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ABSTRACT

We consider inference for demographic models and parameters based upon postprocessing the output
of an MCMC method that generates samples of genealogical trees (from the posterior distribution for a
specific prior distribution of the genealogy). This approach has the advantage of taking account of the
uncertainty in the inference for the tree when making inferences about the demographic model and can
be computationally efficient in terms of reanalyzing data under a wide variety of models. We consider a
(simulation-consistent) estimate of the likelihood for variable population size models, which uses impor-
tance sampling, and propose two new approximate likelihoods, one for migration models and one for con-
tinuous spatial models.

THERE are two common approaches to analyzing
population genetic data. The first approach in-

volves (i) inferring a genealogical or phylogenetic tree
for the data and (ii) making inferences about demo-
graphic or other parameters conditional on this tree.
Examples of this include inference of the demography
(Underhill et al. 2001), nested clade analysis (Templeton

et al. 1987), and phylogeographic and spatial analysis
(Emerson and Hewitt 2005; French et al. 2005). Of-
ten this approach is applied informally, with the qualita-
tive features of the inferred tree being used to suggest
plausible demographic histories for the sample (e.g., Shen

et al. 2000).
The second approach involves joint inference of the

genealogical tree and the parameters. In many cases the
genealogical tree is a nuisance parameter, and calcula-
tion of the likelihood for the parameters involves inte-
grating out the unknown tree, for example, in inference
about various demographic models under a coalescent
prior, including variable population sizes (Griffiths

and Tavaré 1994a; Kuhner et al. 1998; Drummond et al.
2005) and population structure (Bahlo and Griffiths

1998; Beerli and Felsenstein 1999), inference for
selection (Coop and Griffiths 2004), dispersal of a
population (Brooks et al. 2007), and inference for re-
combination rates (Griffiths and Marjoram 1996;
Kuhner et al. 2000; Fearnhead and Donnelly 2002).
(In the latter case the genealogical information is con-
tained in a graph and not in a tree.)

The advantage of the second approach is that, assum-
ing the model for the genealogical tree is reasonable,

the uncertainty in this genealogy is correctly incorpo-
rated into the inference about the parameters of inter-
est. This is particularly important for data where there is
considerable uncertainty in the genealogy (which is
common for many data sets). The first approach of
conditioning on a single estimate of the genealogy can
sometimes lead to biases in estimates and, more gen-
erally, to underestimates of the uncertainty in the pa-
rameters. These problems often mean that analysis
conditional on the tree is often used primarily to test
hypotheses (Templeton et al. 1987; French et al. 2005),
rather than for estimating parameters of appropriate
models.

However, implementing the second approach is con-
siderably more challenging and generally requires the
use of modern computationally intensive statistical meth-
ods (Stephens and Donnelly 2000). In particular, this
often requires the development of customized programs
to analyze the data under the specific model or models
of interest, and the application of this approach can be
limited by the availability of suitable software.

In this article we consider a new approach, which lies
between these two approaches. The basic idea is (i) to
perform inference for the genealogical/phylogenetic
tree using a suitable Bayesian approach, obtaining a
sample of trees from the posterior and (ii) to perform
inference on the parameters of interest using this sam-
ple of trees. The idea is that by using a sample of trees
in an appropriate way we can still take account of the
uncertainty within the inference for the tree, but that
this approach will be less computationally intensive and
more widely applicable than the second approach above.

We consider inference under three different demo-
graphic models: (a) variable population size, (b) migra-
tion between discrete subpopulations, and (c) continuous
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spatial structure. For model a we present a simple
importance-sampling approach that can reweight a sam-
ple of trees so that the resulting weighted sample ap-
proximates the posterior distribution of the genealogy
under any variable population size model. For models
b and c we propose approximate-likelihood functions
based on specifying a probability model for the pop-
ulation or on spatial information of the sample given
the genealogy.

Our aim is to evaluate the potential for this approach
of postprocessing a sample of genealogical trees. As such
we focus on the specific case of inference for a non-
recombining DNA region with infinite-sites data and
known topology. The advantage of focusing on this spe-
cial case is that there exists an algorithm for simulating
directly from the posterior distribution of the coales-
cence times of the tree, under a specific prior (see
methods). Thus we can focus on the computational
and statistical efficiency of the postprocessing methods,
without any need to take into account the possible
effects of any inaccuracies in the method for generating
the sample of trees. However, the ideas of postprocess-
ing can be applied to the output of any MCMC or other
approach for generating samples of trees from a known
posterior distribution and thus are not restricted to the
assumptions of infinite-sites data or known topology.

METHODS

Infinite-sites data and phylogenetic prior: We focus
on analyzing data from m chromosomes sampled from a
population. We assume we have infinite-sites data from
a nonrecombining region of the genome and that the
topology of the genealogy is known. The infinite-sites
data mean that we will know the number of mutations
that have occurred on each branch of the genealogy.
Our mutation model is that (for our chosen scaling of
time) these mutations occur at a constant rate u/2 along
each branch of the genealogy.

