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PTEN, the Achilles’ heel of myocardial ischaemia/
reperfusion injury?
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Myocardial ischaemia/reperfusion injury leading to myocardial infarction is one of the most frequent causes of debilitation and
death in man. Considerable research has been undertaken to investigate the possibility of reducing myocardial infarction and
increasing cell survival by activating certain endogenous prosurvival signaling pathways. Thus, it has been established that the
activation of the PI3K (Phosphoinositide-3 kinase)/Akt (Protein kinase B, PKB) signaling pathway is essential for protection
against ischaemia/reperfusion injury. This pathway has been shown to be activated by mechanical procedures (e.g. pre and
post conditioning) as well as by a number of pharmacological agents. Although the activation of this prosurvival signaling
pathway induces the phosphorylation of a large number of substrates implicated in increased cell survival, when activated over
a prolonged period this pathway can have detrimental consequences by facilitating unwanted growth and malignancies.
Importantly PTEN (phosphatase and tensin homolog deleted on chromosome ten), is the main phosphatase which negatively
regulates the PI3K/Akt pathway. In this review we discuss: a) the significance and the limitations of inhibiting PTEN in
myocardial ischaemia/reperfusion injury; b) PTEN and its relationship to ischaemic preconditioning, c) the role of PTEN in the
development of tolerance to chronic administration of drugs known to limit infarction by activating PI3K/Akt pathway when
given acutely, and d) the possible role of PTEN in the ischaemic/reperfused diabetic heart. The experimental evidence
discussed in this review illustrates the importance of PTEN inhibition in the protection of the heart against ischaemia/
reperfusion injury.

British Journal of Pharmacology (2007) 150, 833–838. doi:10.1038/sj.bjp.0707155; published online 12 February 2007

Keywords: myocardium; ischaemia; reperfusion; infarction; Akt; PTEN

Abbreviations: Akt, protein kinase B, PKB; CK2, casein kinase 2; eNOS, endothelial nitric oxide synthase; LKB1, PJS, serine/
threonine protein kinase 11; MDM2, mouse double minute; NIH 3T3, mouse embryonic fibroblast cell line;
PDK-1, 3-phosphoinositide-dependent kinase 1; PI3K, phosphoinositide-3 kinase; PIP2, phosphatidylinositol
(4,5)-bisphosphate, PtdIns(4,5)P2; PIP3, phosphatidylinositol (3,4,5)-trisphosphate, PtdIns(3,4,5)P3; PTEN,
phosphatase and tensin homolog deleted on chromosome 10; PTPases, protein tyrosine phosphatases; ROS,
reactive oxygen species, free radicals; siRNA, small-interfering RNA

Introduction

The normal cell has the necessary enzymatic equipment for

controlling both its death and its survival (Jin and El-Deiry,

2005), these two processes being finely balanced (Horbinski

and Chu, 2005). The main prosurvival pathway is the PI3K/

Akt signaling cascade. Akt, when activated, has the ability

to phosphorylate two categories of downstream substrates

implicated in the life/death balance: (i) the antiapoptotic

substrates, which, when phosphorylated, are activated and

contribute to survival and (ii) the proapoptotic substrates,

which, when phosphorylated, become inactive (Franke

et al., 2003). PI3K/Akt pathway has been demonstrated

to play an important role in protecting the myocardium

against ischaemia–reperfusion injury in all species, both

in vitro and in vivo (Hausenloy and Yellon, 2004). The main

downregulator of this prosurvival pathway is phosphatase

and tensin homolog deleted on chromosome 10 (PTEN),

a dual protein–lipid phosphatase which dephosphory-

lates the secondary messenger produced by PI3K and

interrupts the downstream activation of Akt (Hlobilkova

et al., 2003). In addition, it is worth mentioning that PTEN

may play a significant role in pathological conditions

associated with the ischaemic heart disease, such as diabetes

and obesity (Sasaoka et al., 2006). Therefore, blocking

PTEN may prove important, particularly in increasing

myocardial survival following an ischaemic episode (Oudit

et al., 2004).
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PI3K/Akt: the main prosurvival pathway in the
ischaemic/reperfused myocardium

