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Target DNA from the uncultivable Codakia orbicularis endosymbiont was PCR amplified from sea-grass
sediment. To confirm that such amplifications originated from intact bacterial cells rather than free DNA,
whole-cell hybridization (fluorescence in situ hybridization technique) with the specific probe Symco2 was
performed along with experimental infection of aposymbiotic juveniles placed in contact with the same
sediment. Taken together, the data demonstrate that the sulfide-oxidizing gill endosymbiont of Codakia
orbicularis is present in the environment as a free-living uncultivable form.

All of the thioautotrophic endosymbioses occurring in ma-
rine invertebrates that have been examined so far are unam-
biguously confined to the gamma subdivision of the Proteobac-
teria, where they form a single coherent cluster (13, 14). These
endosymbionts have to infect each new host generation suc-
cessfully either by a vertical transmission from parents to off-
spring (6) or by an environmental transmission that involves
the infection of the next host generation from an environmen-
tal stock of a free-living symbiont form (3).

The endosymbiont transmission mode has been elucidated
for only few species due to the difficulty in cultivating symbi-
onts and raising the invertebrate hosts from the egg to the
adult stage in the laboratory. The environmental transmission
mode was strongly suggested to occur in two oligochaetes (19)
and in a few vestimentiferans based on molecular data ob-
tained from mature gonads (8) and on ultrastructural obser-
vations of embryonic and larval stages (4, 35, 42). In bivalves,
the symbiont transmission mode appears to be family specific,
as suggested previously (23): vertical in Solemyidae (7, 33) and
Vesicomyidae (8, 9) and environmental in Lucinidae (21, 23,
25, 26).

The shallow-water tropical lucinid Codakia orbicularis is the
only marine invertebrate with chemoautotrophic bacterial en-
dosymbionts for which the environmental transmission mode
has unequivocally been demonstrated, by using experimental
infections of aposymbiotic juveniles (21, 24) with unsterilized
sediment collected from sea-grass beds as an inoculum. These
experiments have suggested the presence of a free-living but
uncultivable form of the gill endosymbiont in the sediment.

Recently, fluorescence in situ hybridization (FISH) with spe-

cific labeled oligonucleotide probes that target intracellular
rRNA were described for the direct identification of individual
bacterial cells within their natural environment (1, 2). This
approach offers the advantage of circumventing the require-
ment for cultivation to identify and distinguish bacterial cells in
environmental samples either directly (in situ) or after prelim-
inary extraction (2). FISH probes have been successfully ap-
plied to the hydrothermal environment for the identification of
yet-unculturable filamentous bacteria (41), ε-proteobacteria
invertebrate epibionts (39), and thermophilic bacteria from
deep-sea hydrothermal chimneys (28) but have never been
used to locate chemoautotrophic endosymbionts prior to their
colonizing invertebrate hosts.

MATERIALS AND METHODS

Sediment was collected from low-sulfide-containing Thalassia testudinum sea-
grass beds and subdivided into three parts. The first part was used for experi-
mental infections, the second was used for DNA extraction, and the third was

* Corresponding author. Mailing address: Département de Biologie,
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FIG. 1. PCR detection of C. orbicularis free-living symbiont form in
sediments. Lanes: M, DNA marker; 1, gill; 2, T. testudinum sea-grass
sediment; 3, mangrove sediment; 4, negative control. PCR products
are located between 831 and 983 bp according to the sizes of standard
bands.
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FIG. 2. Whole-cell hybridization of cells extracted from T. testudinum sediment. (A) Hybridization with eubacterial probe EUB338; (B) iden-
tical microscopic field for DAPI staining; (C and E) hybridization with the C. orbicularis symbiont-specific probe Symco2; (D and F) identical
microscopic fields for DAPI staining. Arrowheads, nonbacterial sediment particles; straight arrows, free-living form of C. orbicularis gill endo-
symbiont; curved arrows, environmental bacteria. Bars, 5 �m.
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fixed in 4% paraformaldehyde in 4� phosphate-buffered saline for FISH exper-
iments.

Bacterial cells were extracted from sea-grass bed sediment as described else-
where (28) before hybridization as described by Heddi et al. (30). Two oligonu-
cleotides probes were used: EUB338 (5�-GCTGCCTCCCGTAGGAGT-3�),
targeting most members of the eubacteria (1, 11), and the C. orbicularis symbi-
ont-specific probe Symco2 (5�-TACAGAGGGTCGCCAACCCGTG-3�; Esche-
richia coli positions 1247 to 1268) (21).