We assume some labeling of the nodes in the gene-
alogy and denote by t ¼ (t1, . . . , tm�1) the coalescent
times for these nodes. We take the usual convention of
the current time being time 0 and time being measured
backward into the past. We also introduce the notation
t9 ¼ (t91, . . . , t9m�1) to denote the ordered coalescent
times (so t91 , t92 , . . . , t9m�1). In the genealogy there are
2(m � 1) branches. The branch lengths are denoted by
b ¼ (b1, . . . , b2(m�1)), and sequence data can be sum-
marized by the number of mutations on each branch:
n¼ (n1, . . . , n2(m�1)). The branch lengths, b, are a linear
function of the coalescent times, t; and to emphasize
their interdependence we write b(t) and bi(t). The like-
lihood of the data, n, can be written as

pðn j t; uÞ ¼
Y2ðm�1Þ

i¼1

u

2

� �ni

biðtÞni expf�biðtÞu=2g: ð1Þ

Now we use the pure birth process prior of Rannala

and Yang (1996) for the coalescent times, which as-
sumes that the length of each branch has an exponen-
tial distribution with rate f,

p1ðt jfÞ}
Ym�1

i¼1

ðm 11� iÞf expfðm 11� iÞfðt9i � t9i�1Þg:

ð2Þ

Under this prior the posterior distribution for t (given
f and u) is

pðt jn; u; fÞ} fm�1
Y2ðm�1Þ

i¼1

u

2

� �ni

biðtÞni expf�ðf 1 u=2ÞbiðtÞg:

ð3Þ

Note that setting f ¼ 0 produces a posterior that is
proportional to the likelihood function.

By introducing new variables s¼ (s1, . . . , sm�1), which
satisfy si ¼ (f 1 u/2)ti, we obtain

pðs jn; u; fÞ} f

f 1 u=2

� �m�1 Y2ðm�1Þ

i¼1

u=2

f 1 u=2

� �ni

3 ðbiðsÞÞni expð�biðsÞÞ; ð4Þ

where by the linear relationship between branch lengths
and coalescent times bi(s)¼ (f 1 u/2)bi(t). Fearnhead

and Meligkotsidou (2004) show how to draw inde-
pendent and identically distributed (i.i.d.) samples from
this density and hence (through rescaling) from the pos-
terior (3). Furthermore this gives that the likelihood for
f is proportional to

f

f 1 u=2

� �m�1 u=2

f 1 u=2

� �n

; ð5Þ

where n is the total number of mutations.
Variable population size: Consider a panmictic pop-

ulation of current effective population size N chromo-
somes, with time measured in units of N generations,
and let the effective population size at time t in the past
be N/l(t). The distribution for the coalescence times
for a random sample of m chromosomes from such a
population (Griffiths and Tavaré 1994a) is

p2ðt j lð�ÞÞ ¼
Ym�1

i¼1

m 1 1� i

2

� �
lðt9iÞ

3 exp
m 1 1� i

2

� �
ðLðt9iÞ � Lðt9i�1ÞÞ

� �
;

ð6Þ

where LðsÞ ¼
Ð s

0 lðuÞdu, and remember that the t9i’s are
defined as ordered coalescent times.

Interest lies in generating samples from the posterior
distribution of the coalescent times p(t j l(�), u, n) and

348 L. Meligkotsidou and P. Fearnhead



in calculating the marginal likelihood p(n j l(�), u). The
former allows us to perform inference for a given de-
mographic model, and the latter is required for choos-
ing between different demographic models.

Both of these can be achieved through an algorithm
that generates samples of the coalescent times from (3)
and then reweights these samples. For example,

pðn j lð�Þ; uÞ ¼
ð

p2ðt j lð�ÞÞpðn j t; uÞdt;

¼
ð

p2ðt j lð�ÞÞ
p1ðt jfÞ

� �
p1ðt jfÞpðn j t; uÞdt;

} E
p2ðt j lð�ÞÞ
p1ðt jfÞ

� �
;

where the expectation is with respect to p(t j n, u, f), and
the constant of proportionality is

Ð
p1ðt jfÞpðn j t; uÞdt.

The last step of working above uses p1ðt jfÞpðn j t; uÞ ¼
pðt jn; u; fÞ

Ð
p1ðt jfÞpðn j t; uÞdt. A natural estimate

of this expectation is based on the sample mean of
p2(t j l(�))/p1(t jf) for an i.i.d. sample from p(t j n, u, f).
In addition, the weighted sample will approximate
p(t j l(�), u, n). This is a standard importance-sampling
approach, and for more general details of this method
see Srinivasan (2002).

Specifically the algorithm is as follows:

A. Generate an i.i.d. sample of size K from (3) using the
method of Fearnhead and Meligkotsidou (2004).
Denote the sample as t(1), . . . , t(K).

B. For k¼ 1, . . . , K assign t(k) a weight wk¼p2(t(k) j l(.))/
p1(t(k) j f). Let C ¼

PK
k¼1 wk .

C. The weighted sample, t(1), . . . , t(K) with correspond-
ing weights w1/C, . . . , wK/C, approximates the pos-
terior p(t j l(.), u, n). Furthermore, an estimate of the
marginal likelihood p(n j l(.), u) (up to a common
constant of proportionality) is given by C/K.

The advantage of this approach is that the costly, in
terms of CPU time, step of generating the sample of
coalescent times in A is required only once. Calculating
the importance-sampling weights in B has negligible
CPU cost and thus can be repeated easily for a wide
range of possible models for how the population size
has varied through time. For informative data, the hope
is that (3), which is closely related to the likelihood, will
be a good proposal density for a wide range of l(t)’s.
However, the efficiency of this method is likely to de-
pend crucially on the sample size m, which affects the
dimension of t.

Migration models: We now consider inference for a
structured population model. We consider a model with
D demes, each with constant population sizes N1, . . . , ND,
respectively, and D 3 D backward migration matrix M¼
{Mij}. Under this model, backward in time a chromo-
some currently in deme i will migrate to deme j with rate
Mij/2. The diagonal elements are defined so that rows of
the matrix sum to zero,

PD
i¼1Mij ¼ 0. We assume the pop-

ulation is at stationarity, so that the expected number of
migrants leaving a deme is equal to the expected num-
ber entering, which corresponds to

PD
i¼1NiMij ¼ 0, and

thus the model is parameterized by the migration
matrix M, and the total population size N ¼

PD
i¼1Ni .

