp1 in apoptosis and provide a
molecular mechanism for second messenger regulation of
mitochondrial morphogenesis.

It might seem counterintuitive that Drp1 Ser656Asp-expressing
PC12 cell lines were significantly protected from apoptotic insults,
although their mitochondria showed gross ultrastructural abnor-
malities. However, our findings parallel the apoptosis resistance,
proliferative impairment and bioenergetic defects reported in
Drp1-depleted cell lines (Lee et al, 2004; Benard et al, 2007) and
thus support the conclusion that Ser 656 phosphorylation inacti-
vates Drp1. As a cancer-derived cell line, PC12 cells are adapted
to growth under anaerobic conditions. It remains to be investi-
gated whether Drp1 phosphorylation/inactivation promotes
survival in cells such as primary neurons with a lower capacity
for glycolytic ATP production.

The identification of Drp1 as a PKA effector is noteworthy in
that many growth factors and hormones regulate cellular
metabolism by changes in intracellular levels of cAMP. Although
the relationship between mitochondrial morphology and bioener-
getics is complex (Koopman et al, 2005; Benard et al, 2007), there
is some evidence that links cAMP to mitochondrial remodelling
(Alto et al, 2002; Muller et al, 2005). With regard to the role of
PKA in apoptosis, previous studies have shown that mitochondria-
associated PKA activity is critical for cell survival (Harada et al,
1999; Affaitati et al, 2003). Our finding that pseudophosphory-
lated Drp1 attenuates apoptosis implicates Drp1 as an important
survival-promoting substrate of mitochondrial PKA.

The serine/threonine phosphatase calcineurin is one of the
main transducers of cytosolic calcium fluxes, with particularly

important and well-characterized roles in immune cells and the
nervous system (Aramburu et al, 2004). In neurons, ischaemic
conditions known to entail massive rises in cytosolic calcium have
been shown to fragment mitochondria (Rintoul et al, 2003;
Barsoum et al, 2006; Zanelli et al, 2006). To what extent
calcineurin-mediated activation of Drp1 is involved in the
pathological sequelae of neuronal calcium overload is another
question that deserves further study.

The mechanism by which Ser 656 phosphorylation inhibits
mitochondrial fragmentation by Drp1 activity is unresolved.
Although the phosphorylation site is strategically positioned near
the GTPase effector domain, our in vitro studies did not show
differences in oligomeric assembly or GTP binding and hydrolysis
among the Ser 656 variants. It is possible that Drp1 phosphoryla-
tion affects the subcellular distribution of the enzyme, its
ubiquitination or sumoylation and/or its association with as yet
unidentified effector or regulatory proteins.

A CDK phosphorylation site in Drp1 located just 20 residues to
the N-terminal of Ser 656 was recently identified (Taguchi et al,
2007). Intriguingly, the corresponding alanine mutant Drp1 was
shown to promote mitochondrial elongation, suggesting that
phosphorylation at that site activates the enzyme. In the absence
of structural information for Drp1, it is difficult to predict how
close the CDK and PKA phosphorylation sites are within three-
dimensional space. However, opposite regulation of enzymes by
neighbouring phosphorylation sites is well documented (Hudmon
& Schulman, 2002). How could CDK and PKA phosphorylation
have opposite effects on Drp1 activity? Perhaps phosphorylation at
one site prevents access of the kinase or recruits the phos-
phatase to the other site. Indeed, our results implicate different
phosphatases in the regulation of Drp1 by multisite phosphoryla-
tion, as PP1/PP2A inhibitors increased total 32P incorporation into
Drp1 but not Ser 656 phosphorylation. Regardless of the precise
mechanisms involved, reversible phosphorylation of Drp1 by
multiple kinases and phosphatases ties the enzyme into a complex
regulatory network that allows for rapid mitochondrial remodel-
ling in response to intrinsic and extrinsic signals.

METHODS
Metabolic labelling and in vitro phosphorylation. COS cells or
PC12 cells were metabolically labelled with 0.5 mCi/ml 32PO4

2� in
phosphate-free medium containing 1% dialysed fetal bovine
serum for 4–5 h, with inhibitors and agonists added during the
last 1–2 h. Immunoprecipitation of ectopically expressed or
endogenous Drp1 was carried out in lysis buffer (1% Triton
X-100, 150 mM NaCl, 20 mM Tris (pH 7.5), 1 mM EDTA, 1 mM
EGTA, 1 mM b-glycerolphosphate, 1 mM Na3VO4, 1 mM
Na4P2O7, 1 mM microcystin-LR, 1 mM phenylmethylsulphonyl
fluoride, 1 mg/ml leupeptin, 1 mM benzamidine). Immunoprecipi-
tates were separated by SDS–polyacrylamide gel electrophoresis,
immunoblotted for Drp1 and analysed for 32P incorporation by
PhosphorImager. 32P signals were divided by Drp1 chemilumi-
nescence signals to obtain relative levels of phosphorylation.
Several different volumes of each sample were loaded to ensure
that signals were in the linear range of detection. Additional
methods can be found in the Supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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