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ABSTRACT The Langevin dynamics of a random hetero-
polymer and its dynamic glass transition are studied using
elementary mode coupling theory. Contrary to recent reports
using a similar framework, a discontinuous ergodic–
nonergodic phase transition is predicted for all Rouse modes
at a finite temperature TA. For sufficiently long chains, TA is
almost independent of chain length and is in good agreement
with the value previously estimated by a static replica theory.

The self-organization of evolved biopolymers, such as foldable
proteins, ultimately depends upon the chain dynamics of
heteropolymers. The modern statistical mechanical view using
energy landscape ideas focuses on the analogy of folding with
phase transitions in finite size systems and exploits to a large
extent our understanding of the quasi-thermodynamic and
static features of both regular systems and frustrated disor-
dered systems, such as spin glasses (1). The connection with
detailed analytical theories of the time dependence of fluctu-
ational motions of a randomly interacting chain has only
recently received attention (2–5).
For completely random heteropolymers (RHP) the quasi-

thermodynamic analyses (19, 20) using replica techniques give
results parallel to those for other systems with random first
order phase transitions such as themean field Potts spin glasses
(6). An important feature of theories of random first order
transitions is the presence of two transitions; one is static, while
the other is dynamic and generally occurs at a higher temper-
ature. The dynamical transition signals a crossover to a mo-
tional mechanism involving activated motions (6–8) (We
denote this dynamical transition temperature TA). For RHPs,
two different kinds of approximate quasi-static theories based
on replicas (19) and on the generalized random energy model
(9) that takes into account correlation in the energy landscape
yield these two transitions. Replica-based techniques also yield
estimates for the free energy barrier heights of activated
motions between the two characteristic temperatures (19).
Purely dynamical theories based on mode coupling ideas
generally yield a transition in harmony with the quasi-static
analysis of the dynamical transition, which is in some sense a
spinodal. While mode coupling theory (MCT) is perturbatively
well defined for spin systems with long-range random inter-
actions (7, 8, 10), there are various versions developed in the
theory of fluids (11) and polymers (12–14) that are forced to
make uncontrolled approximations. On the basis of two such
calculations, the validity of the emerging picture of the dy-
namics and the energy landscape of RHPs have been ques-
tioned (4).

Roan and Shakhnovich (4) derive a MCT of the RHP and
explicitly solve it for a polymer in a good solvent. It is no
surprise that an uncollapsed chain has no dynamical transition,
but the authors further claim that this is actually a structural
feature of the RHP mode coupling equations independent of
the state of collapse. Thirumalai et al. (5) derive another set of
mode coupling equations for a somewhat different model that
exhibits no static replica symmetry breaking (15) and conclude
there is a dynamical transition with a transition temperature
that depends on the length scale of the motional mode
considered (5). A numerical treatment of self-consistent equa-
tions for heteropolymer collapse, on the other hand, does show
evidence for a dynamic freezing transition (3). The inconsis-
tency of these results with each other and in the first two cases
with replica calculations is disturbing. The technical intricacy
of these mode coupling calculations is a barrier to understand-
ing their inconsistencies. We have therefore derived mode
coupling equations using ‘‘elementary’’ methods like those
used decades ago in the theory of critical phenomena (11). The
resulting equations differ in some respects from those of the
earlier workers but clearly yield transitions in harmony with
the quasi-static results. These equations also lead to an un-
derstanding of how the dynamical freezing depends on chain
length and state of collapse, as well as how the dynamics varies
for different modes of chain motion.
We consider a standard Hamiltonian forN interacting beads

H 5 kBT O
i51

N

~ri11 2 ri!2 1 1y2 O
iÞj

bi ju~Dri j!