Note that knowledge of the migration matrix and the
total population size will define the population sizes of
the individual demes.

The data now include the deme in which each of the
chromosomes was sampled. We propose an approxi-
mate-likelihood approach to estimating the migration
rates. We first introduce an approximate likelihood func-
tion for the observed demes of the sample conditional
on t. We denote this by l̃ðM j tÞ. The approximation that
we use treats the deme that a chromosome belongs to in
an equivalent way to an allele. This is an approximation
as migration models assume strong density regulation,
so that the population size of each deme is constant over
time and a fixed proportion of chromosomes move from
one deme to another in a single generation. By com-
parison our approximation is (by direct analogy to neu-
tral Wright–Fisher models) equivalent to allowing the
population size of these to fluctuate through time. Each
chromosome in a given deme is choosing independently
whether to migrate from its deme to another (with the
probability of migrating and the deme to which it mi-
grates being determined by the migration rates). For
real-life populations, the truth is likely to lie in between
these two extremes: with some degree of variation in
population size of demes over time, but with density reg-
ulation restricting this variability.

To define our approximate likelihood we first define
gi ¼ Ni/N for i ¼ 1, . . . , D and introduce a forward
migration matrix F whose entries satisfy Fij ¼ NjMji/Ni,
for i, j ¼ 1, . . . , D. So the probability of a specific
descendant of a chromosome in deme y being in deme x
at a time t in the future is

pyxðtÞ ¼ ðexpfFtgÞyx :

We introduce a vector x¼ (x1, . . . , x2m�1), where (x1, . . . ,
xm) denotes the deme of the m chromosomes in the
sample, and (xm11, . . . , x2m�1) are the demes of the inter-
nal nodes of the genealogy. We assume x2m�1 is the deme
of the most recent common ancestor. Finally, for i ¼
1, . . . , 2m� 2, we let bi be the branch length connecting
node i to its parent and yi be the deme of the parent of
node i. Then we define a joint density

pðxÞ ¼ gx2m�1

Y2m�2

i¼1

pyixi
ðbiÞ;

where the gx2m�1
term comes from the stationary distri-

bution of the migration process. Finally, the likelihood
conditional on t is

l̃ðM j tÞ ¼
X
xm11

� � �
X
x2m�1

pðxÞ: ð7Þ
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Note that this likelihood is uninformative about the
total population size N. Calculating (7) is possible using
the peeling algorithm of Felsenstein (1981).

Our approximate likelihood is then obtained by av-
eraging l̃ðM j tÞ over samples of t from (3). So given a
sample t(1), . . . , t(K) from (3), we get

l̃ðM Þ ¼ 1

K

XK

k¼1

l̃ðM j tðkÞÞ:

Note that a direct importance-sampling approach (sim-
ilar to that used for the variable population size sce-
nario) is not computationally feasible here. To calculate
importance-sampling weights we need to know not only
t but also the specific details of all migration events
in the history of our sample. We have considered an
importance-sampling approach that imputes the migra-
tion events, but the resulting method was highly inef-
ficient because of the large space of possible migration
events for any given data set.

Continuous spatial models: Finally we consider in-
ference for samples obtained across a continuous spatial
habitat. We assume that the data now include a spatial
location for each sampled chromosome. We focus on
inference under an isolation-by-distance model.

For simplicity we first describe the model assuming a
one-dimensional location. We assume that the displace-
ment of the location of a chromosome from the location
of its ancestor at time t in the past has a univariate
Gaussian distribution, with zero mean and variance s2t.
First, condition on the genealogy of the sample. Further-
more, let m be the location of the most recent common
ancestor (MRCA), T be the time to the MRCA, and tij be
the time back to the first common ancestor of chromo-
somes i and j. Then, conditional on this, the spatial data
X¼ (X1, . . . , Xm) have a multivariate normal distribution
with

EðXiÞ ¼ m; and CovðXi ; XjÞ ¼ s2ðT � tijÞ;

for all i, j ¼ 1, . . . , m. The intuition here is that as dis-
persion is unbiased, the expected location of each sam-
pled chromosome will be the location of the MRCA;
whereas the covariance between the locations of two
chromosomes is proportional to the amount of shared
ancestry they have back to the most recent common
ancestor. This model trivially extends to the case of two-
dimensional locations where the dispersion in each
direction is independent and identically distributed.

To perform inference we then introduce a prior
distribution on the genealogy of the sample and a prior
distribution on m. We use (2) as the prior on the gene-
alogy and we choose an improper uniform prior on m.
For this choice of prior on m it is possible to analytically
integrate out m conditional on the genealogy (Rue and
Held 2005). We write p(x j t, s) to be the resulting con-
ditional probability of the data, given just the genealogy

and s, and p(m j x, t, s) to be the corresponding con-
ditional distribution for m.

For many spatial genetic studies, samples are gener-
ated by first choosing the locations and then sampling
chromosomes at those locations. Thus it makes sense to
perform inference for s under a conditional likelihood,
where we condition on the spatial location. More gen-
erally, use of the conditional likelihood for s means that
inferences should depend less on the choice of prior
on the genealogy (since in the limit as the mutation rate
tends to 0, the conditional likelihood will become con-
stant). If as before we denote the genetic data by n and
the spatial data by x, then the conditional likelihood can
be written as

CLðsÞ ¼ pðn j x; sÞ ¼ pðn; x jsÞ
pðx jsÞ :

If we use the prior (2), but rather than specifying a value
of f use the uninformative hyperprior p(f) } 1/f, then
the denominator is constant as a function of s (see the
appendix), which greatly simplifies the calculation of
this conditional likelihood.

