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Specific oligonucleotide hybridization conditions were established for single-cell enumeration of unculti-
vated TM7 and IO25 bacteria by using clones expressing heterologous 16S rRNA. In situ analysis of human
subgingival crevice specimens revealed that a greater proportion of samples from sites of chronic periodontitis
than from healthy sites contained TM7 subgroup IO25. In addition, IO25 bacterial cells from periodontitis site
samples were more abundant and fourfold longer than IO25 cells from healthy site samples.

Fluorescence in situ hybridization (FISH) allows for the
quantification of microorganisms in mixed natural communi-
ties on a single-cell basis (1). To avoid nonspecific labeling with
FISH, however, hybridization stringency conditions for single-
nucleotide mismatch discrimination must be determined em-
pirically for each oligonucleotide probe. In the stringency op-
timization process, one must rely on the availability of
cultivated organisms closely related to the target group (10).

The diverse bacterial division TM7, found in contrasting
environments ranging from peat bogs to human periodontal
pockets, has no known cultivated members (3, 6, 14). The
relative abundances of TM7 bacteria and members of the IO25
subgroup have recently been associated with chronic periodon-
titis and especially mild (presumably early-stage) periodontal
disease in humans (3). Previous efforts to establish appropriate
levels of hybridization for TM7 group (6) and IO25 subgroup
(3) probes relied on cultivatable strains with two and four
nucleotide mismatches, respectively, at the probe hybridization
site, since there were no known cultivars with a single mis-
match. As a result, the hybridization conditions could not be
optimized for maximal target discrimination.

We present an alternative approach, cloned artificial targets
for FISH (catFISH), for quantifying uncultivated prokaryotes
in natural mixed communities using FISH, with single-nucle-
otide mismatch specificity. In place of cultivated close relatives,
we used recombinant Escherichia coli strains that express
cloned heterologous 16S ribosomal DNA (rDNA) with zero to
four mismatches at the probe hybridization sites. In addition,
specific mutations can be engineered into the cloned rDNA.
Our objectives were first to establish the hybridization condi-
tions for single-nucleotide mismatch discrimination by probes
TM7-905 and IO25-136, which target the TM7 division and the
TM7 subgroup IO25, respectively. Our second objective was to
quantify IO25 members in dental plaque samples from healthy
subgingival crevices and diseased human periodontal pockets.

FISH targets were created for validation of TM7 and IO25
probe specificity with 16S rDNAs amplified from human sub-

gingival specimens and from cultivated strains and then ex-
pressed in E. coli (Table 1). The Ancylobacter aquaticus strain
was grown in pure culture according to the American Type
Culture Collection specifications. For additional details con-
cerning methods, see http://relman.stanford.edu/supplements
/catFISH.html. Recombinant pCR4-TOPO plasmid vectors
(Invitrogen, Carlsbad, Calif.) containing PCR-amplified,
�1,380-bp 16S rDNA fragments were either selected from a
previous study of human subgingival plaque (clones pSBG1
and pSBG2) or prepared for this study from lyophilized cul-
tures of Mycoplasma felifaucium (pMF1) and Porphyromonas
endodontalis (pPE1) (Table 1). The PCR4-TOPO vector had
two promoter regions, LacZ and T7, for expression of the
plasmid insert. Plasmids were transformed into BL21Star
(DE3) chemically competent cells (Invitrogen) and expressed
via induction with 0.5 mM IPTG (isopropyl-�-D-thiogalactopy-
ranoside) for 3 h before the transformants were fixed in 10%
formalin. To assess the variability of results, nine of the pSBG1
clones and three of the pMF1 clones were independently
tested (data not shown). In addition, one single-nucleotide
mismatch mutant plasmid for probe TM7-905 (pSBG1a) and
one mutant plasmid for probe IO25-136 (pSBG1b) were cre-
ated from pSBG1 via the QuikChange site-directed mutagen-
esis kit (Stratagene, La Jolla, Calif.) (Table 1). All 16S rDNA
plasmid inserts were fully sequenced.

