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Estimating optimal sample size for microbiological surveys is a challenge for laboratory managers. When
insufficient sampling is conducted, biased inferences are likely; however, when excessive sampling is conducted
valuable laboratory resources are wasted. This report presents a statistical model for the estimation of the
sample size appropriate for the accurate identification of the bacterial subtypes of interest in a specimen. This
applied model for microbiology laboratory use is based on a Bayesian mode of inference, which combines two
inputs: (ii) a prespecified estimate, or prior distribution statement, based on available scientific knowledge and
(ii) observed data. The specific inputs for the model are a prior distribution statement of the number of strains
per specimen provided by an informed microbiologist and data from a microbiological survey indicating the
number of strains per specimen. The model output is an updated probability distribution of strains per
specimen, which can be used to estimate the probability of observing all strains present according to the
number of colonies that are sampled. In this report two scenarios that illustrate the use of the model to
estimate bacterial colony sample size requirements are presented. In the first scenario, bacterial colony sample
size is estimated to correctly identify Campylobacter amplified restriction fragment length polymorphism types
on broiler carcasses. The second scenario estimates bacterial colony sample size to correctly identify Salmonella
enterica serotype Enteritidis phage types in fecal drag swabs from egg-laying poultry flocks. An advantage of the
model is that as updated inputs from ongoing surveys are incorporated into the model, increasingly precise
sample size estimates are likely to be made.

Microbiologists face a challenge when allocating resources
to surveys designed to determine the number of bacterial
strains of interest that are present in a specimen. It is not
readily apparent how to optimally allocate valuable laboratory
resources for microbiological sampling (2, 7). When excessive
sampling is conducted, laboratory resources are wasted. Con-
versely, when insufficient sampling is conducted, errors can be
made such as that of declaring a food item free of Salmonella
when, in fact, it contains Salmonella.

Singer and colleagues (8) described a statistical model de-
signed to estimate the number of Escherichia coli colonies that
should be examined for identification of all E. coli pulsed-field
gel electrophoresis types present in avian cellulitis lesions. The
iterative model incorporated a Bayesian analytical approach
that combined carefully considered prior scientific knowledge
with data to produce an updated probability assessment of the
number of strains in the item being sampled. This information
enabled an estimation of the number of bacterial colonies
required for examination for correct identification of all strains
that were present.

The Dirichlet distribution is often used to express prior
scientific knowledge of the distribution in Bayesian models,
because it expresses quantities that vary randomly yet obey the
condition that their sum remains fixed (5). This permits prob-

abilities to be assigned to each quantity in a specified range,
such as for a distribution of counts (Poisson distribution).
Thus, a uniform distribution within a specified range is appro-
priate when there is uncertainty about the actual distribution
within the range and a distribution with a peak might be used
when the distribution is more clearly understood. The Dir-
ichlet distribution has an advantage over the Poisson distribu-
tion for Bayesian modeling, because it provides the means of
assigning a weight (prior sample size) to the current belief (8).
This weight is indicated by the sum of quantities within the
specified range. Thus, a prior distribution statement with a low
weight (i.e., for a sum of quantities equal to one) might be
appropriate when a model is first applied and/or belief in the
distribution of strains is uncertain. A greater weight (i.e., for a
sum of quantities greater than one) could be assigned after
repeated surveys as belief in the prior distribution increases
(8).

We present a modified version of the model described by
Singer and colleagues (8) that uses the Metropolis-Hastings
algorithm and multinomial simulation (4, 9). These modifica-
tions make the model work well when multiple strains are
anticipated to be present. Output from the model can be used
to estimate the probability of correctly identifying all bacterial
subtypes on the basis of the number of bacterial colonies that
are examined per specimen. In this report, several scenarios
are presented to illustrate how the model can be applied to
produce informed decisions regarding allocation of resources
for bacterial sampling.

Samples of software code for the model presented in this
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report are available from the corresponding author upon re-
quest.

MATERIALS AND METHODS

Statistical model. The statistical model presented in this report (Fig. 1) is an
adaptation of the model described by Singer and colleagues (8). SAS (version 8e;
SAS Institute, Cary, N.C.) Proc IML and Proc MEANS software was used to
develop the model. The model has two inputs: (i) a prespecified prior distribu-
tion statement of the distribution of bacterial subtypes and (ii) the observed data
on the distribution of strains from a sample of the bacterial colonies screened.
Through the use of Markov chain Monte Carlo simulation (4) with the Metrop-
olis-Hastings algorithm (9), estimates of the probability that a given number of
bacterial subtypes are present in the object of sampling are obtained. These
estimates, referred to as the posterior probability distribution and observed data
from a sample, make it possible to estimate the probability of correctly identi-

fying all subtypes in a specimen on the basis of the number of bacterial colonies
examined. Additional details of the model are provided in the Appendix.