Total nucleic acids were extracted from low and highly reduced sediments
according to the protocol for DNA extraction from soil described by Zhou et al.
(43) before PCR amplifications with the specific C. orbicularis symbiont primer
set (21, 23). To protect against unspecific hybridization that could occur when
amplifying total DNA extracted from the environment, each of the symbiont
ribosomal DNA (rDNA) targets amplified from sediment was purified and se-
quenced independently. PCR products from three independent amplifications
were pooled, sequenced, and manually aligned with the previously published
complete 16S rDNA sequence of the C. orbicularis gill endosymbiont (EMBL
accession number X84979) (15). A total of 730 nucleotide positions were utilized
in this analysis.

RESULTS AND DISCUSSION

PCR amplifications performed with the specific C. orbicu-
laris symbiont primer set (Symco1-1492r) on sea-grass bed
sediments and on mangrove swamp samples produced DNA
fragments around the expected size of 872 bp (Fig. 1). No
amplification products were obtained from the negative con-
trol reactions.

The oligonucleotide sequence of the specific primer Symco1
had been designed from 16S rDNA sequences deposited in
database libraries. Such analyses could not be sufficient enough
to guarantee a strong specificity of the primer sequences for
studying the microbial diversity in the environment, as the
sequences available represent only a small percentage of the
environmental bacteria. Direct sequence analysis indicated
that the PCR products amplified from sediment contained a
single detectable sequence. A total of 730 nucleotides were
sequenced for each sample analyzed, corresponding to posi-
tions 638 to 1002 and 1126 to 1492 of the E. coli nomenclature
(5). These 16S rDNA sequences were identical at all 730 nu-
cleotide positions determined from the previously examined C.
orbicularis symbiont, indicating that the PCR fragments corre-
spond to the gill endosymbiotic DNA.

However, PCR amplifications may also result from free
DNA or dead symbionts rather than from free-living intact
cells. Such a DNA could be released in the environment from
a recently deceased clam close to the sediment collection spot
or due to the feeding activity of clam predators that could
release symbionts in the sediment. Therefore, FISH experi-
ments were used to confirm the PCR results. Fluorescent
probes have successfully been used in various studies of envi-
ronmental bacteria from soils, lakes, or marine environments
(10, 12, 20, 28, 38, 40) and also in studies of various animal
symbioses (30, 31, 34).

Here, we used the symbiont-specific probe Symco2, which
has good accessibility to its target site along the 16S rRNA
sequence (18), i.e., 60%, compared to only 5% for Symco1 (E.
coli positions 638 to 656).

Most of the bacteria extracted hybridized with the universal
probe EUB338, which was used as positive control (Fig. 2A),
when compared to the cells stained with the DNA fluorescent
dye 4�,6�-diamidino-2-phenylindole (DAPI) (Fig. 2B). Only a
few bacteria were hybridized with the specific probe Symco 2

(Fig. 2C and E) compared to DAPI staining (Fig. 2D and F).
Such cells likely represent the free-living form of the C. orbic-
ularis gill endosymbiont.

The gill endosymbionts of C. orbicularis are generally rod
shaped, large (up to 5 �m), and characterized by sulfur gran-
ules located in the periplasmic space (17). The free-living form
of C. orbicularis gill endosymbiont extracted from T. testudi-
num sediment appears as small rods (1 to 2 �m) (Fig. 2C and
E). Thus, the observation of the symbiont structure appears to
reflect modifications that occur from extracellular to intracel-
lular life styles. The most striking difference is in the bacterial
size, which can increase two- to fivefold inside the bacterio-
cytes. This phenomenon seems to occurs in most animal bac-
teriocyte-inducing symbioses and may result from bacterial
growth deregulation under intracellular conditions (37).

Experimental infections of aposymbiotic juveniles of C. or-
bicularis, obtained as described previously (22), were also per-
formed with crude sediment collected in the same sea-grass
beds. All juveniles were infected by symbiosis-competent bac-
teria from the sediment, while juveniles from the negative
control remained aposymbiotic, indicating that no contamina-
tion had occurred in the laboratory during the experiments.
This demonstrates that the sediment used for in situ hybrid-
ization contained viable bacteria that were able to initiate
symbiosis with aposymbiotic host juveniles.

The data presented in this study provide the first evidence
for the free-living form of this symbiont species in the envi-
ronment and confirm environmental symbiont acquisition for
the other lucinids colonized by the C. orbicularis symbiont (15,
16, 26, 27). Thus, lucinid endosymbionts may exhibit evolution-
ary features different from those of other invertebrate (sole-
myid and vesicomyid bivalves) and particularly insect symbio-
ses, where endosymbionts are transmitted strictly vertically (7,
8, 33), which results in bacterial genome A�T bias and severe
genome size reduction (29, 32, 36).
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20. Glöckner, F. O., B. M. Fuchs, and R. Amann. 1999. Bacterioplankton com-
positions of lakes and oceans: a first comparison based on fluorescence in
situ hybridization. Appl. Environ. Microbiol. 65:3721–3726.

21. Gros, O., A. Darrasse, P. Durand, L. Frenkiel, and M. Mouëza. 1996. En-
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