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Abstract
The recently introduced planar strip array (PSA) can significantly reduce scan times in parallel MRI
by enabling the utilization of a large number of RF strip detectors that are inherently decoupled, and
are tuned by adjusting the strip length to integer multiples of a quarter-wavelength (λ/4) in the
presence of a ground plane and dielectric substrate. In addition, the more explicit spatial information
embedded in the phase of the signals from the strip array is advantageous (compared to loop arrays)
for limiting aliasing artifacts in parallel MRI. However, losses in the detector as its natural resonance
frequency approaches the Larmor frequency (where the wavelength is long at 1.5 T) may limit the
signal-to-noise ratio (SNR) of the PSA. Moreover, the PSA’s inherent λ/4 structure severely limits
our ability to adjust detector geometry to optimize the performance for a specific organ system, as
is done with loop coils. In this study we replaced the dielectric substrate with discrete capacitors,
which resulted in both SNR improvement and a tunable lumped-element PSA (LPSA) whose
dimensions can be optimized within broad constraints, for a given region of interest (ROI) and MRI
frequency. A detailed theoretical analysis of the LPSA is presented, including its equivalent circuit,
electromagnetic fields, SNR, and g-factor maps for parallel MRI. Two different decoupling schemes
for the LPSA are described. A four-element LPSA prototype was built to test the theory with
quantitative measurements on images obtained with parallel and conventional acquisition schemes.
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The strip array (1) has a number of advantages over conventional loop-resonator arrays (2) in
high-field and parallel MRI. For instance, it allows a large number of non-adjacent elements
to simultaneously receive MRI signals, with minimal coupling between elements (3).
Compared with a loop array, the more explicit spatial information in the phase of the signals
from a strip array makes parallel reconstruction less susceptible to aliasing artifacts. Also, it
enables phased-array applications in open-geometry magnets, where conventional loop arrays
are limited by field orientation. The basic element of a planar strip array (PSA) is a microstrip
with both substrate and superstrate (the electrical length of which is either π/2 or π) terminated
in either an open circuit or a short circuit (1). Its geometric length must be a quarter or half of
the resonant wavelength λ of the electromagnetic (EM) field at the MRI frequency, or integer
multiples thereof. Under these conditions, the array has the unique advantage that the PSA
elements are intrinsically isolated from each other. However, at commonly used fields of 1.5T
(63.87 MHz), λ is around 4.7 m (if the substrate is air), so a PSA with λ/4 and λ/2 would
generally be too long.
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The use of high-dielectric-constant substrates, instead of air, allows some reduction of λ to
lengths practical for human imaging. However, the dielectric constant of a substrate is in
general not easily varied, nor are there suitable materials available that possess a continuum
of dielectric constants from which to choose. This limits our ability to arbitrarily adjust the
PSA geometry in order to optimize its MRI performance in applications to a particular organ
at a particular field strength. Nevertheless, the PSA elements are intrinsically isolated from
one other, as long as their lengths are integer multiples of a quarter wavelength. Another
disadvantage of the original PSA is that losses associated with the high-dielectric-constant
substrate and large size of the distributed element can reduce the signal-to-noise ratio (SNR).

If instead of using a high-dielectric constant substrate to reduce the wavelength, one creates
an artificial or “reduced-length” transmission line (RTL) (4) by deploying two or more discrete
high-Q shunted capacitors along the strip, two advantages can be realized. First, the discrete
capacitors reduce the electrical length of the PSA transmission line strips, and potentially
enable the design of PSAs with much smaller geometric dimensions that can be adjusted for a
given field strength. Second, the losses associated with the dielectric substrate and superstrate
can be reduced, thereby increasing the SNR. Moreover, the geometric configuration can be
adjusted to maximize the SNR for each specific application without being bound by the λ/4
criterion as applied to the physical strip length.

In this study we developed a lumped-element PSA (LPSA), employing RTLs for the array
elements (5,6). In the LPSA, the electrical function of the substrate is replaced in part or
substantially with two or more distributed shunt capacitors, yielding the equivalent electrical
length of π/2 at 63.87 MHz with a much shorter strip length. At this frequency, an LPSA with
a strip length of about 30 cm can be tuned with just two shunted 100 –200pF capacitors, while
it can also be tuned with more uniformly distributed capacitors. A benefit of using only two
capacitors in this situation (1.5T) is that the LPSA maintains a relatively homogeneous B1 field
while it is tuned to an electrical length of π/2. The interstrip decoupling mechanisms of the
LPSA are different from those of the PSA. In the PSA, because of its quasi-transverse EM
(TEM) field distribution, contributions from incident and reflected waves along a λ/4 strip
cancel one another (1), so that the PSA is inherently decoupled. However, in the LPSA, at 1.5T
the physical length of each strip can be much shorter than λ/4, and the condition of intrinsic
decoupling is difficult to achieve.

In this study, we first apply a lumped-element circuit model to analyze the resonance condition
and Q-factor of an RTL, and calculate its field and SNR. Second, interelement coupling,
sensitivity profiles, and g-factor maps of the LPSA are evaluated in detail. Third, we describe
two different schemes to isolate the RTL strips and substantially eliminate mutual coupling.
In the past, shared (7) and interconnected (8) capacitors have been used to decouple loop MRI
coils, as well as to couple transmission line sections (9), and in the first scheme we use
interconnecting capacitors to decouple each nearest-neighbor pair. Low-input impedance
preamplifiers are then deployed to decouple the remaining strips, as was implemented in the
original phased array (2,10). The other scheme is to make the ratio of the strip spacing to the
strip-to-ground distance large enough to achieve isolation (6). This approach limits the
minimum separation between neighboring strips. Fourth, quantitative measurements of array
characteristics and MRI experiments are used to demonstrate that the LPSA can produce high-
quality in vivo MR images at 1.5 T with either phased-array or parallel data acquisition.