We calculate CL(s) by simulation as follows:

A. We simulate K i.i.d. samples of times, by repeatedly
(i) simulating f from its posterior and (ii) simulating
t from (3) conditional on that f. Denote the sample
as t(1), . . . , t(K).

B. For k ¼ 1, . . . , K assign t(k) a weight wk ¼ p(x j t(k), s).
Let C ¼

PK
k¼1 wk .

C. An estimate of CL(s) is C/K, and the posterior
distribution for m is approximated by the mixture

XK

k¼1

wk

C
pðm j x; tðkÞ; sÞ:

Simulation in part i of A is straightforward, as the
posterior for f is proportional to

f

f 1 u=2

� �m�2 u=2

f 1 u=2

� �n

and can be related to a beta distribution through the
transformation g ¼ f/(f 1 u/2).

Simulation of continuous spatial data: Simulating
data under an appropriate continuous spatial model is
difficult. There appear to be two approaches: first, those
based on the isolation-by-distance model of Wright

(1943), which ignores any regulation of population den-
sity and thus produces populations with infinite density
(Felsenstein 1975), and, second, models that assume a
constant population density (Wilkins and Wakeley 2002;
Wilkins 2004) and require the population to live on
some closed finite region.

As our inference model ignores any restriction on
the location of chromosomes as required for these
latter models, we simulated data under a version of the
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isolation-by-distance model of Wright (1943). In par-
ticular, we simulated the genealogical tree for our data
under a coalescent model with exponential population
growth and then conditional on this simulated the
spread of the chromosomes from the model described
above. The idea is to model a situation where the effect
of population density regulation is less: that of a pop-
ulation growing in size to fill a new habitat. Note that we
are simulating the data under a different model from
that under which we are analyzing the data, as the
distributions on the genealogy differ.

RESULTS

Variable population size: The importance-sampling
approach we propose for analyzing data under a range
of variable population size scenarios is simulation consis-
tent. That is, as the number of samples, K, of the coa-
lescence times tends to infinity, then the estimate of the
likelihood of a given scenario or the likelihood curve for
a given set of parameters will converge to the true like-
lihood or likelihood curve. Similar results hold for the
posterior distribution of the coalescence times. Thus
the practicability and efficiency of the approach relies
on the Monte Carlo error in these estimates and on how
large K will need to be to obtain good estimates.

One way of empirically testing the accuracy of these
estimates is to use the effective sample size (ESS) of Liu

(1996) (see also Fearnhead and Donnelly 2001). The
ESS is defined as

ð
P

K
k¼1 wkÞ2P
K
k¼1 w2

k

:

The ESS lies between 1 and K and has the interpretation
that if an importance-sampling scheme has an ESS of
E, then inference based on this scheme is roughly as
accurate as inference based on E independent draws
from the full posterior distribution. As a rough guide we
would want E . 100 and preferably E . 1000 for the in-
ferences to be reliable. (Increasing K by a factor should
increase E by the same constant factor.)

We investigated how the ESS of our method depends
on the values of the mutation rate, u, and the sample
size, m. We simulated data from the exponentially grow-
ing population size model with rate of exponential growth
b ¼ 0.7 and various values of u, namely u ¼ 10, 20, 30.
Figure 1 shows the ESS values for analyzing data sets of
size m ¼ 10, 15, 20, 30, 40, using K ¼ 10,000 weighted
samples sampled from (3). (Here and below we set f to
the value that minimizes the likelihood in Equation 5,
although results are insensitive to this choice.) It can be
seen that the ESS decreases with m, but increases with u.
The results suggest that for u¼ 10 analyzing sample sizes
of up to 20–40 is reasonable, with slightly larger sample
sizes possible for the larger u-values. The speed of this ap-
proach means that analysis for larger values of m should
be possible by increasing K.

To demonstrate the potential usefulness of our method
we consider analyzing the data shown in Figure 2, under
a variety of scenarios for the variable population size. We
fix the parameters within our model (although our ap-
proach can equally be used to calculate likelihood sur-
faces for parameters of a given model). Our reason for
focusing on different scenarios is that this is a situation
where existing methods may not be able to be used (as
existing software may allow analysis only for a certain
class of models or would require being rerun for each

Figure 1.—ESS for analyzing data sets of size m¼ 10, 15, 20,
30, 40 simulated from the exponentially growing population
size model with b ¼ 0.7 and u ¼ 10, 20, 30.

Figure 2.—The coalescent tree for a sample of m¼ 10 chro-
mosomes from the constant population size model. The mu-
tations are depicted by solid circles on the branches of the
tree.

Postprocessing of Genealogies 351



model that is considered). Specifically, we consider the
following models:

a. The constant population size model; for this model
l(t) ¼ t.

b. The exponentially growing population size model;
for this model l(t) ¼ ebt.

c. The constant population size followed by exponen-
tial growth model; for this model we assume

lðtÞ ¼
se�bt ; t , s

se�bs; t $ s:

(

d. The bottleneck model; for this model we assume

lðtÞ ¼
1; t , s1

a; s1 # t , s2

2; t $ s2:

8><
>:

For the analysis below we fixed (a) u¼ 15; (b) u¼ 15 and
b ¼ 0.7; (c) u ¼ 15, s ¼ 0.1, and b ¼ �10 log(0.05); and
(d) u ¼ 15, s1 ¼ 0.165, s2 ¼ 0.175, and a ¼ 10. We focus
on inferring the time to the most recent common
ancestor (TMRCA) and in particular on looking at
how robust these inferences are to the specific choice of
model.