1 Vex 2O hi~t!zri~t!, [1]

where ri are the bead locations, bij is chosen as Gaussian random
with mean b0 and variance b2, Drij 5 ri 2 rj, and u(r) is the
two-body interaction chosen as a Gaussian exp2r2ys2. Vex is the
excluded volume term, which usually contains three body terms,
but it is enough, at the level of the present analysis for phantom
chain, to replace it with an effective Gaussian confinement term
Vconf 5 kBTB(ri2, with the constant B chosen so that the radius
of gyration Rg becomes the physically required value determined
by the packing fraction, h.† hi is the external force introduced for
convenience in the derivation of the response function. For
technical simplicity, we adopt a ring polymer model where rN11
5 r1. The Langevin equation for the beads is

G21tri 5 2bHyri 1 ji . [2]

Here ji(t) is a Gaussian random force for which the first two
moments are given by ^ji(t)& 5 0 and ^ji(t)jj(t9)& 5 2G21 dijd(t2
t9)1 (1 is the 3 by 3 unit matrix), G determines the microscopic
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time scale (it will be set to unity) and b 5 1ykBT as usual. Since
our main interest is in collapsed states where hydrodynamic
effects are less important, we ignore them for simplicity,
although their inclusion is not very hard. A more essential
simplification of our treatment is the neglect of entanglement
effects. An uncrossable chain will possess more friction than
the phantom chain treated here (12–14), modifying the dy-
namical transition temperature.
A standard tool for dealing with the average over the

quenched randomness in the Langevin dynamics has been the
dynamic functional integral (DFI) formalism (7, 8, 10). Al-
though this approach is generally accepted for the infinite
range spin model, direct application of the formalism to RHP
models is questionable for two reasons: (i) The heteropolymer
interaction is short range so that the mean field approximation
is not exact; in such a situation, there exists some ambiguity
with the DFI formalism in its use of steepest descents. (ii) In
contrast to spin models, the Jacobian appearing in the DFI
formalism of the heteropolymer model depends on the ran-
domness. This point was neglected in previous treatments. The
usual formal identity for averaging over randomness in the
Hamiltonian for a spin-glass model is no longer precisely true.
Thus, we take an alternative and simpler route here; we use a
perturbation theory in the randomness bij along with a self-
consistent prescription that corresponds to a particular resum-
mation of higher order terms. In the case of the infinite range
p-spin model (including the Sherrington–Kirkpatrick model),
this procedure still leads to exactly the same results as the DFI
formalism (7, 8).
We sketch the perturbation scheme briefly since details will

be published elsewhere. The Langevin equation, Eq. 2, can be
expressed as

rl~t! 5 O
i

G0,li p Sji 1 hi 2 by2


ri
O
k j

bk ju~Drk j!D, [3]
where p represents the time convolution and G0,ij(t 2 t9) is the
0-th order response function ^ri(0)(t)&yhj(t9). Inserting the
0-th order solution rl(0) 5 (G0,li p ji into the right-hand side of
Eq. 3 gives the first order solution rl(1) 5 rl(0) 2 by2•iG0,li p
yri(0)•kjbkju(Drkj(0)). We insert this once again into Eq. 3,
yielding the second order solution. After taking an average
over bij, we multiply the resulting equation byG021, which yields

G21tri
~2! 5 2O Ki jrj

~2!~t! 1 mO
j
E

2`

t

dt9DG0,i j~t 2 t9!

3 ¹¹u~Dri j
~0!~t!! z ¹u~Dri j

~0!~t9!! 1 ji~t!, [4]

where Kij is the harmonic constant matrix including the
confinement term, Kij1 [ kBT 2yrirj [((ri11 2 ri)2 1 B(ri2],
m 5 (bb)2, and DG0,ij5G0,ii2G0,ij2G0,ji1G0,jj. The random
noise correlation can also be calculated by perturbation theory.
With the use of the relation Clm 5 •ijGli p ^fifj& p Gmj, we can
derive the expression for the correlations up to second order,
C(2), which includes ^fi(t)fj(t9)&(2).
A part of higher order terms can be taken into account by

employing a self-consistent prescription. To this end, we first
expand the memory kernel of Eq. 4 in Drij(t9). Then, in the
spirit of Kawasaki’s derivation of MCT of critical dynamics
(11), we replace ri(0) in the right-hand side by ri and G0 by the
perturbed response function, G, giving a renormalized Lan-
gevin equation,

G21driydt 5 2OKi jrj~ t! 1 m O
j
E

2`

t

dt9DGi j~t 2 t9!