THEORY
RTL—The Basic Element of the LPSA

Whereas the basic detector element of the PSA is a transmission line resonator (1), the LPSA’s
basic element can be viewed as an RTL resonator, in which the electrical length is achieved
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by combining a transmission line and shunt capacitors, as shown in Fig. 1a (a special case
where only two capacitors are used). There is flexibility in adjusting the physical length, l, of
the RTL. The RTL can initially be treated as a two-port network, which is commonly
characterized by the “ABCD” matrix formalism that relates the input voltage and current, V1
and I1, to the output voltage and current, V2 and I2, via:

V1
I1

= A B
C D

V2
I2

. [1]

If the two shunt capacitors at the ends of the line have value Cg
s, then the “ABCD” matrix for

the RTL is

A B
C D =

1 0

jωCg
s 1

cosh γl Z0 sinh γl
sinh γl / Z0 cosh γl

×
1 0

jωCg
s 1 ,

[2]

where ω is the angular frequency of the EM field, Z0 is the characteristic impedance of the
transmission line, and γ is known as the propagation constant (11). These last two are given
by

Z0 = R ′+ jωL ′

G ′+ jωC ′
, γ = (R ′+ jωL ′)(G ′+ jωC ′). [3]

Here R′ is the series resistance per unit length of the transmission line, G′ is the shunt resistance
per unit length, L′ is the series inductance per unit length, and C′ is the shunt capacitance per
unit length. When the strip length is physically much less than one wavelength, cosh γl ≈ 1 and
sinh γl ≈ γl. Then Eq. [2] becomes

A B
C D =

1 0

jωCg
s 1

1 Rt + jωL t
Gt + jωCt 1

×
1 0

jωCg
s 1 .

[4]

If we assume that loading along the strip is uniform, then the series resistance, shunt resistance,
series inductance, and shunt capacitance of the transmission line are Rt = R′l, Gt = G′l, Lt = L
′l, and Ct = C′l, respectively.

The distance h between the strip and the ground has a significant effect on the field patterns of
the RTL, especially for the electric field. When h is so small that the electric field lines are
concentrated mostly between each strip and the ground plane, then the EM field of the RTL
can be considered as quasi-TEM. But if h is relatively large (>5 mm), the electric field is
oriented mostly along the strip (non-TEM). We consider only this second scenario, and avoid
the first scenario and the other transition situations between these two scenarios. While the
transmission line shunt capacitance, Ct, will decrease as h increases, its net effect may still be
appreciable for choices of l and h, respectively, in a range of ~20 cm and ~1 cm (which is
desirable for human studies), especially if a dielectric substrate is deployed to separate the
strips from the ground plane (6). To simplify the analysis, we incorporate Ct into the lumped-
element capacitance Cg, and neglect the shunt resistance (Gt ≈ 0). The RTL has a simple lumped
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LCR equivalent circuit as shown in Fig. 1c, where Cg ∼ Cg
s + Ct / 2 is the effective shunt

capacitance, and Rt represents the net loss resistance. Eq. [3] becomes

A B
C D =

1 0
jωCg 1

1 Rt + jωL t
0 1

1 0
jωCg 1 [5]

The admittance of the RTL can be derived from the ABCD matrix by letting the load at one
port ZL be infinity:

Y = GY + jBY =
C + DYL
A + BYL

= C
A

=
− ω2RtCg

2 + j(2ωCg − ω
3L tCg

2)

1 − ω2L tCg + jωRtCg
.

[6]

Here GY is the conductance and BY is the susceptance, where

GY =
Cg

2Rtω
2

1 − 2CgL tω
2 + Cg

2Rt
2ω2 + Cg

2L t
2ω4

BY =
2Cgω + ( − 3Cg

2L t + Cg
3Rt

2)ω3 + Cg
3L t

2ω5

1 − 2CgL tω
2 + Cg

2Rt
2ω2 + Cg

2L t
2ω4

[7]

A low-frequency estimate of the inductance of the strip over the ground plane is (12,13):

L t =
μ0l
π ln 2l

w + 1
2 − ln ( l

2h + 1 + l 2

(2h )2 ) + 1 + (2h )2

l 2 − 2h
l . [8]

The resistance Rt is essentially the sum of the conductor losses and the sample losses.

Resonance Condition of the RTL—To calculate the resonance frequency of the RTL, one
can set the susceptance BY = 0 in Eq. [7], and derive

ω = 1
2

3
L tCg

−
Rt

2

L t
2 ±

L t
2 − 6L tCgRt

2 + Cg
2Rt

4

CgL t
2 ≈ 2

L tCg
∣ Rt≈0. [9]

The impedance has a maximum value at resonance frequency ο in Eq. [9] only when the plus
sign of the ± is chosen. If the minus sign is chosen, the admittance instead has a maximum
value, a case that is not presently of interest.

The ω in Eq. [9] is not always a real number, which means that the RTL only resonates under
certain conditions. To derive the resonance condition, one can let B = 0 in Eq. [7] and solve
for Cg and Lt:
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Cg =
3ωL t + ω2L t

2 − 8Rt
2

2ω(Rt
2 +ω2L t

2)

L t =
3 + 1 − 4Cg

2Rt
2ω2

2Cgω
2 .