Scenario 1: Campylobacter jejuni AFLP types on broiler carcasses. The prob-
ability of detecting all C. jejuni amplified restriction fragment length polymor-
phism (AFLP) types (12) was estimated on the basis of the number of presump-
tive Campylobacter colonies that were examined per broiler carcass.

Prior distribution statement. Two prior distribution statements were used in
separate models to estimate the number of C. jejuni AFLP types present on
broiler carcasses (6). Both statements specified that between 9 and 24 different
AFLP types were present per carcass. One statement specified equal or uniform
probabilities for all values of AFLP types per carcass in the above range and a
prior sample size (or weight) equivalent to data for one carcass (low weight). The
uniform distribution indicates belief that the likely distribution of strains per
carcass was between 9 and 24, with uncertainty of the actual distribution within
that range, i.e., there is no most likely number of strains expected within that
range. The second prior belief statement assigned higher probability to the
midrange values (16 and 17 AFLP types per carcass). This statement specified a
weight equivalent to data for 32 carcasses, reflecting greater certainty in the prior
distribution statement than in observed data from a survey of 48 isolates from
each of 20 carcasses (Table 1).

Observed data. In this scenario, standard isolation procedures were used to
obtain C. jejuni isolates from 20 broiler carcasses (10). A total of 48 colonies were
examined per carcass. Isolates were characterized by AFLP type (12). The
number of AFLP types per carcass is presented in Table 1.

Scenario 2: Salmonella enterica serotype Enteritidis phage types in egg-laying
flocks. Inputs were entered into the model to predict the probability of detecting
all S. enterica serotype Enteritidis phage types in manure drag swabs (2) from S.
enterica serotype Enteritidis-positive egg-laying poultry flocks on the basis of the
number of presumptive Salmonella colonies examined per flock.

Prior distribution statement. On the basis of prior experience indicating that
S. enterica serotype Enteritidis-infected flocks often carry multiple phage types
(1), a prior distribution statement specified a uniform distribution of between
one and five S. enterica serotype Enteritidis phage types per flock. As described
above for scenario 1, the uniform distribution reflected knowledge of a range but
uncertainty of the distribution within that range. The weight of the statement was
equal to data from five flocks (or about one-fourth of the weight of observed data
from the sample of 20 flocks) (Table 2).

Observed data. In this scenario, six manure drag swabs that tested positive for
S. enterica serotype Enteritidis were obtained from 20 caged layer operations
(5,000 hens per flock). Presumptive Salmonella isolates were examined using
standard microbiological methods (3). Salmonella isolates were serotyped, and S.

FIG. 1. A schematic depiction of inputs, outputs, and iterative as-
pects of the model used to estimate bacterial colony sample size for
microbiological surveys. †, the mean probability is the sum of proba-
bilities divided by number of effective iterations. The 90% Bayesian
interval (5th through 95th percentile of probabilities in ascending
order) indicates the variability of sample size estimates that are ob-
tained with the model.

TABLE 1. Prior distribution statements and observed data for Campylobacter AFLP types in broiler carcassesa

Prior distribution Ib Prior distribution IIc Distribution of Campylobacter AFLP types

No. of AFLP
types/carcass

Prior
probability

specificationd

No. of AFLP
types/carcass

Prior
probability

specification

No. of AFLP
types/carcass

No. of carcasses
(n � 20)

9 0.625 9 0.32 9 2
10 0.625 10 0.32 10 1
11 0.625 11 0.64 11 0
12 0.625 12 1.28 12 2
13 0.625 13 1.92 13 2
14 0.625 14 2.56 14 3
15 0.625 15 3.52 15 0
16 0.625 16 5.44 16 2
17 0.625 17 5.44 17 4
18 0.625 18 3.52 18 1
19 0.625 19 2.56 19 2
20 0.625 20 1.92 20 0
21 0.625 21 1.28 21 1
22 0.625 22 0.64 22 0
23 0.625 23 0.32 23 0
24 0.625 24 0.32 24 0

a Data represent uniform (distribution I) and normally distributed (distribution II) prior distribution statements (Dirichlet) specifying between 9 and 24 Campy-
lobacter AFLP types per broiler carcass (with prior sample sizes corresponding to observed data for 1 and 32 carcasses, respectively) and the distribution of
Campylobacter AFLP types from a sample of 20 carcasses.

b Weight � data from 1 carcass for prior distribution I.
c Weight � data from 32 carcasses for prior distribution II.
d Specification of current belief. The cumulative sum of specifications indicates weight. A weight of 1 is equivalent to data from one specimen.
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enterica serotype Enteritidis isolates were phage typed by the method of Ward
and colleagues (11). The number of phage types observed per flock is presented
in Table 2.