Formalin-fixed cells were transferred to Teflon slides with
4-mm-diameter wells (Erie Scientific, Portsmouth, N.H.) in
triplicate, posttreated, and subjected to hybridization as previ-
ously described (2, 5, 11), with the following modifications.
Formamide concentration in the hybridization buffer was var-
ied from 0 to 35% in 5% increments (10). Cy3 or Cy5 fluores-
cently labeled oligonucleotide probes (Operon, Alameda, Cal-
if.) Control-519 (5�CCTAGTGACGCCGTCGAC3�) (12),
Bac338 (5�GCTGCCTCCCGTAGGAGT3�) (8), TM7-905 (5�
GTCTTATCCCTCACTGCAGG3�) (6), and IO25-136 (5�GT
CTTATCCCTCACTGCAGG3�) (3), were prepared at a final
concentration of 5 ng/�l in 5 �l of hybridization buffer per slide
well. Hybridizations were performed at 46°C, followed by a
15-min rinse at 48°C in wash buffer, as described by Bond et al.
(2). The concentration of NaCl in the wash buffer was varied
according to Lathe’s equation (8). All cells were counter-
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stained with 1.0 �M YO-PRO-1 DNA dye (Molecular Probes,
Eugene, Oreg.) and observed with a laser scanning confocal
microscope. Once stringency levels were established for single-
mismatch discrimination, TM7-905 and IO25-136 probes were
used for cell enumeration in 21 samples from human subgin-
gival sites, 9 from clinically healthy sites and 12 from sites with
chronic periodontitis (1 mild, 8 moderate, and 3 severe), as
previously described (3). Healthy sites did not exhibit clinical
signs of inflammation and had no loss of periodontal attach-
ment, whereas sites with periodontitis exhibited bleeding on
probing and had various amounts of loss of bone and clinical
attachment as described in detail by Brinig et al. (3). Between
600 and 1,500 cells were counted per probe–YO-PRO-1 com-
bination per sample, and results were expressed as percentages
of YO-PRO-1-stained cells that were probe positive. Filaments
composed of multiple segments were recorded as a single or-
ganism. All experiments beginning with IPTG induction of
clones, fixation, and hybridization were repeated at least once.
In addition, the morphologies (length, width, and number of
segments per cell) of 116 filaments and single cells (14 from
healthy sites and 102 from periodontitis sites) labeled with
TM7-905–Cy5 and in some cases IO25-136–Cy3 were re-
corded. Approval for collection and use of clinical specimens
was granted by the Stanford University Institutional Review
Board for Medical Use of Human Subjects.

E. coli clones with plasmid inserts containing perfect identity
to probe TM7-905–Cy3 (pSBG1, pSBG1b, and pSBG2) were
strongly positive following hybridization in buffer containing
up to 35% formamide (Fig. 1; data for �20% formamide are
shown). Clones with a single mismatch to TM7-905 (pSBG1a
and pMF1) were undetectable under conditions with �15%
formamide (Fig. 1A). The A. aquaticus strain, with two mis-

matches to TM7-905, was visible only with buffer containing
�10% formamide (Fig. 1A). Our A. aquaticus 16S rDNA had
the same two mismatches at the probe site as the Micrococcus
luteus (accession no. M38242) strain used by Hugenholtz et al.
(6) to infer hybridization stringency conditions for probe TM7-
905. Probe IO25-136–Cy3 also showed its strongest drop in
hybridization intensity under conditions with �20% form-
amide with zero mismatches (pSBG1) and with 10% form-
amide with one mismatch (pSBG1b) and gave no detectable
signal with four mismatches (pSBG2). Hence, hybridization
conditions for probes TM7-905 and IO25-136 were established
at 20% formamide for discrimination of targets with single-
nucleotide mismatches. Positive control Bac338-Cy5-labeled
cells were visible with buffer containing up to 35% formamide
(Fig. 1B).

Interestingly, TM7-905 and IO25-136 probe fluorescence
was strongest at bacterial cell poles (Fig. 1B). Such “segrega-
tion” of the 16S rRNA fluorescence signal may be linked to
plasmid segregation in E. coli (4, 7). In contrast, Bac338 fluo-
rescence was homogeneously spread throughout the cell;
Bac338 recognizes both the heterologous plasmid-encoded and
native E. coli 16S rRNA (Fig. 1B). IPTG induction was re-
quired for a detectable fluorescence signal. Only expression
under the control of the T7 plasmid promoter resulted in cell
detection. Likewise, cells were not detectable when labeled
with the Control-519 probe or when no probe was used (data
not shown). Clones with four mismatches to either the TM7-
905 (pPE1) or the IO25-136 (pSBG2) probe were nondetect-
able, even under conditions with 0% formamide (data not
shown).

FISH analysis of the microbiota in the human subgingival
sites revealed cells that hybridized with the TM7-905 probe in
all 12 periodontitis samples (Fig. 2A to E), compared to 44%
(4 of 9) of healthy samples. IO25-136-labeled cells were de-
tected in 83% (10 of 12) of the disease samples (Fig. 2D to E)
compared to 55% (5 of 9) of the healthy samples (Fig. 2F). The
relative abundance of TM7-905-labeled cells was nearly three
times higher in disease samples (mean � standard error [SE],
1.90% � 0.36%) than in healthy samples (0.67% � 0.47%),
and the difference was statistically significant (P 	 0.0492;
unpaired t test). IO25-136-labeled cells were 2.5 times more
abundant in disease (0.84% � 0.61%) than in healthy (0.34%
� 0.62%) samples, but this difference was not significant (P 	
0.778; unpaired t test).