[10]

To ensure that Cg and Lt remain real, the inductance of the strip and the equivalent capacitance
of the shunt capacitors must satisfy the following conditions:

L t ≥
2 2Rt
ω

Cg ≤
1

2ωRt
.

[11]

For a given resonance frequency, the minimum inductance of the strip and maximum shunt
capacitance are determined by the net sample and conductor resistance Rt. By combining Lt in
Eqs. [8] and [11], one can estimate the minimum viable strip dimensions. Details of the
calculation of Rt are given below.

Q Factor and Loading Factor of the RTL
The quality factor, Q, of the RTL, and the effect of a sample load, are measures of detector
performance. The Q can be calculated from the admittance in Eq. [7]:

Q =
ωr

2GY

dBY
dω ∣ ω=ωr

=

2 + (Cg
2Rt

2 − 5CgL t)ω
2 + (5Cg

2L t
2 − 5Cg

3L tRt
2

+Cg
4Rt

4)ω4 + (2Cg
4L t

2Rt
2 − 3Cg

3L t
3)ω6 + Cg

4L t
4ω8

2CgRtω + (2Cg
3Rt

3 − 4Cg
2L tRt)ω

3 + 2Cg
3L t

2Rtω
5

[12]

At the resonance frequency οr, Cg and Lt are interrelated via Eq. [10]. Substituting the
expression for Cg from Eq. [10] into Eq. [12] yields the Q in terms of strip inductance Lt and
the equivalent net loss resistance Rt in Fig. 1c:

Q =

− 8Rt
6 − 20L t

2Rt
4ω2 + 38L t

4Rt
2ω4 − 4L t

6ω6

+(4L tRt
4ω + 18L t

3Rt
2ω3 − 4L t

5ω5) ω2L t
2 − 8Rt

2

14L tRt
5ω + 10L t

3Rt
3ω3 − 4L t

5Rtω
5 + (2Rt

5

− 2L t
2Rt

3ω2 − 4L t
4Rtω

4) ω2L t
2 − 8Rt

2

[13]

On the other hand, substituting the expression for Lt from Eq. [10] into Eq. [12] yields the Q
in terms of Cg and Rt:

Q =
2Cgω

2 − 7Cg
3Rt

2ω4 + (2Cgω
2 − Cg

3Rt
2ω4) 1 − 4Cg

2Rt
2ω2

Cg
2Rtω

3(1 + 1 − 4Cg
2Rt

2ω2)
. [14]

With the strip loaded with a sample, the value of the equivalent resistance Rt = RL will differ
from the unloaded value, Rt = RU, leading to different loaded and unloaded Qs, QL and QU,
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respectively. The behavior of Eqs. [13] and [14] as a function of typical RTL equivalent
impedances Rt, Cg, and Lt, and loading ratios RL/RU and QU/QL, are plotted in Fig. 2 at 64
MHz (parts a–d) and at 128 MHz (parts e–h). Despite the complexity of Eq. [13], Fig. 2a and
e show that the relation between Q and Lt is almost linear with load resistance. Figure 2c and
g show that larger values of Cg produce lower Qs. When RL/RU is 2 (1Ω/0.5Ω), 5 (5Ω/1Ω), or
10 (5Ω/0.5Ω), Fig. 2b, d, f, and h show that as Lt increases, or as Cg decreases, the loading
factor QU/QL approaches RL/RU. However, when Lt is relatively small, or Cg is relatively large,
an increase in sample load disproportionately reduces Q, so that QU/QL is much higher than
RL/RU (Fig. 2b and h), where the electrical field loading on the capacitor becomes a
considerable factor. To avoid this situation, it is preferable to increase Lt and reduce Cg.

B Field and E Field
The RF magnetic and electric fields of an RTL with unit current can be derived from the vector
potential. According to the reciprocity principle, they also represent the magnetic and electric
fields detected by the RTL. The MR signal is proportional to the transverse component of the
magnetic field, B1. The MR noise is proportional to the square root of the noise resistance
(14), which in turn can be determined from the integral of the square of the electric field (15)
over the half space that extends from the ground plane of the RTL through the sample.
Therefore, once the magnetic and electric fields of the RTL are known, the SNR can be
evaluated.

To simplify the field calculations while preserving the characteristics of the RTL, we
approximate the strip by a filament of length l along the z-direction of a Cartesian coordinate
system (x, y, z) with the z-axis parallel to the static magnetic field B0. The x- and y-axes are
the horizontal and vertical directions, respectively. The filament has coordinates denoted by
(x0, y0, z0), and spans the region from z0 = −l/2 to z0 = l/2. The vector potential of the filament
(16) is then

A = μ
4π∭v=current_volume

J
r dv = μ

4π ∫−l/2
l/2 I

r dz0z

= μI
4π ∫−l/2

l/2 dz0
(x − x0)2 + (y − y0)2 + (z − z0)2

z

= μI
4π ln

l / 2 − z + (x − x0)2 + (y − y0)2 + (z − l / 2)2

− l / 2 − z + (x − x0)2 + (y − y0)2 + (z + l / 2)2
z.

