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Pseudomonas aeruginosa is an important pathogen in immunocompromised patients and secretes a diverse
set of virulence factors that aid colonization and influence host cell defenses. An important early step in the
establishment of infection is the production of type Ill-secreted effectors translocated into host cells by the
bacteria. We used cDNA microarrays to compare the transcriptomic response of lung epithelial cells to P.
aeruginosa mutants defective in type IV pili, the type III secretion apparatus, or in the production of specific
type IIl-secreted effectors. Of the 18,000 cDNA clones analyzed, 55 were induced or repressed after 4 h of
infection and could be classified into four different expression patterns. These include (i) host genes that are
induced or repressed in a type III secretion-independent manner (32 clones), (ii) host genes induced specif-
ically by ExoU (20 clones), and (iii) host genes induced in an ExoU-independent but type III secretion
dependent manner (3 clones). In particular, ExoU was essential for the expression of immediate-early response
genes, including the transcription factor c-Fos. ExoU-dependent gene expression was mediated in part by early
and transient activation of the AP1 transcription factor complex. In conclusion, the present study provides a
detailed insight into the response of epithelial cells to infection and indicates the significant role played by the

type III virulence mechanism in the initial host response.

Pseudomonas aeruginosa is one of the most virulent oppor-
tunistic pathogens in humans. In the setting of preexisting
epithelial injury, particularly in immunocompromised patients,
it leads to devastatingly acute infections, including pneumonia
and sepsis (52). Up to 75% of patients in intensive care units
are colonized with P. aeruginosa, and the mortality from pneu-
monia is 40%, even with antibiotic treatment (39).

P. aeruginosa boasts an impressive array of cell-associated
and secreted virulence factors that contribute to its pathogen-
esis. Key among these is type IV pili, the major bacterial
adhesin, and the type III secretion system with its secreted
exotoxins. Type IV pili are polar fimbriae comprised of pilin,
the product of the pilA gene (reviewed in reference 40). A
unique feature of type IV pili is their ability to extend and
retract (41). In addition to their roles in adhesion, type IV pili
are also involved in biofilm formation (55) and twitching mo-
tility (63) and serve as bacteriophage receptors (49). They are
required for full virulence in a mouse model of acute pneu-
monia (3, 11).

Upon host cell contact, the type III secretion system allows
bacteria to directly inject toxins into the host cell, where they
subvert host cell defense and signaling systems (24). Four type
III-secreted effectors have been identified in P. aeruginosa,
although few if any strains secrete all four of them (reviewed in
reference 9). PA103, a human lung isolate, encodes and se-
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cretes two effectors, ExoU and ExoT. ExoU is a potent cyto-
toxin whose host cell targets and mechanism of action are
not yet known (12, 13, 21). ExoT is a bifunctional protein,
possessing an N-terminal GTPase-activating domain with GAP
activity toward Rho, Rac, and Cdc42, and a C-terminal ADP-
ribosyltransferase domain (16, 32, 35). The presence of a func-
tional type III secretion system is associated with poor out-
come in acute P. aeruginosa infections in humans (19, 51).
Evidence also suggests that type III effectors, in addition to
their effects on host cellular enzymes, are likely to evoke rapid
and specific changes in gene expression. Peripheral blood
mononuclear cells respond to purified ExoS exposure by in-
creasing the transcription of proinflammatory cytokines and
chemokines (10, 34), and macrophages upregulate numerous
genes in response to effectors of the homologous Yersinia en-
terocolitica type I1I secretion system (53). The lung epithelium,
which represents an important barrier to infection and a pri-
mary target of type IlI-secreted effectors, responds to P. aerugi-
nosa infection through the expression of many genes involved
in host defense and immune cell activation (25). However, the
role played by type III secretion in this response is not known.
Here we use microarray analysis and well-characterized mu-
tant strains of cytotoxic P. aeruginosa to investigate the re-
sponse of lung epithelial cells to different type III effectors.
More than 18,000 genetic elements were analyzed, and this
resulted in the classification of expression patterns both de-
pendent and independent of the type III toxin function. The
type Ill-independent response consisted of genes involved in
inflammatory responses and cytoprotective roles, whereas the
majority of type III-dependent genes, induced through the
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TABLE 1. Strains used in this study

Strain Relevant characteristic(s)” Reference
PA103 Virulent lung isolate of P. aeruginosa; known type III secreted effector proteins are ExoT and ExoU 1,38
PA103 exoT PA103 with an xylE aacC1 cassette replacing aa 36 to 348 of exoT; Gm" 16
PA103 exoU PA103 with an in-frame deletion of aa 330 to 571 of exoU 16
PA103 exoT exoU PA103 exoU with an xylE aacC1 cassette replacing aa 36 to 348 of exoT; Gm"® 16
PA103 pscJ::Tn5 Tn5 Gm" cassette inserted into psc/; defective in type III secretion 29
PA103 pilA PA103 with Stul/Bsu361 region of pilA replaced with a Gm" cassette 4

“ aa, amino acids; Gm", gentamycin resistance.

action of either ExoU or other unidentified type III effectors,
were transcriptional or cell signal regulators. We also show
that the mechanism by which ExoU induced gene expression
involves the early and transient activation of the AP1 transcrip-
tion factor complex.