The morphology of TM7-905-labeled cells varied from cocci
with dimensions of 1.0 by 0.45 �m to filaments 3.0 to 75.0 �m
in length and 0.6 to 1.0 �m in width, with an average (� SE)
of 3.3 � 0.22 segments per filament. Not all segments of each
TM7 filament were labeled by either the TM7-905 probe (Fig.
2A.2, E, and F) or the other probes used in this study (data not
shown), suggesting that these unlabeled segments may be met-
abolically inactive (13, 16). Average TM7 filament length did
not differ significantly between samples from healthy (mean �
SE, 13.61 � 5.73 �m) and disease sites (16.0 � 1.8 �m).
IO25-136-labeled filaments, however, were more than fourfold
longer in disease samples (21.0 � 2.2 �m; Fig. 2D) than in
healthy samples (5.0 � 1.0 �m; Fig. 2F) (P 	 0.0003; unpaired
t test) and often coassociated in clusters (Fig. 2B to E).

Overall, these data provide further evidence for a possible
role of TM7 division members, and IO25 bacteria in particular,

TABLE 1. Recombinant 16S rDNA plasmids and strains used in
this study

Probe, plasmid, or strain Sequenceg (5�–3�)

TM7-905 ..............................................CCGTCAATTCCTTTATGTTTTA
pSBG1a ............................................----------------------
pSBG1ab ..........................................---------G------------
pSBG1bb ..........................................----------------------
pSBG2a ............................................----------------------
pMF1c ..............................................---------------A------
A. aquaticusd....................................--------------GA------
pPEe..................................................--A-----------GA----C-

IO25-136 ..............................................GTCTTATCCCTCACTGCAGG
pSBG1..............................................--------------------
pSBG1a............................................-------------------–
pSBG1b............................................-----------G--------
pSBG2..............................................--CAA-------------C-
pMF1................................................TCGC------AAT---AGA-f

A. aquaticus .....................................AAA----T--GT--GATT--f

pPE...................................................-GT-AT-----A-T-A----f

a Accession numbers AY144353 (pSBG1) and AY144354 (pSBG2).
b Created through site-directed mutagenesis of pSBG1.
c Created from M. felifaucium ATCC 43428.
d ATCC 25396.
e Created from P. endodontalis ATCC 35406.
f Source: Ribosomal Database Project (9).
g The sequences of oligonucleotide probes TM7-905 and IO25-136 are com-

pared with the corresponding sequences at the probe hybridization sites in the
plasmids and strain. Only the nucleotides that differ from those of the probe
sequences are shown.
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FIG. 2. FISH on dental plaque samples from human subgingival sites of moderate chronic periodontitis (A to E) and from healthy sites (F).
(A.1 to A.3) Staining with YO-PRO-1 (green) general stain (A.1) and TM7-905–Cy5 (blue) (A.2) and colocalization of these two stains (A.3).
Asterisks, two segments of the TM7 filament that are not labeled by the probe. In all other panels, YO-PRO-1 and probe signals are merged as
in panel A.3. (B and C) TM7-905 probe and YO-PRO-1-labeled cells (blue-green); (D to F) TM7-905 probe-labeled cells (solid arrowhead, dark
blue) plus IO25-136 probe-labeled cells (open arrowhead, light blue) and cells labeled with YO-PRO-1 alone (green). Scale bar 	 5 �m in all
panels.
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in chronic periodontitis and support earlier conclusions to this
effect based on real-time quantitative PCR (3). Even though
members of the uncultivated TM7 division exist in relatively
low abundance in the human subgingival crevice, the differ-
ences in abundance between healthy sites and those with var-
ious degrees of disease suggest that they are capable of sur-
viving and growing under a wide range of conditions (high
individual plasticity or high group diversity) and may be in-
volved in the development of chronic periodontitis. Time
course studies looking at the progression of the microflora at
individual subgingival sites could help answer these questions.
FISH data pertaining to IO25 also suggest that these filaments,
as well as other TM7 members, may be involved in the forma-
tion of a scaffold or biofilm, which could support the develop-
ment of a disease-associated microbial community (Fig. 2B and
C). In addition, longer IO25 filaments in disease sites might
reflect higher growth rates. Although the longer filaments
might correspond to species or strains that are different from
those that form shorter filaments, our previous study found no
differences in sequence diversity that might support this alter-
native explanation.

Recently, a clone-based FISH approach for establishment of
hybridization stringency conditions was used to screen clone
libraries (15). Although our approach was similar, we focused
on the challenges associated with the study of uncultivated
microbial community members. In theory, catFISH can be
applied for use with any 16S rDNA molecule, whether derived
from a naturally occurring organism or generated with in vitro
recombinant methods. catFISH may be the preferred ap-
proach for testing FISH probes in situ when target microor-
ganisms are fastidious or are pathogenic and is certainly the
only option when the target is an uncultivated organism.
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