[15]

Here J is the current density, I is the current, r is the distance between (x0, y0, z0) and an arbitrary
spatial point (x, y, z), and μ is the permeability. The transverse magnetic field B1 of the filament
is

B1 = ∇ × A = B1xx + B1yy. [16]

Let rxy
2 = (x − x0)2 + (y − y0)2. Then

B1x = μI
4π

y − y0
r 2 ( l / 2 + z

r 2 + (z + l / 2)2
+ l / 2 − z

r 2 + (z − l / 2)2 )
B1y = − μI

4π
x − x0

r 2 ( l / 2 + z
r 2 + (z + l / 2)2

+ l / 2 − z
r 2 + (z − l / 2)2 ) [17]

The electric field E of the filament can be derived from (17):
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E = − ∂A
∂t = jωA

= ωμI
4π ln

l / 2 − z + (x − x0)2 + (y − y0)2 + (z − l / 2)2

− l / 2 − z + (x − x0)2 + (y − y0)2 + (z + l / 2)2
z

[18]

Note that this is the non-TEM case. As mentioned before, this only true when h is large enough.

When the conducting filament at y0 = 0 is parallel to a conducting ground plane (zx), then,
using the method of images (12), the magnetic field B1 and electric field E1 at (x, y, z) are given
by:

B1 = B(y0 = 0) − B(y0 = − 2h ) [19]

E1 = E(y0 = 0) − E(y0 = − 2h ). [20]

Equations [19] and [20] give the analytic expressions for the magnetic and electric fields of
the RTL. For example, for l = 30 cm and h = 2 cm, the horizontal (B1x), vertical (B1y), magnitude
(|B1|), and phase (∠B1= atan[B1y/B1x]) components of B1 in the z = 0 plane are illustrated in
Fig. 3.

SNR—The SNR of the RTL can be defined as (18):

SNR =
jωμM · B1
4kTΔ f RL

=
jωμ(MxB1x + M yB1y)

4kTΔ f RL
, [21]

where M = Mxx + Myy is the transverse magnetization, k is Boltzmann’s constant, T is the
absolute temperature, and Δf is the receive bandwidth. Thus, for a given object, fixed T, and
Δf, the SNR is determined by the ratio of ∣ B1 ∣ / RL . The intrinsic SNR, which includes
sample losses and excludes losses in the detector, is proportional to ∣ B1 ∣ / RL ,S , where
RL,S is the portion of RL contributed by a sample with conductivity σ (19). We calculate
RL,S under conditions where QU/QL ≈ RL/RU (see the section entitled Q Factor and Loading
Factor of the RTL), by numerical integration of (18):

RL ,S = σ∫V /2E1
2dx dy dz, [22]

and determine E1 and B1 from Eqs. [17]–[20].

Figure 4a shows RL,S/σ vs. strip-to-ground distance h. Figures 4b and c show |B1|, and the
intrinsic SNR ∼ ∣ B1 ∣ / RL ,S  vs. y at the z = 0 plane, with σ = 1 S/m. Although Fig. 4b
demonstrates some |B1| enhancement when h is increased, Fig. 4c shows that the intrinsic SNR
scales inversely with h in the range of 1–5 cm, but becomes insensitive to h as depth increases.
Thus, when h is above a certain value (non-TEM), increasing h may not provide an SNR gain
for RTLs.

Array Analysis
When a number of RTLs are laid side by side in parallel, both the SNR and the field patterns
may be altered by mutual coupling between the RTLs if they are close enough. A general
coupling analysis of a multiple-element system was outlined previously in Ref. 20. Here we
only consider the special case where the mutual couplings are relatively weak, and the methods
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used in Ref. 2 to describe mutual couplings are valid. This is only sufficient when the number
of elements of the LPSA is small.

Strip Coupling—The mutual coupling usually includes signal coupling and noise coupling,
which can be quantitatively characterized by mutual inductance and mutual resistance,
respectively. If two simple filaments are located at x0 = 0 and x0 = d, their mutual inductance
can be analytically calculated from (12,13):

M (l, d) =
μ0l
2π ln ( l

d + 1 + ( l
d )2) − 1 + ( d

l )2 + d
l . [23]

Here l is the filament length and d is the spacing between filaments. The mutual inductance
between two neighboring RTLs, Mij, can be calculated from Eq. [23] using the method of
images. Assuming l2 + d2 ≫ 4h2, where h is the strip-to-ground distance, we have

Mij = 2M (l, d) − 2M (l, d 2 + 4h 2)

≈
μ0
π (d − d 2 + 4h 2 + l ln 1 + 4h 2

d 2 ). [24]

Note that the relative values of h and d determine the mutual inductance. When 2h ≪d, the
mutual inductance, and thus the mutual signal coupling, approach zero.

The mutual noise resistance (2) between an RTL at x0 = 0 and one at x0 = d is given by

Rm = σ∫V /2E1(x0 = 0) · E1(x0 = d) dV , [25]

which can be numerically calculated with E1 from Eq. [20].

The signal and noise coupling coefficients can also be calculated numerically from Ref. 2:

kij =
Mij

L iiL jj
, and ψij =

Rij
RiiR jj

. [26]

Here Mij, Lii, Ljj, Rij, Rii, and Rii can be calculated from Eqs. [8], [22], [24], and [25].