MATERIALS AND METHODS

Bacteria, cells, and infection protocol. P. aeruginosa strain PA103, a cytotoxic
lung isolate, and mutants derived from this strain that were used in the present
study are described in Table 1. Two days prior to use, bacteria were inoculated
from glycerol stocks onto Luria-Bertani (LB) agar plates and grown overnight at
37°C, and single colonies were subsequently incubated overnight in 2 ml of LB
broth at 37°C without shaking. The 9HTEo ™ cells are an simian virus 40 T-
antigen-transformed line derived from human tracheal epithelium and were
kindly provided by D. Gruenert (University of Vermont). The cells were main-
tained in Dulbecco modified Eagle medium supplemented with glutamine (2
mM; Gibco), streptomycin (50 wg/ml; Gibco), penicillin (50 U/ml; Gibco), and
Serum Supreme (10%; BioWhittaker). The cells were grown on plastic vessels
precoated with a solution containing Vitrogen (0.2 mg/ml; Cohesion), NaOH
(0.83 mM), and Ham F-12 medium (10%; Gibco). For infection studies, cells
(between passages 18 to 22) were seeded at 150,000 cells/cm?, grown until
completely confluent (usually 3 days), and then washed and incubated in serum-
and antibiotic-free medium for a further 20 h. Freshly grown bacteria in LB broth
were diluted into the serum- and antibiotic-free medium and added to the cells
at a multiplicity of ca. 10 bacteria/cell. The amount of bacterial inoculum was
enumerated by serial dilution and plating on LB agar plates.

Care was taken to use completely confluent monolayers of 9HTEo— cells in
the infection studies since they become polarized, form tight junctions (18), and
resist the cytotoxic effects of PA103 up to 5 h after infection (B. McMorran,
unpublished observations).

Microarray hybridization and analysis. Total RNA was prepared from in-
fected and uninfected (control) cells by using the RNeasy RNA isolation kit
(Qiagen). RNA samples (40 pg) were labeled with Cy5 or Cy3 dUTP, purified,
and subjected to microarray hybridization as described previously (26). Equal
amounts of control (noninfected, Cy3-labeled) and infected (Cy5-labeled) sam-
ple were hybridized to microarray chips (human 19K2.2; Ontario Cancer Insti-
tute) overnight at 45°C in humidified chambers. Slides were washed for 3 min in
0.2X SSC (1x SSCis 0.15 M NaCl plus 0.015 M sodium citrate)-0.05% sodium
dodecyl sulfate (SDS) and then twice for 3 min each time in 0.2X SSC prior to
obtaining fluorescence images with a Genetic MicroSystems G418 scanner.

Spot intensities were quantified by using Imagene software (Biodiscovery).
The proportion of “passed” spots (i.e., with detectable intensity) on each array
was 60 to 70%, and no intrachip or spatial variations in hybridization signals were
observed. Quantified data were normalized and analyzed by using the Gene-
spring package (Silicon Genetics). For normalization the 40th percentile of all
measurements was used as a positive control for each sample; each measurement
for each gene was divided by this synthetic positive control, assuming that this
was at least 0.01. The bottom tenth percentile was used as a test for correct
background subtraction. To calculate the presented ratios, the measured inten-
sity of each gene was divided by its control channel value. When the control
channel intensity was <200, the datum point was considered unreliable and
omitted. Raw data are viewable at http://microarray.imb.uq.edu.au/base/www
/index.phtml (login: guest-wainwright; password: XuFEG1D2).

Clones corresponding to spots of interest were obtained from the Ontario
Cancer Institute. Plasmids from pure cultures were sequenced with M13 primers
(22), and identity was established by using the basic local alignment search tool
(BLAST) and the NCBI GenBank database. Plasmids were digested to liberate

insert without poly(A)* tail, where possible, and separated on an agarose gel
with the QiaQuick gel extraction kit (Qiagen) to be used as Northern probes.

Northern blotting. Total RNA (15 pg) was separated on a 1% agarose-
formaldehyde gel and transferred to Magna nylon membrane (Osmonics). Pre-
hybridization (3 h) and hybridization (overnight) were performed in 5X SSPE
(1X SSPE is 0.18 M NaCl, 10 mM NaH,PO,, and 1 mM EDTA [pH 7.7]), 5X
Denhardt solution, 0.5% SDS, 1 g of heat-denatured sheared salmon sperm
DNA/ml (Sigma), and 50% formamide at 42°C. Probes were labeled by using
[«-*?P]CTP and a random priming (Megaprime; Amersham Pharmacia) and
then purified on G-50 Sephadex. Hybridized blots were washed at high stringency
(0.1X SSC-0.1% SDS at 42°C). Bands were detected and quantified by phos-
phorimaging with phosphor screens (Kodak) and a Storm scanner and Image-
Quant software (both from Molecular Dynamics). A 600-bp fragment of the
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) cDNA was used a load-
ing control in the quantification calculations.

Immunofluorescence staining. Cells for staining studies were grown on Vitro-
gen-coated glass coverslips and, after infection, were washed in phosphate-
buffered saline (with three 2-min washes) and fixed in cold methanol (30 min).
Staining was performed on prepermeabilized cells (0.1% Triton X-100-phos-
phate-buffered saline for 10 s) in a solution containing 0.5% bovine serum
albumin (Sigma). The primary antibodies and dilutions used were anti-cFos at
1/100 (clone 4-G, goat polyclonal immunoglobulin G [IgG]; Santa Cruz Bio-
chemicals) and anti-P. aeruginosa at 1/400 (purified rabbit sera [a gift from C.
Whitchurch, University of California at San Francisco]). Secondary antibodies,
Cy3-labeled donkey anti-goat IgG, and Alexa Fluor 488-labeled chicken anti-
rabbit IgG (Molecular Probes) were used at a 1/400 dilution. Fluorescence
staining was visualized on an Olympus AX-70 microscope with a X60 oil immer-
sion objective lens. Images were captured from a CCD300-RC charge-coupled
device camera (Dage-MTI) by using NIH Image 1.62 software and were merged
and processed by using Adobe Photoshop 5.0.2.