3 #i j~t 2 t9!Dri j~t9! 1 fi~t!, [5]

where #ij 5 ^[¹¹u(Drij(t))z¹u(Drij(t9))]yDrij(t9)&. In deriving
this equation, we used the isotropic symmetry of the model.
The random force fi(t) is also renormalized in the same way.
In the expression for ^fi(t)fj(t9)&(2), replacement of ri(0) by ri
leads to the colored noise correlation function,

^fi~t!fj~t9!& 5 2G211di jd~t 2 t9!

1 mF di jO
k

Mik~t 2 t9! 2 Mij~t 2 t9!G , [6]

where Mij 5 ^¹u(Drij(t))¹u(Drij(t9))& is the force–force correla-
tion on different beads. In calculating # and M we approximate
the stochastic process as Gaussian. The explicit expression forM
becomes Mij(t) 5 [(1 1 sDCij(0))2 2 (sDCij(t))2]25/2DCij(t),
where DCij5 Cii2 Cij2 Cji1 Cjj and s5 2ys2. For the ergodic
phase, with the time-translational symmetry and the relation
[tDCij(t 2 t9)]#ij(t 2 t9) 5 tMij(t 2 t9), we can verify that the
fluctuation–dissipation theorem indeed holds.
From Eqs. 5 and 6, a straightforward generalization of refs.

7 and 8 scheme for the p-spin model leads to a closed set of
integro-differential equations for the correlation functions. In
this case, due to the sequence–translational symmetry of ring
polymers, it is more transparent to write the equation in the
Rouse mode representation. Namely, the Fourier transform of
the correlation function with respect to the sequence satisfies
the equation

G21tcp~t! 1 cp~t!ycp~0!

1 mE
0

t

dttcp~t 2 t9!@m0~t9! 2 mp~t9!# 5 0, [7]

where cp(t) 5 FT(i2j)3p[Cij(t)] is the Rouse mode correlation
function and mp(t) 5 FT(i2j)3p[Mij(t)] is a nonlinear function
of all of the correlations {cp9}. The equal time correlation
function cp(0) obeys

cp~0!21 5 FT~i2j!3p@Ki j# 2 m@m0~0! 2 mp~0!# ; kp. [8]

If we introduce the normalized Edwards–Anderson (EA)
Rouse–Zimm order parameters q̃p 5 limt3`cp(t)ycp(0), the
self-consistent equation for q̃p becomes

q̃py~1 2 q̃p! 5 ~mykp!@m0~`! 2 mp~`!# ; Fp, [9]

which is isomorphous to the equations for the MCT of
structural glasses (18). Notice that if Fp Þ 0 the Rouse–Zimm
modes have a static offset indicating the trapping in a local
minimum, and that all p modes are coupled in evaluating
mp(`). Thus, clearly, the dynamic glass transition, if any,
should occur simultaneously for all modes in this analysis. In
general, the dynamic glass transition can be obtained by two
steps. We first solve Eq. 8 for cp(0) and then look for a
nontrivial solution of Eq. 9. Assuming cp(0), a purely static
quantity, does not exhibit any singular behavior (7, 8, 18), we
use an unperturbed confined Rouse value (i.e., FT(i2j)3p[Kij])
for cp(0) here avoiding the first step.
Fig. 1 shows EA parameters q̃p as a function of m with p 5

1, 50, 200, and 512 for a 1024-mer with parameters s 5 1 and
h 5 0.8. The EA parameters indeed exhibit a discontinuous
(first order) transition at a critical value denoted by mA for all
p modes. Increasing the chain length up to 32,768, we numer-
ically show that TA, defined by mA 5 (bykBTA)2 , converges to
a finite value TA 5 0.3b (Fig. 2), which is in good agreement
with the value 0.292b estimated by the static replica theory for
essentially the same model (20). This value depends little on
the choice of h and thus the agreement with the replica result
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is quite robust; with h 5 0.6 and h 5 1.0 we found TA 5 0.28b
and TA 5 0.32b, respectively.
Scanning a wide range of chain lengths, N, the self-