For example, consider a four-element LPSA. If the couplings are relatively weak, they can be
characterized by a 4 × 4 signal coupling matrix K and a noise coupling matrix Ψ (2):

K = ( 1 − k12 − k13 − k14
− k12 1 − k23 − k24
− k13 − k23 1 − k34
− k14 − k24 − k34 1

),
Ψ = ( 1 ψ12 ψ13 ψ14

ψ12 1 ψ23 ψ24
ψ13 ψ23 1 ψ34
ψ14 ψ24 ψ34 1

). [27]

If the mutual signal couplings are strong, then the diagonal terms are no longer unity and the
matrices are more complex (20).
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B1 Profiles and g-Factor Maps for the LPSA
In the LPSA, the coupling of the magnetic field B1 between strips is proportional to the coupling
of the currents (20) in the strips. The coupling matrix for the currents can be simplified to K
in Eq. [27], in the case where coupling is weak and there is no propagation of coupled currents
among the RTLs (20). For a four-element LPSA, we describe the coupled and uncoupled
magnetic fields, respectively, as

B̂1
C = (B1a

C

B1b
C

B1c
C

B1d
C

) and B̂1 = (B1a
B1b
B1c
B1d

), [28]

Then the B1 profiles of the LPSA are related by

B̂1
C = KB̂1. [29]

For example, for a strip length l = 30 cm, width w = 1.27 cm, strip-to-ground distance h = 2
cm, and strip spacing d = 6 cm, the B1 coupling matrix calculated from Eqs. [8], [24], and [27]
for weakly coupled strips is:

K = ( 1 − 0.0587 − 0.0140 − 0.0054
− 0.0587 1 − 0.0587 − 0.0140
− 0.0140 − 0.0587 1 − 0.0587
− 0.0054 − 0.0140 − 0.0587 1

) [30]

Figure 5 shows the magnitude and phase components of the coupled magnetic field B1 of the
four-element LPSA calculated from Eqs. [19], [29], and [30]. Note that the field patterns of
the outermost RTL differ from the inner ones: symmetry can be improved by adding an extra
strip on each side as a “guard” (1).

The g-factor map provides a quantitative measure of the performance of a phased array for
parallel imaging applications (21,22). It is given by

g = (SHΨ−1S)−1
ρ,ρ(SHΨ−1S)ρ,ρ. [31]

Here S is the matrix of complex coil sensitivities of superimposed imaging areas from different
coils (22). Table 1 shows the results of noise coupling calculations for three different
combinations of h and d based on Eqs. [22], [25], and [26]. From Table 1, one can derive the
noise coupling matrices from Eq. [27]:
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Ψ1(h = 2cm, d = 10cm) = ( 1 0.48 0.27 0.16
0.48 1 0.48 0.27
0.27 0.48 1 0.48
0.16 0.27 0.48 1

),
Ψ2(h = 2cm, d = 6cm) = ( 1 0.69 0.44 0.31

0.69 1 0.69 0.44
0.44 0.69 1 0.69
0.31 0.44 0.69 1

),
Ψ3(h = 1cm, d = 6cm) = ( 1 0.53 0.33 0.23

0.53 1 0.53 0.33
0.33 0.53 1 0.53
0.23 0.33 0.53 1

).
[32]

Assuming that the signal from each RTL is isolated from the others, the axial-plane g-factor
maps of Ψ1, Ψ2, and Ψ3 at reduction factors of 2, 3, and 4 are shown in Fig. 6 for d = 6 and 10
cm and h = 1 and 2 cm. Overall, the figure shows little variation in g-factor performance for
the different reduction factors. However, the larger the spacing d, the better the g-factor because
the noise coupling is reduced. Also, g-factor performance deteriorates as h is reduced, because
the spatial distinction between the B1 fields generated by the different RTLs is less, even though
the noise coupling is also reduced.

Decoupling
Although an RTL can have the same electrical length as the λ/4 transmission line, the
decoupling mechanisms for the PSA (1) do not necessarily hold. In particular, the intrinsic
narrowband decoupling of the PSA may be lost if the length of the conductor strip in the RTL
is much less than λ/4, and there is no standing wave to ensure that the coupling between the
incident and reflected waves fully cancel. Here we describe two alternative decoupling schemes
for the LPSA.

Interconnecting Capacitor Method—One way to decouple the LPSA is to place
interconnecting capacitors between two RTLs at both ends of the strips to decouple nearest
RTL pairs, which is analogous to the use of interconnected capacitive circuits to decouple
multiple MRI loop detectors (8), and then use low-input impedance preamplifiers to decouple
the remaining RTL pairs, as in the original NMR phased array (2). The coupling between two
RTLs can be derived from even–odd mode theory (4). Here elements A and C in the ABCD
matrix are Ae and Ce for the even mode, and Ao and Co for the odd mode. For the even mode,
where currents in the two RTLs are the same, Ae and Ce are derived from Eq. [6] by replacing
Lt with Lt +M, where M is the mutual inductance.

Ae = 1 − ω2(L t + M )Cg + jωRtCg
Ce = − ω2RtCg

2 + j(2ωCg − ω
3(L t + M )Cg

2)
[33]

For the odd mode, where currents in the two RTLs have the same amplitude but opposite phase,
Ao and Co are obtained from Eq. [6] by replacing Lt with Lt– M and Cg with Cg+2Cc. Here
Cc is the interconnecting capacitor.

Ao = 1 − ω2(L t − M )(Cg + 2Cc) + jωRt(Cg + 2Cc)

Ce = − ω2Rt(Cg + 2Cc)2 + j(2ω(Cg + 2Cc) − ω3(L − M )(Cg + 2Cc)2)
[34]

Then the even and odd reflection coefficients are
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Γe =
Ae − CeZ0
Ae + CeZ0

, and Γo =
Ao − CoZ0
Ao + CoZ0

. [35]

Using Eq. [11] from Ref. 1, we find that the coupling k between two RTLs is

kc =
Γe − Γo

2 − ΓG(Γe + Γo) . [36]

Here ΓG is the reflection coefficient from the receiver at the input port of the RTL. To achieve
decoupling, kc = 0, one needs to solve the equation Γe – Γo = 0 to derive the decoupling
capacitance:

Cc = ( − b ± b2 − 4ac) / 2a, [37]

where

a = 2ω2(L t − M )(ω2Cg(L t + M ) − 1)

b = 2 − 2ω2Cg(L t + M ) +ω4Cg
2(L t

2 − M 2)

c = − ω2Cg
2M .