Electrophoretic mobility shift assay (EMSA). Preparation of the nuclear ex-
tracts, probe preparation and binding reactions were performed essentially as
described previously (56). Extracts were prepared from ca. 1.2 X 107 9HTEo—
cells. An AP1-specific double-stranded oligonucleotide (CGATTGACTCAGT
ACTGAGTCAATCG, with the consensus AP1-binding sites underlined) and a
nonspecific oligonucleotide of similar size were used in the binding reactions. For
the antibody inhibition experiments, 3 wg of anti-c-Fos or anti-B-galactosidase
(goat polyclonal IgG; Cortex Biochem) antibody was included in the binding
reaction. Protein-DNA complexes were separated on 6% nondenaturing poly-
acrylamide gels (acrylamide-bisacrylamide [29:1]) run at 100 V in 0.5X Tris-
borate-EDTA buffer. The gels were dried and visualized by autoradiography.

RESULTS

Microarray analysis identifies genes regulated in 9HTEo—
cells by P. aeruginosa infection. To assess and compare the
contributions of type III secretion to the transcriptional host
cell response, exoT, exoU, exoT exoU, pscl, and pilA isogenic
mutants and the parental wild-type PA103 strains of P. aerugi-
nosa were used (Table 1). The former three strains harbor
deletions in the ExoU and/or ExoT genes and do not secrete
the respective toxins, although they possess a functional type
III secretion apparatus. The psc/ mutant harbors a transposon
insertion in the psc/ gene and has a nonfunctional type III
secretion apparatus (29). The pilA strain contains an antibiotic
resistance cassette in the pilin gene and lacks type IV pili; it is
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also defective for type III-dependent effects (29; Jakobsen and
J. Engel, unpublished results). Cells were infected for 4 h and
subsequently subjected to microarray analysis. cDNA was pre-
pared from cells infected with each strain (Cy5 labeled),
pooled with cDNA from uninfected cells as a common refer-
ence (Cy3 labeled), and hybridized to microarrays containing
over 18,000 cDNA clones (with ca. 25% redundancy) (Ontario
Cancer Institute, Toronto, Ontario, Canada). The microarrays
contained duplicate spots of each cDNA clone, providing two
measurements of relative gene expression. In addition, dupli-
cate hybridizations were performed by using independently
grown and infected cell material (biological replicates) to allow
for technical and biological variation between hybridizations.
Raw duplicate data sets were merged into one experiment by
using Genespring software (Silicon Genetics) and subjected to
normalization and expression analysis as described in Materi-
als and Methods.

We first sought to identify genes that were regulated by
infection by comparing expression levels of PA103 wild-type
infected and noninfected cells. Representative scatter plots for
noninfected/noninfected and parental/noninfected hybridiza-
tions are illustrated in Fig. 1. Extremely low variation is evident
in the first plot, indicating that the Cy3 and Cy5 incorporation
and hybridization efficiencies were similar. In the second plot,
the majority of genes lie within a twofold ratio range and were
considered unregulated by infection. Datum points located
outside the twofold boundaries were taken to be significantly
different from control expression and chosen for further anal-
ysis.

A total of 9,243 cDNA elements were used in the analysis,
and 55 clones, representing ca. 46 unique genes, were signifi-
cantly and reproducibly up- or downregulated by P. aeruginosa
infection compared to noninfected cells (Table 2). These genes
represent the total transcriptional response to infection mea-
sured by the arrays. Each of the clones was independently
sequenced to verify its identity on the array. Although this is a
relatively small proportion of the total number analyzed, an
initial examination indicated several upregulated genes previ-
ously shown as inducible by P. aeruginosa infection. These genes
included monocyte chemotactic protein (MCP1/SCYA?2), tris-
tetraproline (TTP), ras homolog RhoB, viral oncogene homo-
log c-fos and urokinase type plasminogen activator receptor
(PLAUR) genes (25). Raw expression intensity values were
also very similar between the different samples, indicating that
the changes were due to infection and not to variation in the
reference signal. Northern blots performed on RNA from ad-
ditional infection experiments were used to check the repro-
ducibility of the array data and were in close agreement with
expression patterns (see Fig. 3).