PI3K/Akt is an intracellular signaling pathway, which plays

significant roles in a variety of biological processes involving

cell survival, growth and migration (Wetzker and Rommel,

2004). It has been demonstrated in the myocardium that the

activation of this pathway by procedures such as ischaemic

pre- or postconditioning or by the administration of

pharmacological agents is crucial for the salvage of the

ischaemic/reperfused myocardium. Ischaemic precondition-

ing (which consists of short, sublethal ischaemic episodes

interspersed with reperfusion, before a sustained ischaemic

insult) is considered to be the most powerful endogenous

mechanism of protection against ischaemic injury (Murry

et al., 1986). Preconditioning protects the heart by reducing

myocardial infarction and this protection is due, in principal,

to the activation of the PI3K/Akt pathway either before the

lethal ischaemic insult (Tong et al., 2000; Mocanu et al., 2002)

or at reperfusion following a sustained ischaemic period

(Hausenloy et al., 2005). Postconditioning, which consists of

short ischaemic episodes at the commencement of reper-

fusion (Zhao et al., 2003), has also been demonstrated to

achieve significant protection via Akt upregulation (Zhu et al.,

2006). As expected, a large number of pharmacological

agents, which are known to activate PI3K/Akt signaling

pathway, have also been shown to protect against myocardial

infarction. In this regard, insulin (Jonassen et al., 2001),

urocortin (Brar et al., 2002), atorvastatin (Bell and Yellon,

2003a), bradykinin (Bell and Yellon, 2003b), erythropoietin

(Parsa et al., 2003; Bullard et al., 2005) and glucagon-like

peptide 1 (Bose et al., 2005) have all been shown to reduce the

extent of necrotic tissue developed within the myocardium

at risk following a lethal ischaemic insult. The protection

observed is, in part, achieved via PI3K/Akt activation,

supporting the hypothesis that pharmacological manipula-

tion and upregulation of this pro-survival kinase is essential

for protecting the myocardium from lethal ischaemia/

reperfusion-induced cell death (Hausenloy and Yellon,

2004). Briefly, Akt once activated, may induce its antiapopto-

tic effects via the phosphorylation of two types of substrate

(Figure 1): (a) the proapoptotic substrates such as glycogen

synthase kinase-3-beta (Nishihara et al., 2006) or Bad

(Jonassen et al., 2001), which, after phosphorylation exhibit

an increased affinity for the cytosolic 14-3-3 proteins and

become inactive by binding to them or (b) the antiapoptotic

substrates such as p70s6 kinase (Jonassen et al., 2001), eNOS

(endothelial nitric oxide synthase) (Bell and Yellon, 2003b) or

MDM2 (mouse double minute) (Mocanu and Yellon, 2003),

which, after phosphorylation become activated and stimulate

cellular processes essential for an increased survival. However,

it must also be noted that the chronic activation of this

pathway may lead to hypertrophy and malignancy. As such

there appears to be a fine balance between the potentially

beneficial effects of activating this signaling pathway acutely

and the potentially harmful effects of sustained activation

of this pathway (Franke et al., 2003). The principal factor

protecting against the long-term activation of the PI3K/Akt

pathway in normal cells is PTEN, a unique dual protein–lipid

phosphatase (Leslie and Downes, 2004).

PTEN: a ubiquitous phosphatase which protects the
cell against hypertrophy and malignancy

PTEN – also called MMAC1 (mutated in multiple advanced

cancers) or TEP-1 (TGF-b regulated and epithelial cell-

enriched phosphatase), was discovered relatively recently

(Li et al., 1997; Steck et al., 1997). It is a highly conserved

dual (protein and lipid) phosphatase, responsible for nega-

tively regulating PI3 kinase activation (Hlobilkova et al.,

2003). The mechanisms involved in the negative regulation

of the PI3K/Akt pathway by PTEN are presented in Figure 1.