[38]

Equation [37] gives the value of the interconnecting capacitor that will decouple an RTL pair.

This decoupling method works well when the number of array elements is relatively low. As
the number of elements grows large, the array is more appropriately treated as an integrated
system (20).

Broadband Decoupling—The LPSA, like the PSA, exhibits broadband decoupling (6);
however, the decoupling criterion for the LPSA generally differs from that of the PSA when
the EM fields on the LPSA do not have a TEM or quasi-TEM mode. The criterion for LPSA
broadband decoupling can be derived from Eq. [24]: if d ≫ 2h, then d2 + 4h2 ≈ d2, the mutual
inductance approaches zero, and the LPSA is broadband-decoupled.

EXPERIMENTS
Because the MRI system on which we tested our method experimentally was limited to four
channels (5,6), and our analysis example is a four-element LPSA, we constructed several four-
element prototypes to test the SNR, the above decoupling schemes, and the in vivo MRI
performance with both conventional and parallel sensitivity-encoded acquisitions.

Geometric Parameters of the LPSA: l, w, and h
The choice of geometric parameters for the LPSA affects its tuning. As shown by Eq. [8], the
values of l, w, and h determine the inductance Lt of the RTL. At resonance, Lt and the shunt
capacitance Cg are related by Eq. [9], and must satisfy Eqs. [10] and [11] for the RTL to
resonate. The ratio of d and h determines the mutual inductance of an RTL pair, per Eq. [24].
Within this basic framework, the geometric parameters can be chosen to optimize the
performance of the LPSA for a given application.

As an example, consider an LPSA designed for MRI of human muscle at 63.87 MHz (1.5 T).
For muscle, σ = 0.86 S/m (23) ~ 1 S/m, as assumed for Fig. 4. From Eq. [22] and Fig. 4a, with
h = 1–5 cm, Rt = 2.6–27.5Ω, assuming sample dominant noise. Equation [11] requires Lt >
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18nH and Cg < 480pF when Rt= 2.6 Ω, and Lt > 194nH and Cg < 45pF for Rt = 27.5Ω at 63.87
MHz, with actual values given by Eq. [10]. Because increasing h reduces the maximum value
of Cg, LPSAs with smaller h values are easier to tune.

Another consideration is the loading factor. As shown in Fig. 2, there is a minimum threshold
inductance, Lm, beyond which the loading factor is substantially determined by the ratio of
loaded and unloaded resistances. The dimensions of a strip should be chosen so that the strip
inductance L > Lm. From Fig. 2b, if RL/RU = 2, Lm ≪ 50 nH for 1.5T. With RU/RL = 5, Lm is
about 250 nH. With RL/RU = 10, Lm is about 300 nH. Thus, the smaller the loading factor, the
smaller the value of Lm. Based on Eq. [8], for a 30-cm-long, 1.27-cm-wide strip with h = 2 cm,
L = 302 nH. Figure 2b shows that this maintains L > Lm for a loading factor of up to about 10
at 1.5 T. At higher frequencies (e.g., 3T), Lm is smaller (see Fig. 2f) and h can be much less
than 2 cm, provided that the transmission line shunt capacitance does not exceed the value of
Cg needed to tune the strips, per the assumptions made for Eq. [5].

LPSA Prototype
An LPSA prototype was designed and built according to the above principles. Each RTL in
the prototype had strip length l = 30 cm, strip width w = 1.27 cm, a strip-to-ground separation
of h = 2 cm, and strip spacing d = 10 cm. Figure 7 shows the LPSA and its circuit diagram.

Each strip was separately tuned to the same frequency with the other strips open-circuited.
Without any capacitors Cc connected between any nearest RTL pair, four resonant peaks are
observed in the impedance spectrum due to the coupling between the strips, as shown in Fig.
8a. When the nearest RTL pairs are interconnected with capacitors Cc, the impedance spectrum
of each RTL merges into a single peak, as seen in Fig. 8b. If channel 4 of the LPSA is shorted
to simulate connection with a low-input-impedance preamplifier, the single peak remains, as
seen in Fig. 8c. In Fig. 8c, QU ≈ 480 and QL ≈ 80 when loaded with a human chest, yielding a
loading factor of 6. Every RTL was matched to 50Ω when loaded. The circuit’s S21 parameter
curve of two RTLs is shown in Fig. 8d.

If the ground plane of the LPSA is a solid conducting sheet, eddy currents induced by the
gradients may affect image quality. To avoid this effect, the ground plane was segmented based
on principles outlined in Ref. 12. The gap between two segments of conductors was 1 mm, and
the gap spacing was 4.5 cm. The gaps were bridged with 2700 pF capacitors, which gave the
ground plane an impedance of 0.9 Ω at 63.87 MHz and 5.9 kΩ at 10 kHz.

Experimental Results
The four-channel LPSA was connected to a four-channel GE LX CVi scanner (GE Medical
Systems, Milwaukee, WI) for both conventional phased-array and parallel imaging. The array
was laid flat with strips oriented parallel to the main field, producing optimum sensitivity
encoding along the horizontal or x-axis. Figure 9 shows phantom and in vivo images obtained
using the LPSA for conventional phased-array reconstruction. Figure 9a–d show images from
each individual channel, and Fig. 9e shows the composite image from all four channels. The
localization of signals in Fig. 9a–d demonstrates that every strip actively receives signals
without significant coupling artifacts. Finally, Fig. 9f shows an axial image from the human
knee.