Identification of genes regulated dependently and indepen-
dently by type III-secreted toxins. Cluster analyses allowed the
infection-regulated genes to be categorized into one of four
expression pattern classes (Fig. 2): (i) upregulated by infection
with all six strains (class A); (ii) downregulated by all six strains
(class B); (iii) upregulated only by the parental and exoT mu-
tant strains (class C); and (iv) upregulated only by the parental
and exoT, exoU, and exoT exoU mutant strains (class D). Since
the first two classes of genes were regulated equivalently by all
of the strains including parental, we termed this group type
III-independent genes (Table 2). Class C genes were only
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FIG. 1. Scatterplot profiles of 9HTEo— cell genes after microarray
hybridization and normalization. Each plot represents the Cy3 versus
Cy5 expression intensity ratios of 9,243 genes derived from microarray
hybridization experiments comparing noninfected and noninfected
cells (top) or comparing noninfected and PA103-infected cells (bot-
tom). Genes which lie outside the upper and lower twofold boundaries
(blue lines) are significantly up- or downregulated in infected versus
noninfected cells. The significance of these expression changes are
indicated by graded coloring from one, two, or three standard devia-
tions difference between infected and noninfected intensities. Gray
color refers to genes lacking duplicate datum points.

induced by strains able to secrete ExoU, so this group was
termed ExoU dependent (Table 2). Class D genes were in-
duced by mutants with specific deletions in ExoU and ExoT, as
well as the parental strain, but were not regulated by the
mutants completely defective in type III secretion. Therefore,
this group was termed type III secretion dependent (Table 2).

Approximately 23 unique genes (represented by 27 clones)
were induced (class A) and 5 were repressed (class B) in a type
IIT secretion-independent manner. The products of these
genes were classified according to their major cellular func-
tions. The majority were involved in either the control of im-
mune and host defense mechanisms (n = 5) or oxidant pro-
tection (n = 4). Molecules with roles in transcriptional
regulation (n = 2), cell signaling (» = 4), and solute transpor-
tation (n = 2) were also represented, along with five unchar-
acterized expressed sequence tags (ESTs). Northern blots on a
selection of these genes confirmed that these expression pat-
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TABLE 2. Relative expression ratios of 9HTEo— cell genes regulated by P. aeruginosa infection

INFECT. IMMUN.

Relative expression ratio of P. aeruginosa strain:

homolog)

Class and gene Full gene name Accession Function
designation ot PA103  exoT exoU  exoTU  pscJ  pilA
Class A: type 111
independently
activated genes
VEGFA Vascular endothelial growth n91060  Proinflammatory 8.04 498 5.65 5.72 5.69 6.17 0.001
factor A
VEGFA Vascular endothelial growth aal26903 Proinflammatory 4.9 4.46 2.76 2.65 3.86 3.37 0.001
factor A
IGFBP3 Insulin-like growth factor binding n24118 Proinflammatory 258 2,02 2.71 2.58 3.65 291 0.1
protein 3
ADM Adrenomedullin w19284  Proinflammatory, 6.43 215 9.62 4.97 576 543 0.1
antimicrobial
FSTL3 Follistatin-like 3 n75101 Proinflammatory 213 1.78 1.63 2.4 2.18 1.59 0.04
IRS2 Insulin receptor substrate-2 aa(035325 Signal regulator 341 147 2 231 2.57 2.05 0.01
ANKRD3, DIK Dual-specificity Ser/Thr/Tyr w37332  Signal regulator 371  2.63 4.66 3.49 441 3.59 0.06
kinase 3 (dik gene)
STC1S Stanniocalcin 1 r48681 Autocrine signal 2037 475 1175 11.22 13.66 6.23 0.08
SRA1 Steroid receptor RNA activator 150254 Transcription 734 434 6.49 6.57 8.44 9.68 0.08
regulator
NFIL3 Nuclear factor regulated by IL-3  w67706  Transcription 559  4.69 4.85 4.74 7.56 3.99 0.03
activator
MTIE Metallothionein 1E h93127  Oxidant protection  4.64  1.61 4.05 206  4.68 3.42 0.06
MTIE Metallothionein 1E h52525 Oxidant protection ~ 3.47  1.43 3.87 2.49 44 4.06 0.17
MT1G Metallothionein 1G w78010  Oxidant protection 4.3 1.37 3.08 3.25 41 371 0.15
MT1G Metallothionein 1G h57208 Oxidant protection 2.9 1.55 2.7 2.52 422 413 0.2
MT2A Metallothionein 2A h91612  Oxidant protection 422 154 295 291 3.81 4.08 0.2
Oatprpl Organic anion transporter h84604  Membrane 3.05 233 1.85 5.51 27 312 02
member 12 transport
SLC2A1 Solute carrier protein 2 w58375  Membrane 296  3.66 2.35 3.18 293 2.66 0.02
transport
ADFP Adipose differentiation-related w20444  Membrane 342 251 1.94 1.69 2.87 201 0.2
protein (adipophilin) protein,
inducible
U2AF65 U2 small nuclear aa053859 mRNA processing 273 1.64 1.94 1.89 1.42 145 0.01
ribonucleoprotein auxiliary
factor
RNA pol 1 RNA polymerase I 16-kDa n71041 mRNA processing 228 172 1.58 1.83 201 1.63 0.2
(16 kDa) subunit
PCR17 Rab GTPase-activating protein aa047487 Signal regulator 225 094 2.07 2.53 191 1.7 02
SYN2 Syndecan 2 aal56696 Wound repair 3.1 2.43 3.83 3.37 3.68 26 0.1
EHD4 EH domain containing 4 n94535 228 148 2.52 1.29 215 253 0.2
EST Chromosome 14q24.3, BAC h91088 352 334 321 2.9 3.09 2.89 0.01
201F1
EST Hypothetical protein FLJ21616 198518 3.03 133 2.54 2.33 333 3.68 0.07
EST No homology n68160 3.01  2.68 2.69 3.33 1.94 196 0.17
EST Hypothetical protein aa040473 291 1.9 2.09 2.15 219 226 0.02
DKFZp566J091
Class B type III
independently
repressed genes
DUSP6 Dual-specificity phosphatase 6 165557 Signal regulator 0.65 0.39 0.46 0.59 0.56 0.54 0.17
TRXIP Thioredoxin-interacting protein ~ n71361 Oxidant protection ~ 0.24  0.26 0.15 0.13 0.15 0.15 0.001
EST KIAA1515 protein r40307 024 015 0.079 0.073 0.13 0.08 0.1
EST Chromosome 11q, clone:RP11-  h09816 035 07 0.49 0.66 0.53 0.64 0.003
687M24
EST Hypothetical protein (HSPC210) h72619 0.43  0.06 0.43 0.12 0.17 0.16 0.1
Class C: exoU-
dependent
activated genes
DUSP1 Dual-specificity phosphatase 1 179387 Signal regulator 50.19 13.76 3.97 3.15 2.16 249 0.09
DUSP1 Dual-specificity phosphatase 1 h87493 Signal regulator 1143 11.52 3.86 6.25 2.18 2.61 0.005
DUSP1 Dual-specificity phosphatase 1 h29136 Signal regulator 1585 5.48 4.22 3.85 1.91 2.12 0.001
DUSP1 Dual-specificity phosphatase 1 h01773 Signal regulator 1436  8.64 4.45 6 2.02 289 0.03
KNSL5 Kinesin-like 5 aa043507 Signal regulator 7.07  6.34 1.98 2.05 3.54 232 0.003
RhoB Transforming protein RhoB (ras  w67471  Signal regulator 7.3 0.668  2.85 2.06 246 1.41 0.1