We simulated K ¼ 10,000 sets of coalescence times
from (3), which took ,2 min on a Pentium 4 laptop PC
with CPU of 3.20 GHz. Reweighting these sets of times
took�1 sec for each model. The resulting histograms of
the samples of the TMRCA for all models are shown in
Figure 3, and the respective estimates of the marginal
likelihood are (a) 0.4308, (b) 0.6248, (c) 0.0362, and

(d) 2.4191 3 10�6. The ESSs of the weights were between
1000 and 5000 for models a–c and 98 for d. The his-
tograms show that the estimate of the TMRCA appears
robust across these different models.

Note that inference for the bottleneck model is more
challenging than that for the other models as the
importance-sampling weights depend crucially on the
number of coalescences that lie within the period of
the bottleneck and thus can have a large variance (and
hence small ESS). The effect of a bottleneck depends pri-
marily on its severity, defined as the product a(s2 � s1).
Having a bottleneck with similar severity but larger a

and smaller (s2 � s1) will lead to a more poorly behaved
importance sampler.

Migration models: Here we examine the perfor-
mance of our approach at analyzing migration models.
Note that we can estimate migration rates only relative
to our choice of units for time, which is defined by our
specification of the mutation rate u. Therefore, we fix u to
its true value and look at estimates of the migration rates.

Our approach for migration models is based on an ap-
proximate likelihood, and first we need to check the
validity of this approach. To do this we calculated the mean
log-likelihood over a set of independent data. The shape
of the mean log-likelihood governs the asymptotic behav-
ior of the method, and in particular for an approximate
likelihood method to produce consistent estimates it is re-
quired that the mean log-likelihood curve attains its max-
imum at the true value of the parameters (see Fearnhead

2003; Smith and Fearnhead 2005, for further discussion).
Thus an important property of an approximate-likelihood
method is that the mean log-likelihood curve attains its
maximum at a value close to the true value.

Figure 3.—Histograms of the samples of the
TMRCA for the coalescent tree analyzed under
(a) the constant population size model, (b) the
exponentially growing population size model,
(c) the constant population size followed by ex-
ponential growth model, and (d) the bottleneck
model. The true value of the TMRCA is indicated
in each plot by a circle.
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We simulated 100 coalescent trees with sample size
of m ¼ 10 from the migration model with D ¼ 2 demes,
N1 ¼ 3000, N2 ¼ 7000, M12 ¼ 1.2, and M21 ¼ 2.8. The
mutation rate used was u ¼ 30. For each data set we
based inferences on 2000 sets of coalescence times sim-
ulated from (3), again with f set to the value that maxi-
mizes (5). We have estimated the mean log-likelihood at
a grid of values of M12, M21. A contour plot of this log-
likelihood surface is shown in Figure 4. The maximum
of this curve is indeed close to the true parameter value
(maximum at M12 ¼ 1.02, M21 ¼ 2.52). Similar results
are obtained for a range of migration models (results
not shown).

In Table 1 we present results on the performance of
our approach, obtained from simulated data of size m¼
10, 20 from the migration model with D ¼ 2 demes for
different values of the model parameters. We consider
two sets of parameters: (a) N1¼N2¼ 5000, M12¼M21¼
0.4 and (b) N1¼ 3000, N2¼ 7000, M12¼ 1.2, M21 ¼ 2.8.
In each case we report the average of the most likely
parameter values across 100 data sets, the standard er-
rors of these estimates (in parentheses), and the associ-
ated coverage of the 95% likelihood-based confidence
intervals (C.I.’s). The average CPU cost of analyzing a
data set on our laptop PC is 30 sec for the m ¼ 10 case
and 50 sec for the m ¼ 20 case.

The method does have a bias, as can be seen in Figure
4 and Table 1; however, this bias is small compared to the
standard error of the estimates and thus has a very small
contribution to the mean square error of the estimator.
The coverage properties of the confidence intervals vary
notably between cases a and b; the reason for this is
unclear. In this case it appears that the approximate-
likelihood method performs much better and more
robustly in terms of point estimates than in terms of
assessing uncertainty in those estimates.

For comparison we reanalyzed the m¼ 10, u¼ 15, M12¼
M21 ¼ 0.4 data sets using genetree (Griffiths and
Tavaré 1994b; Bahlo and Griffiths 1998), which ap-
proximates the true likelihood curve. To use a single run
of genetree required that we fix the relative population
sizes in the two populations. So we ran genetree and
reran our approach assuming that both u and the rela-
tive population sizes were known and considered esti-
mates of the single migration parameter. To implement
genetree requires the choice of a driving value for the
migration rate, and rather than choose a single value we
ran genetree for five different values, ranging from 0.2
to 1.0, and averaged the likelihood curves across those
obtained for each value. We ran genetree for 100,000
iterations for each driving value, which took around two

Figure 4.—Contour plot of the mean log-likelihood
surface of M12, M21 obtained from 100 simulated coalescent
trees with sample size m¼ 10 under the migration model with
D ¼ 2 demes (each contour corresponds to 0.05 units of log-
likelihood). The mutation rate used was u ¼ 30. Shown are
the true parameter values, M12 ¼ 1.2 and M21 ¼ 2.8, and
the values that maximize the surface, M̂12 ¼ 1:02 and
M̂21 ¼ 2:52.

