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ABSTRACT

Bijma et al. (2007a,b) presented a quantitative genetic theory of multilevel selection and showed how to
estimate the relevant parameters using standard restricted maximum-likelihood (REML) methodology.
Extending their results we develop a wider class of models that provide a more realistic framework for
capturing the effects of interacting individuals. These models also make use of standard REML techniques
and include the original model as a special case.

IN a recent issue of Genetics, Bijma et al. (2007a)
introduced a quantitative genetic model of mul-

tilevel selection and showed how the parameters of
this model could be estimated using existing software
(Muir 2005; Bijma et al. 2007b). Taken together, these
articles are an important advancement in the study of
multilevel selection since they present a useful, and
useable, framework for predicting a response to mul-
tilevel selection among interacting individuals with any
degree of relatedness. Their work generalizes the clas-
sic quantitative genetic model, to include heritable en-
vironmental effects on phenotype that arise from social
interactions among group members (so-called ‘‘asso-
ciative effects’’). These effects have major implications
for our understanding of evolutionary responses to na-
tural selection (Frank 1998) and for optimization of
artificial selection regimes in the agricultural sciences
(Muir 2005).

Bijma et al. (2007b) show that, if data are collected
from individuals reared under constant group sizes, it is
possible to correctly estimate genetic variance compo-
nents attributable to both the direct (additive) effects
and associative effects that contribute to heritable trait
variation. However, these variance components cannot
properly be interpreted without knowledge of the
relationship between group size and associative effect.
The authors avoid this difficulty by making the assump-
tion that the effect an individual has on the phenotype
of another member of the group (the associative effect)
is independent of group size. The authors themselves

admit that this assumption may not always be reason-
able, and there are certainly many cases where such a
relationship is known not to hold.

Using standard restricted maximum-likelihood (REML)
random regression techniques we provide a powerful
way to model the relationship between associative ef-
fects and group size while simultaneously estimating the
relevant quantitative genetic parameters. By placing
various restrictions on the random regression parame-
ters we can recover a reparameterized version of Bijma’s
original model, but also an alternative model of the
same complexity that we suggest is a more reasonable
null model in many circumstances.

Following the example presented in the second
article (Bijma et al. 2007b), imagine a population of
layer hens that experience reduced lifespan due to
pecking behavior. In this case longevity may be the focal
trait of interest to a breeder, with associative effects
arising from aggressive interactions (pecking) among
members of a group (cage). In the model originally
proposed, the number of times two random individuals
within the group peck each other is independent of
group size. Under this scenario the genetic variance in
associative effect increases dramatically with group size
even if between-group differences in pecking rates are
small. This situation arises because the deviation of a
focal individual’s phenotype from the mean is the sum
of these differences across the remaining group mem-
bers. The logical endpoint of this model is that the
genetic variance for the focal trait will be maximized at
an infinite group size.

This conclusion stems from the expression for the
total genetic variance under Bijma et al.’s model,
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where s2
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is the
covariance between these terms. n is group size, and as
n gets large the total genetic variance is dominated by
the variance in associative effects through the term (n�
1)2. In matrix notation
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However, if the number of times two individuals peck
each other is independent of group size then this
implies that the total amount of pecking performed by
each individual must increase linearly with group size,
so as to maintain a constant associative effect.

In our proposed model we use random regression to
model associative effects as a polynomial function of
reciprocal group size ½c ¼ 1=ðn � 1Þ�. To illustrate, a
more realistic assumption for the current scenario
would be that the total amount of pecking remains
constant such that the influence of any two random
individuals on each other diminishes linearly with group
size. In this case the associative effect of each indivi-
dual is modeled as a simple first-order function of recip-
rocal group size.

In general, if we model an individual’s associative
effect as a first-order function of reciprocal group size,
we then estimate the genetic covariance matrix,
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where s2
AS

is now the genetic variance in associative
effects when c ¼ 0 and s2

ASR
is the genetic variance in

slopes.
The expectation for the total genetic variance is now

s2
TBV ¼ ½1n � 11�CRR½1n � 11�T ð5Þ

and approximate standard errors can be obtained using
the Delta method (Fischer et al. 2004). We can place
various constraints on CRR that capture specific types of
model. For example,
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recovers a reparameterized version of Bijma et al.’s
original model. Alternately, the model where the in-
fluence of any two random individuals on each other
diminishes linearly with group size can be captured by
constraining the variation in intercepts to be zero:
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In this model s2
TBV does not vary with group size and is

equivalent to an alternative model suggested by Bijma

et al. (2007a) for food sharing. By constraining some
random regression parameters to be zero these models
are identifiable even when group sizes do not vary. How-
ever, if group size does vary, then we can empirically test
the assumptions of the underlying models using standard
model selection criteria and try to model the underly-
ing process more accurately using higher-order poly-
nomials. By using reduced-rank methods (Kirkpatrick

and Meyer 2004) it should be possible to describe the
distribution of associative effects well using relatively few
parameters. However, caution should still be exercised
when extrapolating to group sizes outside the range
of the data. Under these circumstances it may be bet-
ter to consider methods with a stronger parametric
ethos as more robust alternatives (Pletcher and Geyer

1999).

We thank Sue Brotherstone and the Edinburgh Quantitative
Genetics Journal Club for stimulating this work and providing useful
comments on the manuscript.
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