RESULTS

Effect of prior distribution statements. In models designed
to estimate bacterial colony sample size for the detection of C.
jejuni AFLP types in broiler carcasses, weights and distribu-
tions of prior distribution statements influenced posterior
probability distributions (Fig. 2). The uniform statement with
the lower weight had less influence on the posterior probability
distribution than the statement with the higher weight. The
prior distribution statement with peak probability at midrange
(16 and 17 AFLP types per carcass) also gave lower probabil-
ities to extreme values in the range. Both statements specified
distributions of between 9 and 24 C. jejuni AFLP types per
carcass, in similarity to observed counts in the sample of 20
carcasses. For this reason, both models yielded similar esti-
mates of probabilities of correctly identifying AFLP types by
bacterial colony sample size (Fig. 3). Applying equation 1 and
Markov chain Monte Carlo simulation (4) with the Metropolis-
Hastings algorithm (9) as described in the Appendix, when 96
Campylobacter colonies were collected per carcass a 95% mean
probability of correctly identifying all AFLP types was ob-
tained for both models.

Sample size to identify S. enterica serotype Enteritidis phage
types. Applying equation 1 and the Metropolis-Hastings algo-
rithm (4, 9), the model produced an estimate of 99% posterior
probability of detecting all S. enterica serotype Enteritidis
phage types in egg-laying poultry flocks when 16 S. enterica
serotype Enteritidis isolates were phage typed per flock (Fig.
4). For all models presented above, at approximately 1,000
effective iterations posterior probabilities converged on values
close to the mean.

DISCUSSION

The statistical model presented in this report can be used for
informed decision making regarding the allocation of re-
sources for microbiological surveys. This probability-based ap-
proach to sample size estimation has advantages over a con-

ventional approach based principally upon consideration of
competing laboratory resources and priorities, because it uti-
lizes expert scientific knowledge, an important and often un-
derrated resource, as well as sample data to generate updated
estimates of optimal sample size. This approach reduces the
risks of both undersampling, which can result in false-negative
results, and oversampling, which can waste valuable laboratory
resources. When the use of ongoing surveys is anticipated, the
observed counts and prior distribution statements can be up-
dated to improve the precision of sample size estimates.

The model described here may be the most beneficial
method for the estimation of optimal sample size in ongoing
surveys, because the inputs can be updated by modifying bac-
terial colony sample size, revising prior distribution statements
to reflect changing knowledge of the distribution of bacterial
subtypes, and/or revising the weight given to prior assump-

FIG. 2. Effect of two prior distribution statements on posterior
probability distributions; hypothetical model of Campylobacter spp. on
poultry carcasses. Circles represent observed data for the number of
Campylobacter AFLP types per carcass. The dotted line with triangles
represents prespecified prior distribution statements of the number of
AFLP types per carcass. The solid lines represent the posterior prob-
ability distribution of the number of AFLP types per carcass. The prior
distribution statement of model 1 (upper panel) specifies uniform
probability of the number of AFLP types per carcass for values be-
tween 9 and 24 and weight equivalent to data from one carcass. The
prior distribution statement of model 2 (lower panel) specifies greatest
probabilities for the midrange values and weight equivalent to data
from 32 carcasses.

TABLE 2. Uniform prior distribution and observed data for S.
enterica serotype Enteritidis phage types in contaminated

egg-laying flocks

Prior distributiona Observed S. enterica serotype
Enteritidis phage types

No. of phage
types/flock

Prior
probability

specificationb

No. of phage
types/flock

No. of flocks
(n � 20)

1 1 1 2
2 1 2 5
3 1 3 11
4 1 4 2
5 1 5 0

a Data represent uniform prior distribution (Dirichlet) specifying between one
and five S. enterica serotype Enteritidis phage types in contaminated egg-laying
flocks. Weight � data from 5 flocks for prior distribution.

b Specification of current belief. The cumulative sum of specifications indicates
weight.
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tions. An increasingly precise estimate of sample size over time
is anticipated, resulting in better allocation of laboratory re-
sources. Singer and colleagues proposed that this model could
be used to estimate bacterial colony sample size for screening
egg-laying flocks for the presence of S. enterica serotype En-
teritidis; however, their model of E. coli cellulitis in broiler
chickens specified a maximum of only three strains per lesion
(8). In this report another potential application for the model
is presented, namely, the estimation of the sample size neces-
sary for identification of all C. jejuni AFLP types on poultry
carcasses (6). One limitation of the model is the assumption
that all bacterial subtypes are present in approximately equal
concentrations (8). This assumption becomes less realistic
when sampling occurs in more complex microbial ecosystems.