TABLE 1

Performance of our approximate-likelihood approach for simulated data under the migration
model with D ¼ 2 demes for scenarios (a) N1 ¼ N2 ¼ 5000, M12 ¼ M21 ¼ 0.4 and

(b) N1 ¼ 3000, N2 ¼ 7000, M12 ¼ 12, M21 ¼ 28

Case a Case b

m u M̂12 Coverage (%) M̂21 Coverage (%) M̂12 Coverage (%) M̂21 Coverage (%)

10 15 0.46 100 0.48 100 1.02 92 2.50 89
(0.26) (0.26) (0.64) (1.30)

10 30 0.42 100 0.46 100 1.08 95 2.62 97
(0.22) (0.26) (0.62) (1.22)

20 15 0.36 99 0.38 99 1.04 87 2.42 82
(0.24) (0.24) (0.72) (1.46)

20 30 0.38 97 0.38 97 1.06 90 2.66 88
(0.30) (0.30) (0.70) (1.36)

In each case we report the estimates of the parameters based on 100 data sets, the standard errors (in pa-
rentheses), and the associated coverage of the 95% C.I.’s.
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orders of magnitude longer to run than our approach.
The median ofESSs of the estimate of the likelihood at the
true migration rate was 15 across the 100 simulations (in
comparison with an ESS of .1000 for our method). The
estimates from the two methods were highly correlated
(correlation coefficient 0.75). The root mean square error
of our estimates was�20% smaller than that of genetree.
This suggests that for this case the Monte Carlo error
within the genetree estimates of the likelihood curves is
affecting the estimates of the migration rates more than
the approximation error of our likelihood approach.

Continuous spatial models: Finally we present results
for the continuous spatial models. Again here we can
estimate the parameters of the spatial model only rel-
ative to the mutation rate u. Therefore, we fix the param-

eters of the demographic model to their true values and
look at estimates of the spatial parameters.

First, we check the validity of the approximate likeli-
hood through calculating the mean log-likelihood for a
range of parameters. For each set of parameters we sim-
ulated 100 data sets and then used our approximate ap-
proach with K¼ 5000 to estimate the likelihood curve of
s, the parameter governing the rate of spatial dispersion,
and to obtain samples from the posterior distribution of
the location of the MRCA. Combining information from
all of the 100 simulated trees we estimated the average
log-likelihood at a grid of values of s. Figure 5 shows the
resulting mean log-likelihood curves for a range of val-
ues of the sample size, m, the mutation rate, u, and the
population growth parameter, b. In each case s¼ 1. The
accuracy of the method appears to be primarily de-
pendent on m, with the asymptotic bias of the method
increasing as m increases (as the value of s for which the
maximum of the mean log-likelihood curve is attained
gets further away from s ¼ 1 as m increases).

In Table 2 we present a summary of the estimates of s

across the 100 data sets for each set of parameter values;
and in Table 3 we give the root mean square error of the
estimate of the position of the MRCA (these estimates
had negligible bias); due to symmetry we show only the
root mean square error for estimating one coordinate of
the position.

We see that the estimates of s are accurate for values
of m up to 10, and any bias is small relative to the stan-
dard error of the estimator; beyond this we note a bias in
our estimates, and the root mean square error actually
increases when we move from m¼ 10 to m¼ 40. Coverage
properties also appear good for values of m up to 10; but
beyond this the confidence intervals are substantially
anti-conservative. The values of b and u appear to have
little effect on the results. These results are consistent
with those from Figure 5, with the bias of the estimator
starting to dominate its performance for m ¼ 20 and
particularly for m ¼ 40.

Figure 5.—Plots of the log-likelihood surface of s for a range
of parameter values, each obtained from 100 simulated data sets.
Left-hand plot: u ¼ 15, b ¼ 1, and m¼ 10 (blue); m ¼ 20 (red);
and m¼ 40 (green). Right-hand plot: m¼ 20, u ¼ 30, and b ¼ 1
(black); u ¼ 30, b ¼ 2 (blue); u ¼ 15, b ¼ 1 (red); and u ¼ 15,
b ¼ 2 (green).

TABLE 2

Performance of our conditional-likelihood approach at estimating s for the spatial model

b ¼ 1 b ¼ 2

m u EðŝÞ RMSE Coverage (%) EðŝÞ RMSE Coverage (%)

5 2 0.99 0.45 95 1.00 0.42 96
5 5 1.09 0.46 93 0.99 0.38 94
10 5 1.02 0.28 95 1.04 0.29 95
10 15 1.05 0.24 94 1.03 0.23 94
20 15 1.13 0.22 83 1.18 0.26 79
20 30 1.14 0.27 79 1.20 0.29 73
40 15 1.22 0.31 57 1.23 0.30 51
40 30 1.22 0.30 45 1.28 0.32 40

We report the mean of the estimates of s (truth s ¼ 1), the root mean square error of the estimates, and the
coverage probability of 95% approximate confidence intervals. (The grid of s-values ranged from 0 to 4 for m¼
5 and m ¼ 10 and from 0 to 2 for m . 10.)
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For comparison with our estimate of the position of
the MRCA, we also calculated a simple unbiased esti-
mate for each data set, which is obtained by taking the
average of the locations of the sample. The root mean
square error of one coordinate of the position is also
shown in Table 3. Our approach is uniformly more
accurate—with quite notable reduction in root mean
square error for m ¼ 20 and m ¼ 40. Note that the
estimates are more accurate for b¼ 2 than for b¼ 1 due
to the tree being shorter and thus the spatial spread of
the data being less.

One approach to reduce the bias of estimates for the
m¼ 20 and m¼ 40 cases is to use a composite likelihood.
We tried a simple approach: For the m¼ 20 case we split
the data into two disjoint subsamples of size 10; and for
the m ¼ 40 case we split the data into four disjoint sub-
samples of size 10. For both cases we then calculated the
log-likelihood for each subsample of size 10 and av-
eraged this log-likelihood across the two, or the four,
subsamples. We calculated our estimate of s as the value
that maximized this average log-likelihood curve. (Con-
fidence intervals were calculated by treating the average
log-likelihood curve as a standard log-likelihood curve.)
The results are shown in Table 4. The bias and root
mean square error of the estimates are substantially re-

duced for this approach, and also the coverage proba-
bilities are much closer to 95%.We investigated using
more, but nondisjoint, subsamples and found no im-
provement in the estimates. We also tried using smaller
subsamples (e.g., four disjoint subsamples of size 5 for
the m ¼ 20 case), but obtained worse performance in
this case.