Continued on following page
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TABLE 2—Continued
Class_and gene Full gene name Accession Function Relative expression ratio of P. aeruginosa strain:
designation ot PA103  exoT exoU  exoTU  pscJ  pilA
RhoB Transforming protein RhoB (ras 132081 Signal regulator 454 482 201 278 232 222 0.07
homolog)
FOS v-fos FBJ murine osteosarcoma  aa019816 Transcription 20.8 3.1 2.72 401 43 162 0.1
viral oncogene homolog activator
MYC v-myc proto-oncogene protein w87861  Transcription 1037  5.66 3.42 244 595 369 0.1
activator
MYC v-myc proto-oncogene protein h43827 Transcription 7.73 10 2.99 328 263 326 0.02
activator
NR4A1/nur77 Nuclear receptor subfamily 4, n64388 Transcription 5.37 1.6 1.26 202 156 1.04 0.2
grpA, murine nur77 homolog activator
BPTF Bromodomain transcription h02279 Transcription 4.04 3.01 196 295 15 1.68 0.03
factor activator
TTP Tristetraproline aa054080 Transcription 3.7 1.51  2.02 278 118 16 0.1
activator mRNA
stability
TCF8/ Transcription factor 8 aal50750 Transcription 1646 523 3 299 178 149 0.02
repressor
TCF8 Transcription factor 8 r43502 Transcription 444 317 207 243 134 1.61 0.03
repressor
PLAUR Urokinase type plasminogen 175241 Protease regulator 4.85 1.4 0.69 0.9 051 0.61 0.1
activator receptor
EST Chromosome 14, BAC R-156E22 185513 204 20.8 2.79 2.9 2.16  1.62 0.004
EST Similar to hypothetical protein aa(044730 6.3 698 222 246 29 241 0.1
FLJ11328
EST No homology h87673 497  3.65 155 .71  1.14 1.74 0.09
EST Hypothetical protein FLJ22182  aal56747 447 549 202 187 22 2 0.05
Class D: type
I1I-dependent
activated genes
MCP1/SCYA2 Monocyte chemotactic protein 1 aa024753 Proinflammatory 1.93 266  3.63 378 072 131 0.1
MCP1/SCYA2 Monocyte chemotactic protein 1~ 175975 Proinflammatory 112 232 244 288 0.7 082 0.1
TIEG TGF-early inducible gene aa045730 Transcription 262 221 187 1.97 135 1.21 0.002
activator

“ GenBank accession number.
® As determined by Student ¢ test analysis.

tern classes were reproducible. Adrenomedulin (ADM) was
strongly induced as early as 3 h after infection and to equiva-
lent levels by all strains (Fig. 3A), a finding consistent with the
array results in Table 2. Genes downregulated by infection
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FIG. 2. Expression patterns of 9HTEo— cell genes regulated after
P. aeruginosa infection. A total of 55 genes that showed >2-fold dif-
ference between noninfected cells (N) and cells infected by P. aerugi-
nosa PA103 parental (P), exoT (T-), exoU (U-). exoT exoT (TU-), pscJ
(J-), and pilA (A-) were clustered into four different expression profile
classes (A to D). The number of genes in each group is indicated in
parentheses.

D. Type 11I-dependent (n=3)

were also confirmed in Northern blotting experiments. As an
example, expression of thioredoxin-interacting protein (TRXIP)
was very high in untreated cells but strongly repressed between
3 and 4 h after infection (Fig. 3B).