consistent equations yield two different transitions depending
on chain length and state of collapse (Fig. 2). For collapsed
phase (e.g., h 5 0.8), with short chain length, the EA param-
eters first achieve a small nonzero value (of order 1022) giving
a weakly nonergodic phase at a parameter value mc (broken
curve in Fig. 2). A stronger nonergodic phase, in which EA
parameters become of order unity (mA), appears for collapsed
states with chain length longer than 128 (solid curve in Fig. 2).
mc and mA coalesce at N ; 512, above which no weakly
nonergodic phase exists. Under Q solvent conditions (i.e., h 5
0 ), on the other hand, we do not find any second transition and
mc continues to increase with N. Since the statistical dynamical
theory presented here is inherently appropriate for sufficiently
large systems, we interpret the transition at mA to correspond
to the dynamical transition found by the replica approach (19,
20). The weak transition (mc) found here only for short chains
is fragile and could be an artifact of the model and we postpone
its detailed interpretation.
Fig. 3 plots q 5 lim t3`cp(t) as a function of p as well as its

inverse Fourier transformed frozen static displacement Qi2j.
Since the p 5 0 mode is purely diffusive, we drop this
component. Roughly, the frozen fluctuations qp andQi2js vary
with p and i 2 j in a manner quite similar to the equal time
fluctuations cp(0) and Ci2j, respectively. Although the frozen
modes are quite localized in the bead representation, the long
wavelength fluctuations corresponding to small p are consid-
erable.
Which mode is dominantly responsible for the transition?

The reduction theorem of Götze (18) suggests that within
MCT only one particular mode causes the instability of the
nonergodic glass phase and the eigenvector of the stability
matrix Spp9 5 Fpyq̃p9 with the largest eigenvalue corresponds
to the most dangerous mode. Dashed curves in Fig. 3 show the
right-eigenvector of this dangerous mode in the Rouse and
bead representation; np and ni2j have similar behavior to cp(0)
and Ci2j, respectively.
Eq. 7 can directly be integrated to get the explicit time

dependence of cp(t). As in the MCT for structural glasses,
critical slowing down is expected to be found as TA is ap-
proached. Details will be given elsewhere.
As mentioned above, the analysis of Roan and Shakhnovich

(4) yielded no singular behavior in the relaxation spectrum.
There are several points in their analysis that differ from the

present one but primarily their analysis is a lowest order
perturbation with respect to bij. However, it is clear from our
argument that the self-consistent nature of the MC calculation
is essential for the dynamic glass transition and obviously this
is included at a higher order in perturbation. This is a principal
reason for their discordant result. The approach of Thirumalai
et al. (5) is quite similar in spirit to ours, but they analyze an
uncoupled mode equation analogous to Eq. 7, which yields a
scale-dependent transition temperature. We believe that it is
more accurate to include the coupling of different Rouse

FIG. 1. EA order parameters qp for p 5 1, 50, 200, and 512 as a
function of m 5 (bb)2. Parameters used are n 5 1024, G 5 1, s 5 1,
and h 5 0.8.

FIG. 2. mA 5 (bykBTA)2 and mc as a function of chain length N. mA
(solid curve) and mc (broken curve) are actually computed at chain
length 2p with p 5 5, . . . , 15. h 5 0 for Q solvent and h 5 0.6, 0.8,
and 1.0 for the collapsed state. Parameters used are G 5 s 5 1 .

FIG. 3. EA order parameters qp and Qi2j as a function of p and i2
j (solid curves) and vector components np and ni2j of the dangerous
mode in p and i 2 j representations (broken curves). Parameters used
are the same as in Fig. 1 and m is slightly above mA.
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modes, forcing them to freeze simulutaneously. The consis-
tency with the static replica calculation buttresses the belief.
We emphasize again that the dynamic glass transition stud-

ied here by elementary MCT is, in reality, a crossover being
smeared out due to entropic droplets as discussed in refs. 6 and
20). Thus, TA should not be viewed as a crisp phase transition,
but a characteristic temperature at which the nature of chain
dynamics changes qualitatively from renormalized free chain
dynamics to activated escape from traps. Above TA, the
so-called cage effect due to the mode coupling addressed here
renormalizes the Rouse relaxation through internal friction
yielding slow dynamics analogous to the a relaxation of
supercooled liquids, whereas below TA (but still above the
static glass transition temperature) escape from localized free
energy minima by (local) thermal activations, i.e., entropic
droplets, controls the dynamics.
In applying these results to protein folding we need to