To demonstrate the advantage of postprocessing a
sample of genealogical trees, rather than conditional
analysis based on a single tree, we considered the alter-
native approach of inferring s given a single estimate of
the genealogy. Such an approach (i) obtains an estimate
of the coalescent times t̂ using the genetic data and (ii)
bases inference on the conditional likelihood pðx j t̂;sÞ.
We used the maximum-likelihood estimator of t̂ (which
for these models can be calculated using the method of
Meligkotsidou and Fearnhead 2005).

Here we present results for the m¼ 2 and m¼ 5 cases,
although similar results are obtained for larger values
of m. One difficulty with using the maximum-likelihood
estimate of t is that the estimate of the coalescence time
for two identical sequences is 0, which is inconsistent
with chromosomes sampled from distinct locations. Thus
in our analysis below we simulate data conditional on a
sample having no identical sequences. We do not take
account of this conditioning when analyzing the data.

Figure 6 gives probability–probability (PP) plots of
the likelihood-ratio statistics for testing s ¼ 1 against
draws from a chi-square distribution with 1 d.f. We show
this plot as this PP plot is related to the coverage prop-
erties of confidence intervals for the parameter, and if
the likelihood-ratio statistic is approximately distributed
as a chi-square distribution with 1 d.f., then it shows that
the likelihood method is correctly quantifying the un-
certainty in the parameter. This analysis is slightly com-
plicated for the m¼ 2 case, as the sample size is too small
for the asymptotic limit of the likelihood-ratio statistic to
be a very good approximation—thus we also show the
PP plot for the likelihood-ratio statistic conditional on
knowing the true coalescence time. For each value of
u we give PP plots for the new approximate-likelihood
method, the conditional analysis for the data sets with
at least one segregating site. For smaller values of u the

TABLE 4

Performance of our composite-likelihood approach at estimating s for the spatial model

b ¼ 1 b ¼ 2

m u EðŝÞ RMSE Coverage (%) EðŝÞ RMSE Coverage (%)

20 15 1.01 0.22 96 1.02 0.25 93
20 30 0.98 0.19 95 1.00 0.20 95
40 15 0.94 0.23 92 0.99 0.24 95
40 30 0.96 0.21 91 0.93 0.18 95

We report the mean of the estimates of s (truth s ¼ 1), the root mean square error of the estimates, and the
coverage probability of 95% approximate confidence intervals. (We split the data into disjoint subsamples of
size 10. The grid of s-values ranged from 0 to 2.)

TABLE 3

Performance of our conditional likelihood (CL) method and
the sample mean (SM) at estimating the position of the MRCA

b ¼ 1 b ¼ 2

m u CL SM CL SM

5 2 0.62 0.73 0.48 0.52
5 5 0.54 0.62 0.51 0.56
10 5 0.67 0.70 0.51 0.53
10 15 0.66 0.66 0.55 0.56
20 15 0.61 0.66 0.52 0.58
20 30 0.56 0.62 0.52 0.59
40 15 0.66 0.69 0.46 0.51
40 30 0.68 0.71 0.55 0.62

Numbers show root mean square error for inferring a sin-
gle coordinate of the position. By symmetry, the results for the
other coordinate are the same.
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approach that conditions on the maximum-likelihood
estimate (MLE) for the coalescence time substantially
underestimates the uncertainty of the estimate for s. As
u increases the distribution of the likelihood-ratio (LR)
statistic approaches the distribution of the LR statistic
conditional on the true value of the coalescence time.

The effect of conditioning on the MLE of the times
is less pronounced on the point estimates of s. For the
m ¼ 5 case, the two sets of MLEs are highly correlated
(correlation ¼ 0.96) and give almost identical root
mean square errors, although conditioning on the MLE
appears to give slight underestimates of s. A measure of
the efficiency of our approach can be seen by looking at
the correlation of the estimates from our method with
those conditional on the true coalescence times; this
again is high (correlation¼ 0.80). A related idea is used
for inferring species trees in Edwards et al. (2007).

DISCUSSION

We have considered postprocessing of samples of ge-
nealogies, in particular to learn about the demographic
parameters for a sample and the robustness of inference
to changes in the demographic model. While in our
applications we have considered infinite-sites data from
a nonrecombining region of DNA, but the ideas can be
applied much more generally. (For example, for the
variable population size analysis, changing the method
of simulating the data will affect only step B of the algo-
rithm, with the denominator of the importance-sampling
weights being the prior of the model under which the
sample of genealogies was generated.) All that is required
is that there is computational machinery (e.g., MCMC
algorithms) that can produce samples of genealogies for

the data. For example, analysis of more general muta-
tion models is possible using the Bayesian phylogenetic
packages such as MrBayes (Ronquist and Hulsenbeck

2000) and Bambe (Larget and Simon 1999), while anal-
ysis of (recombining) bacterial multilocus sequence
typing data is possible using ClonalFrame (Didelot

and Falush 2007).
We first considered inference for a variable popula-

tion size and robustness of inference of coalescence
times to changes in the model for the population size.
An importance-sampling approach, which is ‘‘exact’’ in
the limit as the computational cost increases, is possible
here. In practice the efficiency of this method will de-
pend on the sample size and the mutation rate, with ef-
ficiency decreasing as sample size increases or mutation
rate decreases. Our results suggest that this approach is
practicable for sample sizes of up to 50 chromosomes.
The advantage of this postprocessing is that it enables a
data set to be analyzed quickly under a range of different
models. As such we view that this approach will be useful
in terms of a preliminary analysis of a potentially large
data set. We can first subsample an appropriate number
of chromosomes (of the order of 10–50) and analyze
these under a variety of models. This will help inform us
as to what are the appropriate models for analyzing the
complete data (using a more dedicated/computation-
ally intensive approach) and also give insights as to how
robust the results about the coalescence times of the
tree will be.