Approximately 14 genes (represented by 20 cDNA clones)
fell into the class C (ExoU-dependent expression pattern; Ta-
ble 2). Genes in this group were consistently expressed at least
twofold higher in the ExoU-sufficient parental and exoT strains
compared to the ExoU-deficient mutants (i.e., the exoU, exoT
exoU, pscJ, and pil4 mutants). In many cases, induction by the
latter four strains was completely absent. The vast majority of
characterized ExoU-dependent genes are involved in tran-
scriptional and cell signal regulation (n = 9). A further four
clones represent unidentified ESTs. ExoU-dependent regula-
tion of several of these genes was confirmed by Northern
blotting. Transcripts encoding dual-specificity phosphatase
1-mitogen-activated protein (MAP) kinase phosphatase 1
(DUSP1/MKP1), nuclear orphan receptor 4Al1 (NR4Al/
nur77), and c-fos were all induced within 3 h of infection only
by wild-type and exoT mutant strains (Table 2 and Fig. 3C to
E). The expression pattern of RhoB suggested partial depen-
dence on ExoU since all six strains induced the gene, but in the
wild-type bacteria and ExoT mutant, induction was at least
three times higher (Fig. 3F). We also found that interleukin-6
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FIG. 3. Northern blot analysis of P. aeruginosa PA103 induced genes. Each panel depicts the quantified expression level relative to GAPDH
expression (top), Northern blot autoradiograms of the specific gene (center), and the GAPDH loading control (bottom). Cells were infected with
each indicated strain for 3 and 4 h. ADM and TRXIP are examples of class A and B genes, respectively. DUSP1, NR4A1, Fos, RhoB, and IL-6
are examples of class C genes, and SCYA2 and TIEG are examples of class D genes. GenBank accession numbers of clones from which the

Northern probes were constructed are also noted.

(IL-6), a well-characterized inflammatory cytokine not repre-
sented on the array, was regulated in an ExoU-dependent
manner (Fig. 3G). No ExoU-dependent genes were downregu-
lated by infection.

The type III-dependent group (class D) contained two
unique genes, MCP1/SCYA?2 and transforming growth factor
(TGF-B) early inducible growth factor (TIEG), which encode
known host inflammatory response proteins. Northern blotting

analysis of these two genes confirmed that they were regulated
in the pattern inferred from the array analysis (Table 2 and Fig.
3H and I).

ExoU-dependent induction of AP1 transcription factor ac-
tivity. A number of ExoU-dependent genes identified on the
arrays are classified as immediate-early (IE) inducible genes
(including c-Fos, c-Myc, DUSP1/MKP1, and RhoB), meaning
that their regulation is subject to rapid changes in intracellular
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A

non-infected

FIG. 4. Immunolocalization of c-Fos expression. Black and white
panels represent images of cells immunostained with anti-c-Fos anti-
body after exposure to P. aeruginosa strains PA103 (A) or PA103 exoU
(B) for different lengths of time as indicated (in minutes). Color panels
represent images of cells doubly stained with anti-c-Fos antibody (red
channel) and anti-P. aeruginosa antibody (green channel). Examples of
nuclear localized c-Fos are indicated with arrows. Magnification,
X 600.

signaling and transcriptional activity rather than requiring de
novo protein synthesis for their expression. Few of the type
III-independent genes belong to this class, suggesting that
ExoU was targeting a rapid response cell signaling pathway(s)
during infection. Oncogene c-fos is one of the best-character-
ized IE genes. It is activated by a variety of stress-inducing
stimuli and regulated via many signaling mechanisms including
MAP kinase cascades. The c-Fos protein forms heterodimeric
complexes with members of Jun protein family called API,
which functions as a transcriptional activator of genes involved
in cell protection and survival (65). Interestingly, other ExoU-
dependent genes identified in the arrays were coregulated with
cfos in response to other stimuli, including c-myc (58) and
DUSP1/MKP1 (62). In addition, NR4A1/nur77, SCYA2/
MCP1, IL-6, and PLAUR are known to be activated by AP1 (7,
44, 46, 57). Therefore, c-Fos and AP1 may represent key me-
diators of the ExoU-stimulated response, and we decided to
further characterize the mechanism of induction.

At the level of protein production, we observed no de novo
increases in c-Fos protein during infection (data not shown).
However, immunofluorescence studies revealed changes in the
cellular location of c-Fos. The protein resides in the cytoplasm
of quiescent cells but, upon stimulation, translocates to the
nucleus, where it forms transcription factor complexes (50). In
uninfected cells, significant levels of endogenous protein were
localized to the cytoplasm (Fig. 4). Exposure to P. aeruginosa
resulted in a rapid translocation of c-Fos to the nucleus (within
30 to 60 min), followed by the return to a cytoplasmic location
by 120 min. This phenomenon was ExoU dependent since no
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FIG. 5. AP1 EMSA. Nuclear extracts from noninfected cells (Non)
and cells infected for 40 min with PA103 (WT) or PA103 exoU (U-)
were incubated with radiolabeled AP1 oligonucleotide. An intense
shifted band (arrow) indicates the presence of active DNA-binding
AP1 complex. Competition experiments with 10- and 50-fold excess
unlabeled (AP1 comp) AP1 oligonucleotide abolished the band,
whereas nonspecific oligonucleotide (non-specific comp) did not, in-
dicating the specificity of the DNA-protein complex. Inclusion of anti-
c-Fos antibody, but not anti-B-galactosidase (anti-B-Gal) antibody,
inhibited band formation, indicating that c-Fos protein was present in
the active complex.

nuclear translocation was observed in cells exposed to the
ExoU-deficient mutant. No further changes in protein location
were observed after extended lengths of infection (up to 4 h)
with either parental or mutant strains (data not shown). Using
an anti-P. aeruginosa antibody, bacilli were observed interact-
ing with cells at similar, but relatively low frequencies for both
strains (estimated at 5 to 10% cells bound by bacteria), a
finding consistent with observations in other polarized epithe-
lial cell infection models (36). Although both bound and un-
bound cells contained nuclear c-Fos after exposure to the wild-
type strain, no cells treated with the mutant strain (bound or
unbound) were activated (Fig. 4), further suggesting that trans-
location required the function of ExoU.