Parallel Imaging With the LPSA—For parallel imaging, two different reconstruction
schemes were used. One was GE’s implementation of the SENSE method (22), and the other
was the general encoding matrix (GEM) method (21). For the SENSE reconstruction, in vivo
T1-weighted images of human legs were acquired with a fast gradient-echo pulse (fGRE)
sequence, as shown in Fig. 10. These images in the coronal plane illustrate the uniformity of
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the strip’s sensitivity along the strip length, compared with the original PSA (1). Figure 10a is
a conventional coronal image of the knees acquired in 25 s, while Fig. 10b was acquired with
SENSE in 13 s with a reduction factor of 2.

With the four-channel LPSA, the GEM method yielded two-, three-, or fourfold scan-time
reductions, as shown in Fig. 11. These images were reconstructed using a generalized encoding
matrix with known k-space positions and measured coil sensitivities as described in Ref. 21.
The matrix was inverted and multiplied by the raw signal data collected in all array elements
to yield the accelerated images.

Comparison Between the RTL and a Circular Loop—Conventional MR phased arrays
(2) typically use circular or rectangular loops as their basic elements. While it is presently
unclear which specific loop and LPSA geometries can be meaningfully compared, given their
inherently different sensitivities, the SNR for one element of the 30-cm prototype LPSA (with
the other three elements open-circuit), and that of a GE single 15-cm-diameter circular loop,
are shown as a function of depth in Fig. 12. In this case, the background noise levels from the
strip and the loop are identical, with standard deviations (SDs) of 0.43 for both, and the net
strip/coil lengths are roughly comparable. It is seen that the signal levels from the strip and the
loop are also comparable overall, with the strip providing higher signal near the surface but
lower signal at depths greater than ~3 cm for a profile through the mid-line (Fig. 12c), and
signal levels at least as high as the loop at all depths, for a profile 4 cm away from the midline
(Fig. 12d).

CONCLUSIONS
We have introduced a new type of MRI planar strip detector array, the LPSA, which can be
tuned with lumped elements. The LPSA has an advantage over the original PSA in that its
geometry is not limited by dielectric material and the wavelength therein, but can be arbitrarily
adjusted within flexible guidelines that enable its performance to be optimized to suit a
particular anatomy or region of interest (ROI) for a given MRI magnetic field strength. We
have presented analytical expressions for the resonance conditions, Qs, magnetic field patterns,
and SNR of the basic element of the LPSA—the RTL—along with criteria for choosing the
geometric design and tuning elements that substantially eliminate coupling between the PSA
elements. We analyzed the mutual coupling and g-factor maps of the LPSA, and fabricated a
prototype LPSA according to the principles expounded. This LPSA demonstrated conventional
phased-array MRI, as well as accelerated parallel sensitivity-encoded MRI of both phantoms
and humans, with an underlying SNR of individual RTL elements comparable to that of a
standard loop coil. These results affirm the potential of the LPSA as a useful, practical detector
for multiple-channel MRI.

Although our strip arrays have been limited by our four-channel MRI system configuration
(1,5), both the PSA and LPSA detector designs may provide important advantages over loops
as the number of elements in the phased array increases to 8 or 16 or more channels. Increasing
the number of elements in a conventional array comprised of loops increases the mutual
coupling between loops, rendering them increasingly difficult to match, tune, and control (2,
7,8). For strip arrays, mutual coupling problems may be minimized via intrinsic decoupling
mechanisms in the case of the PSA (1), or by applying the design criteria for the LPSA discussed
herein. In addition, for a given FOV, increasing the number of elements in a loop array for
parallel sensitivity-encoded MRI eventually necessitates a reduction in loop size, and thus a
reduction in the depth sensitivity of the entire detector. Strip arrays are not directly susceptible
to this problem because the depth sensitivity does not depend on spacing between strips,
although adequate decoupling must be maintained as the strips are positioned closer and closer
together. Therefore, they have greater potential for packing more elements into a given FOV
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for the purposes of parallel imaging and/or retaining depth sensitivity, and thus represent a
promising approach for massively parallel MRI (3).