Development of applied software would facilitate use of this
model for allocating laboratory resources for microbiological
surveys. As illustrated in this report, the inputs (prior distribu-
tion statements specifying the distribution of bacterial subtypes
and counts of bacterial subtypes from a sample) are straight-
forward. Furthermore, computer processor unit time is readily
available to support this statistical model. In summary, the
model presented in this report can be used to estimate optimal
sample size and, therefore, better allocate valuable laboratory
resources to microbiological surveys. The greatest utility of the
model may be in updating sample size estimates in ongoing
microbiological surveys (e.g., screening poultry flocks for S.
enterica serotype Enteritidis).

APPENDIX

Suppose that the range of the number of strains actually present in
a specimen that is being sampled (i.e., broiler carcasses from an egg-
laying poultry flock) is from 1 to k. Let yi denote the number of
instances in which i strains were observed and �I denote the probability
that the specimen actually contains i strains. Denote vector (y1, y2. . .yk)
and vector (�1, �2. . .�k) as Y and �, respectively. For a given sample
size, let pj�i denote the probability of observing j strains from a speci-
men which actually contains i strains and pj denote the probability of
observing j strains from a specimen. It is possible to compute pj as
follows:

pj � �
i�1

k

�i � pj�i (1)

There are n specimens. The probability of observing j strains in each is
pj, where j � 1, 2. . .k. Thus, by definition, the Y vector follows a
multinomial distribution:

Y�� � multinomial (n; p1, p2. . .pk) (2)

Denote the prior distribution by �(�) (equation 3). The Dirichlet
distribution is used because it provides a means of expressing quanti-
ties that vary randomly and independently of each other and yet obey
the condition that their sum remains fixed. This provides a means for
assigning prior sample size (weight) to the prior distribution statement
(5):

�(�) � Dirichlet (a1, a2. . .ak) (3)

Equations 1, 2, and 3 give the posterior distribution:

�(��Y) � �1
a1�1�2

a2�1. . .�k
ak�1��

i � 1

k

�i � p1�i�y1

��
i � 1

k

�i � p2�i�y2

. . .��
i � 1

k

�i � pk�i�yk

(4)

The independent Metropolis-Hastings algorithm was used to simulate
the posterior distribution given in equation 4 (4, 9). The simulation
means were used to estimate [�] and p was computed by p

� �
I�1

k �ipj�i, where pj�i is calculated as shown in the next paragraph.

Thus, the mean can be used to estimate the probability of observing all
strains present in the sample according to sample size.

Computation of pj�i. Recall that pj�i is the probability of observing j
strains given that the specimen contains i strains. Suppose there are i
strains in a specimen; the equal concentrations assumption means that
a randomly selected isolate has the same probability (1/i) of represent-
ing any one of the i strains. Suppose there are i strains, at most, in a
specimen; take n isolates from this specimen. Let X � (x1, x2. . .xi)
denote the vector of counts, where xk gives the number of isolates out
of n that are from each strain k for k � 1, 2. . .i. From the equal
concentrations assumption, the following equation is derived:

FIG. 3. Probabilities of identification of C. jejuni AFLP types on
poultry carcasses (determined by the number of isolates) examined for
two models. High and low ends of bars represent 95 and 5% limits of
Bayesian intervals, respectively. Inputs were observed data and prior
distribution statements specifying from 9 to 24 AFLP types per carcass.
The solid and broken lines depict mean probabilities of identification
of AFLP types by sample size for two prior distribution statements.
Solid line, uniform probability for all values in range for a prior sample
size equal to data for one carcass (low weight); broken line, peak
probability at midrange for a prior sample size of 32 carcasses (high
weight).

FIG. 4. Probability of correctly identifying S. enterica serotype En-
teritidis phage types in an egg-laying flock by the number of S. enterica
serotype Enteritidis isolates examined per flock. High and low ends of
bars represent 95 and 5% limits of Bayesian intervals, respectively.
Inputs were observed data and a prior distribution statement that
assigned equal probability to between one and five phage types per
flock and weight equivalent to data from five flocks.
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X � multinomial (n; 1/i, 1/i. . .1/i) (5)

A simulation was performed using Visual Basic code (Microsoft Cor-
poration, Seattle, Wash.) to enumerate the number of strains per
specimen. For any given i, 1,000,000 X vectors were simulated using X
� multinomial (n; 1/i, 1/i. . .1/i). The numbers of X vectors containing
1, 2. . . in nonempty elements were counted. These counts were divided
by 1,000,000 (the total number of simulations) and used to estimate pj�i
values.
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