Table 1.
Involvement of EAATs in neurological disorders
| Human tissue | Experimental models | |
|---|---|---|
| ALS | [Glu] ↑ in CSF.1 | ALS mutant SOD1 inactivates EAAT2.4 | 
| ↓ Uptake in CNS tissue.2 | Extracellular [Glu] ↑ in the cortex of ALS-SOD1 transgenic mice.5 | |
| ↓ GLT-1 in CNS tissue.3 | Focal EAAT2 loss in ALS-SOD1 transgenic mice.6 | |
| Epilepsy | ↑Plasma [Glu] in epileptic patients.7 | Fatal seizures in EAAT2 knockout mice.11 | 
| ↑Hippocampal [Glu] in seizures.8 | ↓ EAAT1, 2 and 3 protein in GLAST, GLT-1 and EAAC1 protein in the brain of genetically epileptic rats.12 | |
| Temporal lobe epilepsy: EAAT3 ↑ in hippocampal granule cells, EAAT2 ↓ in hilus and CA1, EAAT1 ↑ in CA2/3.9 | ||
| ↑Incidence of aberrant EAAT2 splicing in temporal lobe epilepsy patients.10 | ||
| Huntington's disease | EAAT2 mRNA ↓ in neostriatum, but the number of cells expressing EAAT2 mRNA ↑.13 | EAAT2 mRNA and uptake down in the striatum and cortex of R6 transgenic mice.15 | 
| Uptake ↓ in the caudate and putamen.14 | Impaired Glu metabolism in R6/2 mouse brains.16 | |
| Alzheimer's disease | Uptake ↓ in the cortex17 and astrocytes18 and EAAT2 protein ↓19 in AD patients. | Glu uptake and EAAT1, EAAT2 protein ↓ in APP transgenic mice.22 | 
| Aberrant neuronal expression of EAAT120 and EAAT221 associated with tau accumulation. | ↓ EAAT2 and Glu uptake in GFAP-tau transgenic mice.23 β-amyloid ↓ Glu uptake.24 | |
| Ischaemic stroke injury | EAAT2 promoter polymorphism associated with ↑ [Glu] and frequency of stroke.25 | EAAT reversal in severe ischaemia in vitro.27 | 
| Neonatal hypoxic–ischaemic encephalopathy: EAAT1 ↓ in molecular layer, ↑ in Purkinje and inner granule cell layer; EAAT4 ↓ in Purkinje cells.26 | EAAT2/3 ↓ in piglet brain and neuronal expression of EAAT2 after hypoxia–ischaemia.28 | |
| EAAT2 ↑ in the cortex, ↓ in the striatum after hypoxia–ischaemia in rats.29 | ||
| White matter injury | ↑ Serum [Glu] in relapsing MS patients.30 | TNF-α ↓ EAAT-1 expression and Glu uptake in cultured oligodendrocytes.32 | 
| ↑ [Glu] in white matter and acute lesions of MS brains.31 | Depolarization causes EAAT reversal in spinal white matter.35 | |
| ↓ EAAT1 and EAAT2 in oligodendrocytes in MS lesions.32 | ||
| ↓ EAAT1/2/3 in CNS tissue from MS patients.33 | ||
| ↑ EAAT1 and EAAT2 mRNA, protein and uptake in MS optic nerve.34 | ||
| Infection | ↑ Plasma [Glu] in HIV patients.36 | TNF-α ↓ uptake in primary human astrocytes.39 | 
| Strong expression of EAAT1 in activated macrophages/ microglia of HIV-infected brains.37 | TNF-α, interferon-γ and interleukin-1β ↓ uptake in cultures of rat hippocampus.40 | |
| Uptake ↓ by >50% in AIDS dementia brains.38 | HIV-1 or gp120 ↓ EAAT2 and uptake in astrocytes.41 | |
| Microglia and macrophages express EAAT2 in SIV-infected primates.42 | ||
| LPS ↑ EAAT2 in cultured astrocytes and microglia.43 | ||
| Retinal disease/Glaucoma | ↑ [Glu] in vitreous body of glaucoma44 and diabetic retinopathy patients.45 | ↑ Intraocular [Glu] after optic nerve lesion.48 | 
| ↑ [Glu] in aqueous humor in retinal artery occlusion.46 | ↓ EAAT1 activity after retinal ischaemia.49 | |
| ↓ EAAT1 in glaucomatous eyes.47 | ||
| Neuropsychiatric disorders | ↑ EAAT1 and EAAT2 mRNA in the thalamus of schizophrenia.50 | Altered expression of mRNA for EAAT-interacting proteins in clozapine-treated rats.52 | 
| ↓ Striatal EAAT3/4 mRNA in bipolar disorder,51 ↓ striatal EAAT3 mRNA in schizophrenia,51 ↓ striatal EAAT4 mRNA in major depression.51 | Clozapine and haloperidol ↓ EAAT2/3 mRNA in regions of rat brain.54 | |
| ↑ mRNA for EAAT3- and EAAT4-interacting proteins in the thalamus in schizophrenia.52 | Clozapine ↓ EAAT2 and uptake in cultured astrocytes.55 | |
| ↑ mRNA for EAAT2 in prefrontal cortex of untreated schizophrenics, reduced by antipsychotic treatment.53 | 
Abbreviations: AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; CSF, cerebrospinal fluid; EAAT, excitatory amino-acid transporter; GFAP, glial fibrillary acidic protein; MS, multiple sclerosis; SOD, superoxide dismutase; TNF-α, tumour necrosis factor-α.
1 Rothstein et al. (1990); 2 Rothstein et al. (1992); 3 Rothstein et al. (1995); 4 Trotti et al. (1999); 5 Alexander et al. (2000); 6 Howland et al. (2002); 7 Janjua et al. (1992); 8 During and Spencer (1993); 9 Mathern et al. (1999); 10 Hoogland et al. (2004); 11 Tanaka et al. (1997); 12 Dutuit et al. (2002); 13 Arzberger et al. (1997); 14 Cross et al. (1986); 15 Liévens et al. (2001); 16 Behrens et al. (2002); 17 Masliah et al. (1996); 18 Liang et al. (2002); 19 Li et al. (1997); 20 Scott et al. (2002); 21 Thai (2002); 22 Masliah et al. (2000); 23 Dabir et al. (2006); 24 Keller et al. (1997); Lauderback et al. (1999); 25 Mallolas et al. (2006); 26 Inage et al. (1998); 27 Rossi et al. (2000); 28 Martin et al. (1997); Pow et al. (2004); 29 Cimarosti et al. (2005); 30 Westall et al. (1980); 31 Srinivasan et al. (2005); 32 Pitt et al. (2003); 33 Werner et al. (2001); 34 Vallejo-Illarramendi et al. (2006); 35 Li et al. (1999); Li and Stys (2001); 36 Droge et al. (1993); 37 Vallat-Decouvelaere et al. (2003); 38 Sardar et al. (1999); 39 Fine et al. (1996); 40 Ye and Sontheimer (1996); 41 Wang et al. (2003); 42 Chretien et al. (2002); 43 O'Shea et al. (2006); Persson et al. (2005); 44 Dreyer et al. (1996); 45 Ambati et al. (1997); 46 Wakabayashi et al. (2006); 47 Naskar et al. (2000); 48 Yoles and Schwartz (1998); 49 Barnett et al. (2001); 50 Smith et al. (2001); 51 McCullumsmith and Meador-Woodruff (2002); 52 Huerta et al. (2006); 53 Matute et al. (2005); 54 Schmitt et al. (2003); 55 Vallejo-Illarramendi et al. (2005b).