The explicit phase relation between the LPSA and imaged objects can be used to simplify the
parallel reconstruction, and the field orientation of the LPSA makes it a good candidate for
open-field MRI. In addition, the naturally shielded structure of the LPSA may help prevent the
severe coil losses often experienced at high fields.
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FIG 1.
Schematics of a resonant transmission line (a), an RTL (b), and the equivalent circuit of the
RTL (c).
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FIG 2.
Dependence of quality factors, Q, on the loaded and unloaded RTL equivalent impedences
calculated from Eqs. [13] and [14]. a: Quality factor Q of the RTL vs. Lt assuming different
Rt values of 0.5Ω, 1Ω, and 5Ω at 1.5T. b: Ratio of unloaded to loaded quality factors, QU/
QL vs. Lt assuming different ratios of unloaded to loaded Rt values, RL/RU at 1.5T. c: Q vs.
various Cg and Rt values at 1.5 T. d: QU/QL vs. Cg and RL/RU at 1.5 T. e: Q vs. typical values
of Lt and Rt at 3T. f: QU/QL vs. Lt and RL/RU at 3T. g: Q vs. Cg and Rt at 3T. h: QU/QL vs.
Cg and RL/RU at 3T. At 1.5T, QU/QL is more sensitive to Lt variations; at 3T, QU/QL is more
sensitive to Cg variations.
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FIG 3.
Axial view of the B1 field in the z = 0 plane of a 30-cm-long RTL with h = 2 cm, and the x-
axis horizontal. a and b: Contour plots of vector components Bx and By. c: Magnitude |B1|.
d: Arctan[B1y/B1x], which could translate into a phase of the received signal if a homogeneous
B1 transmitting field were supplied by an external coil. The contours span the ranges of (a) −
0.6 to + 0.7 μT, (b) ±0.7 μT, (c) +0.1 to 1.4 μT, and (d) ± π. Contour intervals are at one-eighth
of the range. FOV = 40 cm × 20 cm.
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FIG 4.
a: Ratio of noise resistance of the RTL to sample conductivity as a function of strip-to-ground
distance h. b: Magnitude of B1 of the RTL as a function of vertical depth y from the center of
the strip. c: SNR of the RTL as a function of vertical depth y from the center of the strip. |B1|
and SNR exhibit quite different behaviors. Here the dashed, solid, and dash-dot lines
correspond to h = 1 cm, 2 cm, and 4 cm, respectively.
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FIG 5.
Axial view of the B1 field in the z = 0 plane of a weakly coupled four-element LPSA with l =
30 cm, h = 2 cm, width w = 1.27 cm, and strip spacing d = 6 cm. Parts a, c, e, and g are the
amplitude of four channels, and b, d, f, and h are their corresponding arctan[B1y/B1x], which
could translate into phase of the received signal in four channels if a homogeneous B1
transmitting field were supplied by an external coil. Here the FOV is 20 cm × 20 cm with the
x-axis horizontal. The contours span the ranges of (a–d) 0.16 –1.4 μT and (e– h) ±π. Contour
intervals are at one-eighth of the range.

Lee et al. Page 20

Magn Reson Med. Author manuscript; available in PMC 2007 October 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG 6.
Axial view of the g-factor maps in the z = 0 plane for a four-element LPSA: for h = 2 cm, d =
10 cm, with a reduction factor of (a) 2, (b) 3, and (c) 4; for h = 2 cm, d = 6 cm, with a reduction
factor of (d) 2, (e) 3, and (f) 4; for h = 1 cm, d = 6 cm, with a reduction factor of (g) 2, (h) 3,
and (i) 4. The x-axis is horizontal, and scales (top right) indicate the g-value with contour
intervals at one-tenth of the range.
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FIG 7.
Schematic (a) and photo (b) of the prototype LPSA.
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FIG 8.
a: Impedance spectrum of a coupled four-element LPSA, as seen from the outside channel 1
(top spectrum, magnitude, 50Ω/div; bottom spectrum, phase, 20°/div). b: Spectrum with
interconnecting capacitors for decoupling (magnitude, 5Ω/div at top; phase, 20°/div at bottom).
c: Spectrum with interconnecting capacitors and channel 4 shorted (magnitude, 5Ω/div at top;
phase, 20°/div at bottom) for decoupling. This is equivalent to a low-input impedance
preamplifier. d: S21 for a nearest RTL pair. Dip is approximately −26 dB. The horizontal axes
are frequency-centered on 63.87 MHz, with a span of 10 MHz.
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FIG 9.
a–d: MR images acquired from each of the four different strips of the LPSA from a 27-cm-
high, 20-cm-diameter phantom. e: Composite image produced using the root of the sum-of-
the-squares method. Images were acquired with an FSE pulse sequence (echo train length
(ETL) = 8, TE = 85 ms, TR = 2 s, NEX = 1, data-acquisition matrix 256 × 160, FOV = 36 cm).
f: Composite phased-array axial image of the knees of a normal volunteer (TR = 150 ms, TE
= 3.3 ms, NEX = 1, flip angle = 70, FOV = 48 cm, slice thickness = 7 mm, data matrix = 256
× 160, FOV = 48 cm).
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FIG 10.
SENSE MRI of a normal volunteer acquired with four-element LPSA. a: Phased-array coronal
image of a leg through the knees (TR = 150 ms, TE = 3.3 ms, NEX = 1, flip angle = 70, FOV
= 48 cm, slice thickness = 7 mm, data matrix = 256 × 160, scan time = 25 s). b: Same section
acquired with the same parameters, but for a reduction factor of 2 (scan time = 13 s).
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FIG 11.
Images of the 27-cm-high, 20-cm-diameter phantom obtained with the GEM parallel
reconstruction scheme. a: Fully gradient phase-encoded image. b–d: Images acquired with a
reduction factor of 2 (b), 3 (c), and 4 (d). with a gradient-echo pulse sequence (TE = 6.7 msp,
TR = 150 ms, flip angle = 30°, data acquisition matrix used to extract the sensitivity profile =
256 × 160, 256 × 256 points, NEX = 1, FOV = 34 cm, slice thickness = 5 mm). The coronal
slice was 6 cm above the LPSA.
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FIG 12.
Comparison of a strip and a loop acquired from a phantom with the identical MRI sequence.
a: Image acquired with one RTL (l = 30 cm, h = 2 cm). b: Image acquired with one circular
loop (15-cm diameter). c and d: Profile comparisons of different rows in images a and b,
respectively (horizontal scale is 1–256).
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Table 1
Noise Resistance, Mutual Resistance and Noise Coupling Coefficients Calculations

h (cm) d (cm) R11/σ R12/σ R13/σ R14/σ Ψ12 Ψ13 Ψ14

2 6 8.755 6.02 3.834 2.712 0.69 0.44 0.31
2 10 8.755 4.222 2.329 1.394 0.48 0.27 0.16
1 6 3.06 1.631 0.999 0.697 0.53 0.33 0.23
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