The c-Fos protein functions as a DNA-binding transcription
factor in a heterodimeric complex called AP1, the activity of
which can be detected by using labeled oligonucleotides con-
taining the AP1 recognition site in an EMSA. Active AP1
complex was not present in the nuclei of uninfected cells but
was detected within 40 min of infection with the parental
PA103 strain (Fig. 5). This coincided with the time at which
c-Fos protein relocates from the cytoplasm to the nucleus. No
AP1 activity was detected in cytoplasmic extracts (data not
shown), and the AP1 complex contained c-Fos protein since
anti-c-Fos antibody specifically abolished the AP1 band and
caused a weak supershifted band (visible on extended expo-
sure). AP1 activity was also detected after infection by ExoU-
deficient bacteria. However, consistent with the other regula-
tory studies the band intensity was significantly less than wild-
type levels, indicating the requirement of AP1 in the regulation
of ExoU-dependent gene expression.
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DISCUSSION

Type III secretion allows for rapid contact and communica-
tion between bacteria and host cells. For many gram-negative
species, the role of secreted type III effectors is to evade host
defense mechanisms. In the case of P. aeruginosa, the eftectors
characterized to date appear to disable host cell actin cytoskel-
eton and cell-cell junctions, inhibit phagocytosis, and cause cell
necrosis, thereby (presumably) disrupting the epithelial cell
barrier and preventing an effective immune response. While
much is understood about the functions of these effectors, little
is known about the host cell response they may evoke. We
sought to address this through the use of microarray studies
that allowed the simultaneous measure of expression of thou-
sands of different genes in conjunction with a controlled in
vitro infection system and well-defined strains of P. aeruginosa.
Our studies indicate the important role of type III secretion.

We detected a modest number of genes regulated in
9HTEo— cells by infection with P. aeruginosa. By comparison,
macrophages may alter the expression of 10 to 20% of the total
transcriptome in response to defined pathogen components
such as lipopolysaccharide, and the response is idiosyncratic to
particular pathogens (2). Other microarray studies have ob-
served similarly small changes in gene expression in cultured
lung epithelial cells infected with a different strain of P. aerugi-
nosa (25) or in cytokine-stimulated lung epithelial cells (6). A
comparison between our data and these earlier studies reveal
similarly regulated genes, indicating that such microarray strat-
egies are reproducible and comparable to findings of other
labs. Using an alternative lung epithelial cell line (A549) and a
different P. aeruginosa strain (PAK), which lacks flagella and
secretes ExoS and ExoT but lacks ExoU, Ichikawa et al. (25)
identified 22 genes that were upregulated after 3 h of P. aerugi-
nosa exposure. Of the 15 represented on the microarrays used
here, 5 were similarly induced. Other studies have addressed
the response of epithelial cells to inflammatory stimuli such as
tumor necrosis factor alpha and IL-18 exposure, and several
genes are shared by these cells, including follistatin, stannio-
calcin, TTP, MCP1/SCYA2 and vascular endothelial growth
factor (VEGF) (6). This suggests the activation mechanism
during P. aeruginosa exposure may involve the same signaling
pathways as cytokines.

A major finding from the array study was the distinction
between epithelial cell genes responsive to type III effectors
and those regulated (presumably) by other bacterial factors.
The latter set of genes fell into two expression classes: upregu-
lated (class A) or downregulated (class B) by infection. It is
interesting that there were no differences in the host cell tran-
scriptional response to the type III secretion-defective mutant
and the nonpiliated mutant. This observation underscores
three important points. First, the lack of host cell transcrip-
tional response to the pil4 mutant is not simply a consequence
of its decreased binding compared to the psc/ mutant. Second,
this finding suggests that the type IV pilus does not itself
modulate the host cell transcriptional response, although it
may affect host cell signal transduction. Finally, while some of
the mutant strains tested are more efficiently internalized than
others (i.e., the exoU exoT and psc/ mutants), no transcripto-
some pattern specific to bacterial internalization could be iden-
tified.

INFECT. IMMUN.

Many of the genes responsive to factors other than the type
III-secreted effectors are clearly candidates for roles in the
early phase of inflammation induced by the organism. ADM is
a peptide hormone that acts at sites of trauma to dilate the
endothelium and permit the passage of inflammatory cells. It
also possesses antimicrobial activity and has been identified in
epithelial cells in response to other infectious stimuli (30, 60).
VEGEF has a range of biological activities, including endothe-
lial cell migration, proliferation, and increasing vascular per-
meability (5, 17), and its production has recently been associ-
ated with epithelial infections (42, 45). Many other genes
products upregulated by infection have roles in the regulation
of infection/inflammation/stress response pathways. Follist-
atins regulate cytokine production in the acute phase response
(8), RhoB is a negative regulator of NF-«B signaling (15), and
insulin receptor substrate 2 (IRS2) mediates signaling from
cytokine receptors (61). All of the known downregulated genes
also have roles that fit with regulation of cellular response to
infection. DUSP6/MKP3 is a specific inhibitor of the MAP
kinase and extracellular regulated kinase (66), and MAP ki-
nases are activated by P. aeruginosa infection (48). Particularly
interesting was the downregulation of TRXIP. This molecule
mediates the cell response to oxidative stress by regulating the
expression and activity of thioredoxin (28). The fact that three
metallothionein genes were also upregulated on the arrays
suggests that redox maintenance and regulation in epithelial
cells is an important process in the host response to infection,
perhaps protecting the cell from the toxic free radicals pro-
duced by P. aeruginosa.