We also considered inference in structured populations:
both discrete subpopulations and continuousspatial mod-
els. There are similarities in the approximate-likelihood
approach we consider for both of these cases. We first
simulate a sample of genealogies and then average over

Figure 6.—Probability–
probability (PP) plots of a
x2

1-distribution against the
likelihood-ratio (LR) statistics
for (red) our conditional like-
lihood method, (blue) analysis
conditional on the maximum-
likelihood estimate of the co-
alescence times, and (green)
analysis conditional on the
true coalescence times. a–c
are based on 1000 data sets,
with m ¼ 2; b ¼ 1; and (a)
u ¼ 1, (b) u ¼ 2, and (c) u ¼
4. d is based on 100 data sets
with m ¼ 5, u ¼ 2, and b ¼ 1.
We simulated all data sets
conditional on there being
no identical sequences in the
data set.
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the conditional likelihood of the spatial data given the
genealogy. (For the migration model we also use an ap-
proximate conditional likelihood, which is equivalent to
allowing the population sizes in the demes to fluctuate
through time.) This approach implicitly assumes a con-
ditional independence structure to the data: that the
spatial and genetic data are conditionally independent
given the genealogy. As such our model assumes a prior
for the genealogy and then conditional models for the
spatial/genetic data given the genealogy. The prior for
the genealogy is that assumed within our computational
method for producing the sample of genealogies, in our
case the phylogenetic prior described in methods; al-
though alternative methods for simulating the geneal-
ogies could be used that assume different priors. For the
continuous spatial model, if we had chosen our prior to
be that used to simulate the data (coalescent under ex-
ponential growth), then our approach gives a simulation-
consistent approach for calculating the true likelihood
of the data. The results we presented thus give an idea of
the robustness of our approximate-likelihood method
to the choice of the wrong prior. For practical applica-
tions, where the true choice of the prior (or equivalently
model) for the genealogy is not known, the robustness
of any method to the choice of this prior will be of par-
amount importance. In most scenarios that we exam-
ined the bias of the approximate-likelihood method is
small compared to the standard error of the estimate. In
general as m increases, biases increase. This is because as
m increases the genealogical prior we use does not cor-
rectly capture the distribution of some of the coales-
cence times, and this then starts to introduce notable
biases into the method.

For implementation of our approximate-likelihood
method to new data and models it is important to know
for what sample sizes the method will produce good
statistical properties, such as small biases and appropri-
ate coverage probabilities for confidence intervals. Cur-
rently, to evaluate this accurately will require some form
of simulation study chosen to be appropriate for the
models and data being considered. The results we have
presented give insight into for what sample sizes the
method will perform well. Our method can be applied
to large data sets using a composite-likelihood approach.
A large data set can be split into smaller subsamples
(with the possibility of each chromosome appearing in
many subsamples), with the approximate log-likelihood
calculated for each subsample, and these approximate
log-likelihood curves can be combined through averag-
ing them together. An estimate of the parameter(s) is
given by the value(s) that maximize this composite log-
likelihood. The performance of such a method is governed
by the shape of the mean of the log of the approximate
likelihood, as shown in Figure 5 (see Fearnhead 2003).
We tested out one implementation of this composite-
likelihood approach for the continuous spatial model
and found it to perform well using subsamples of size 10.

In particular, a pairwise-likelihood approach is likely
to be a simple and flexible method for analyzing con-
tinuous spatial data sets (currently there are few methods
for analyzing such models). For such a pairwise ap-
proach it is simple to allow for quite general models of
the spatial spread of the population through time; all
that is required is the specification of a family of den-
sities, p(x1, x2; t), for the probability of two chromosomes
that share a common ancestor at time t in the past being
located at positions x1 and x2.
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APPENDIX

The prior (2) can be obtained by simulating s from
the prior with f ¼ 1 and then letting t ¼ fs. Thus if
we define S and sij’s to satisfy T¼fS and tij¼ fsij, so they
are the respective times obtained from s, we get that

CovðXi ; XjÞ ¼ s2fðS � sijÞ:

Thus the intuition behind the result is that, as under the
prior, the data are solely informative about the product
s2f, and using the scale invariance prior for f will result
in no information about s.

Formally we use the fact that

pðx jsÞ ¼
ð ð

pðx js; f; sÞpðfÞdfpðsÞds:

We consider the integral with respect to f, assuming a
given s, and demonstrate that this does not depend on
s, from which the fact that p(x j s) does not depend on
s follows. For notational simplicity we assume m ¼ 0 in
the following.

Now, for our given s, let S be the covariance ma-
trix obtained when s ¼ f ¼ 1, so Sij ¼ (S � sij) for i, j ¼
1, . . . , m. Further let Q ¼ S�1 and A ¼ xTQx/2. Thenð

pðx js; f; sÞpðfÞdf

}

ð
ðs2fÞ�m=2 expf�A=ðs2fÞgf�1df

¼ s�m

ð
gm=2�1 expf�gA=ðs2Þgdg

¼ s�mGðm=2ÞðA=s2Þ�m=2:

For the second equality we used the transformation g¼
1/f. The final expression does not depend on s as
required.
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