consider that proteins are not entirely random but have
evolved to satisfy the minimal frustration principle (1), so as to
avoid being trapped in nonnative local minima. The sequence
is designed so that energetically favorable but structurally
incorrect amino acid contacts are minimized. Thus, effects of
the RHP’s interaction considered here are superimposed on
the flow of configurations through a global funnel leading to
the native structure (1). Qualitatively, the folding transition
temperature TF should be larger than the static glass transition
TK for fast folding and may perhaps be even larger than TA. If
this is the case, folding can be viewed as a diffusion process in
an order parameter space, where slow dynamics renormalized
by mode coupling controls the configurational diffusion rate.

We thank D. Thirumalai and E. Shakhnovich for making us aware
of their referenced works prior to publication. We also thank K. S.
Schweizer for stimulating discussions. S.T. is a Postdoctoral Fellow for
Research Abroad of the Japan Society for the Promotion of Science.
J.J.P. is supported by National Science Foundation Grant CHE
95-30680. P.G.W. is supported by National Institutes of Health Grant
PHS 5 R01 GM44557 and was a Scholar-in-Residence at the Forgaty

International Center for Advanced Study in the Health Sciences
(National Institutes of Health, Bethesda) when this work was com-
pleted.

1. Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G.
(1995) Proteins Struct. Funct. Genet. 21, 167–195.

2. Kinzelbach, H. & Horner, H. (1993) J. Phys. I France 3, 1329–
1357.

3. Timoshenko, E. G., Kuznetsov, Yu. A. & Dawson, K. A. (1996)
Phys. Rev. E. 54, 4071–4086.

4. Roan, J.-R. & Shakhnovich, E. I. (1996) Phys. Rev. E. 54,
5340–5357.

5. Thirumalai, D., Ashwin, V. & Bhattacharjee, J. K. (1996) Phys.
Rev. Lett. 77, 5385–5388.

6. Kirkpatrick, T. R. & Wolynes, P. G. (1987) Phys. Rev. B. 36,
8552–8564.

7. Kirkpatrick, T. R. & Thirumalai, D. (1987) Phys. Rev. B. 36,
5388–5397.

8. Crisanti, A., Horner, H. & Sommers, H.-J. (1993) Z. Phys. B. 92,
257–271.

9. Wang, J., Plotkin, S. & Wolynes, P. G. (1997) J. Phys. I France,
in press.

10. Fischer, K. H. & Hertz, J. A. (1991) Spin Glasses (Cambridge
Univ. Press, Cambridge, U.K.).

11. Kawasaki, K., (1976) in Phase Transitions and Critical Phenom-
ena, eds. Domb, C. & Green, M. E. (Academic, New York), Vol.
5a, pp. 165–403.

12. Schweizer, K. S. (1989) J. Chem. Phys. 91, 5802–5821.
13. Schweizer, K. S. (1989) J. Chem. Phys. 91, 5822–5839.
14. Schweizer, K. S. (1993) Phys. Scr. T 49, 99–106.
15. Garel, T., Leibler, L. & Orland, H. (1994) J. Phys. II France 4,

2139–2148.
16. Sasai, M. &Wolynes, P. G. (1990) Phys. Rev. Lett. 65, 2740–2743.
17. Sasai, M. & Wolynes, P. G. (1992) Phys. Rev. A. 46, 7979–7997.
18. Götze, W. (1991) in Liquids, Freezing and the Glass Transition,

eds. Levesque, D., Hansen, J. P. & Zinn-Justin, J. (Elsevier, New
York), pp. 287–504.

19. Takada, S. & Wolynes, P. G. (1997) Phys. Rev. E., in press.
20. Takeda, S. & Wolynes, P. G. (1997) Entropic Droplets and

Activated Events Near the Glass Transition of a Random Hetero-
polymer, Los Alamos cond-maty4701165, preprint.

Biophysics: Takada et al. Proc. Natl. Acad. Sci. USA 94 (1997) 2321