Approximately 50% of the genes regulated by P. aeruginosa
infection were not affected by the type III secretion mutants.
This suggests that the secreted effectors influence gene activa-
tion pathways that are distinct from other virulence factors.
The largest group of such genes were induced only by strains
producing ExoU. ExoU-deficient mutants are known to exert
reduced cytotoxicity on cells (13, 21), but studies to date have
so far failed to determine the exact mechanism of ExoU func-
tion (12). Our studies indicate that ExoU activity may result in
AP1 transcription factor activation. Nuclear translocation of
c-Fos and concomitant AP1 activation occurred rapidly (within
30 to 40 min) after exposure to the bacteria and required
ExoU. Whereas c-Fos translocation occurred only in monolay-
ers exposed to ExoU-sufficient strains, P. aeruginosa-bound
cells, as well as unbound cells, were stimulated. Either binding
is relatively weak at this time point, or biological activation by
ExoU may involve cell-cell communication mechanisms.

A number of ExoU-dependent genes identified by array and
expression studies are known to be AP1 responsive, including
NR4A1/nur77, SCYA2/MCP1, and IL-6 (44, 46, 57). What are
the possible signaling pathways that may link ExoU and AP1?
Recent studies have shown that P. aeruginosa activates Ca**-
dependent MAP kinase signaling in a pilus-dependent manner
(48). Several lines of evidence from our studies suggest that
MAP kinase signaling is also involved in mediating ExoU-
dependent expression. Some of the genes are MAP kinase
responsive in other systems, including MCP1/SCYA2 (64),
PLAUR (34), and c-fos and c-myc (59). DUSP1/MKP1 is also
upregulated during MAP kinase activation and plays a nega-
tive feedback role by directly inactivating multiple MAP ki-
nases (33). AP1 activity is regulated in part by phosphorylation
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by the MAP kinase c-Jun N-terminal kinase (59). Therefore,
ExoU may target components of a MAP kinase cascade that
stimulate pathway activation or relieve its inhibition. Despite a
lack of obvious cytotoxicity in the infected 9HTEo— cells dur-
ing the infection time frame, the expression of several of the
ExoU-dependent genes was consistent with an apoptotic
and/or necrotic phenotype. NR4A1/nur77 has a proapoptotic
role in T-cell development (43) and is upregulated after cyto-
kine-induced growth arrest in melanoma cells (47). AP1 activ-
ity is involved in several apoptotic mechanisms (31). However,
other ExoU-dependent gene products, such as DUSP1/MKP1
(14) and IRS2 (54, 67), have roles in protecting cells from
apoptosis. Extended infection with P. aeruginosa (i.e., >24 h)
does lead to cell death in 9HTEo— cells (E. O. Costelloe,
unpublished data), and it is possible that these genes are in-
duced in an attempt to delay the onset of apoptosis or necrosis.

The discovery of genes upregulated in an ExoU- and ExoT-
independent, but type III-dependent manner (class D) sug-
gests there are other secreted effectors in strain PA103 that can
influence gene expression or that the type III secretion appa-
ratus itself can activate host cell responses. Other studies have
also raised this possibility (20). For example, the exoU exoT
double mutant induces apoptosis in bone marrow-derived mac-
rophages (Jakobsen and Engel, unpublished) and cytotoxicity
when incubated with HeLa cells (16). However, the class D
genes are likely to be markers of the host defense response
rather than cytotoxicity in the 9HTEo— cells since no cyto-
pathic effects were observed. MCP1/SCYAZ2 is a widely used
marker of inflammatory action, and the product plays an im-
portant role in immune regulation by recruiting inflammatory
cells to the site of infection (37). TIEG activation is indicative
of TGF-B function (27), which is important in the repair of
wounded epithelial cells (23). Therefore, the identification of
the molecule(s) responsible for this activity may provide new
targets for the prevention of cell damage and antinflammatory
therapies in P. aeruginosa infection.

ExoT activity induces marked changes in the cytoskeletal
structure and the internalization capacity of cultured Hela
cells and macrophages (16). However, in the 9HTEo— cells no
effects attributable to ExoT were observed at the morpholog-
ical or gene expression level (i.e., in comparing the ExoT-
sufficient strain PA103 exoU with the ExoT-deficient PA103
exoT exoU, psc], and pilA strains). Although the reasons for this
are not clear, it is possible that more polarized cells resist the
effects of ExoT, since others have noted no phenotypic effects
in confluent MDCK epithelial cells infected with an alternate
PA103 exoU strain (13).

In conclusion, we have provided a here detailed account of
the responses evoked by epithelial cells upon contact with P.
aeruginosa; this is the first such study addressing the impor-
tance of type III-mediated toxin secretion in epithelial cell
gene regulation. The host cell response can be dissected into
toxin-dependent and -independent pathways, with MAP kinase
cascades and AP1 activation being important components in
the former. Further characterization of the pathways mediat-
ing type III toxin actions will help us to understand the poten-
tial benefits or problems associated with drugs that may be
developed to inhibit type III secretion.
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