In summary, the result of PI3 kinase activity is the

phosphorylation of phosphatidylinositol (4,5)-bisphosphate

(or PtdIns(4,5)P2), abreviated as PIP2, into the secondary

messenger phosphatidylinositol (3,4,5)-trisphosphate (or

PtdIns(3,4,5)P3), commonly abbreviated as PIP3. This meta-

bolite is an intracellular second messenger, which mediates

downstream signaling by recruiting and activating 3-phos-

phoinositide-dependent kinase 1 (PDK-1) followed by the

activation of PKB/Akt. PTEN has the ability to dephos-

phorylate PIP3 to its precursor, PIP2, thereby blocking

the cascade of events generated as a consequence of the

accumulation of the secondary messenger in the plasma-

lemma. PTEN is present ubiquitously in cells and its activity

is reflected by its cellular level, which can be modulated by

transcription. However, this activity can also be down-

regulated by phosphorylation or oxidation as discussed in

the next section. Interestingly, there is no redundancy in this

inhibitory mechanism of PI3-kinase/Akt activation, making

PTEN an important ‘switch’ in maintaining cellular homeo-

stasis and normal development. It is known that homo-

zygous PTEN knockout mice are not viable whereas the

heterozygous animals develop numerous tumors. In addi-

tion, in humans, many tumor types are characterized by
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Figure 1 PTEN acts as a lipid phosphatase reversing the reaction
catalyzed by the PI3K, that is dephosphorylating the second-
messenger PtdIns(3,4,5)P3 (PIP3) to the precursor PtdIns(4,5)P2
(PIP2). The role of PIP3 is to recruit Akt and PDK1 at the membrane
level. PDK1 phosphorylates Akt which thereafter acts upon numer-
ous targets, activating the antiapoptotic substrates and inhibiting
the proapoptotic substrates (sharp arrows, activation; blunt arrows,
inhibition). R, membrane receptor.
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deficient PTEN expression (Ghebranious and Donehower,

1998).

PTEN regulation

As outlined above, PTEN is ubiquitously present in normal

cells, its degree of activity depends upon its cellular level, its

localisation and its interactions with other proteins or lipids

(Gericke et al., 2006). Among the metabolites which induce

PTEN transcription are the peroxisome proliferator-activated

receptor g-agonists (Teresi et al., 2006) and the tumour

suppressor p53 (Wang et al., 2005). The regulation of PTEN

activity is complex and is as yet not completely understood

(Figure 2). One of the mechanisms of its inactivation is via

phosphorylation. The main enzyme responsible for this

process is considered to be casein kinase 2 (CK2) (Torres and

Pulido, 2001), although, interestingly, LKB1 (PJS; serine/

threonine protein kinase 11) – a kinase implicated in

metformin signaling via AMP-activated protein kinase – has

also been demonstrated to phosphorylate PTEN, at least in

an in vitro model (Mehenni et al., 2005). There is the opinion

that in its phosphorylated state PTEN is inactive and as such

is more stable against proteasomal degradation (Vazquez

et al., 2000, 2001). PTEN can also be reversibly inactivated

through oxidation induced by free radicals (reactive oxygen

species, ROS) (Leslie et al., 2003). This seems to be the main

process that regulates PTEN activity in the acute setting. The

ROS responsible for this inactivation may have different

sources. Recent data have shown that insulin, which is

known to activate PI3K/Akt, may induce, as a primary effect,

the activation of nicotinamide adenine dinucleotide phos-

phate oxidase which in turn releases ROS. These ROS could

be responsible for the inhibition of PTEN (Seo et al., 2005),

followed by Akt activation due to PIP3 accumulation. The

same mechanisms of ROS production may also explain the

action of some growth factors which have been shown to

inhibit PTEN (Kwon et al., 2004). Further, it has been

demonstrated that hydrogen peroxide produced at the

mitochondrial level can also inhibit PTEN (Connor et al.,

2005).

Problems associated with the study of PTEN

PTEN is a small but significant switch in the balance between

cell survival and death, but, like Achilles’ heel, it is very

difficult to target in the experimental setting. With regard to

potential pharmacological manipulation of PTEN, the diffi-

culty in investigating this phosphatase relates to the lack of

highly specific commercially available activators or inhibitors.

It has been demonstrated that PTEN can be inhibited by

vanadium compounds (Schmid et al., 2004; Wu et al., 2006) or

zinc (Wu et al., 2003). Based on the homology of the active

site between PTEN and protein tyrosine phosphatases

(PTPases), it has been shown that PTPases inhibitors such as

bisperoxovanadium molecules can also inhibit PTEN, this

inhibition occurring at very low concentrations (up to 100-

fold lower than necessary for PTPases inhibition) (Schmid

et al., 2004). However, such positive results obtained in

NIH3T3 cells (mouse embryonic fibroblast cell line) could not

be reproduced in whole organs. Encouragingly, sodium

orthovanadate was shown to protect against cerebral ischae-

mia by increasing the tyrosine phosphorylation of PTEN (Wu

et al., 2006). All these phosphatase inhibitors need more

investigation because they may be toxic in physiological

settings and are certainly not very specific. It was also

documented that zinc ions downregulate PTEN expression

in airway epithelial cells in a dose- and time-dependent

fashion, via increased proteasome-mediated degradation and

reduced PTEN messenger RNA expression (Wu et al., 2003).

The activities of the few kinases known to regulate PTEN

phosphorylation (e.g. mainly protein kinase CK2 (Torres and

Pulido, 2001) and, potentially, LKB1 (Mehenni et al., 2005))

are, again, difficult to modulate either due to the lack of

specific activators/inhibitors or due to the large spectrum of

substrates they may act upon, making any result difficult to

interpret.

Genetically engineered animals are not easy to breed. The

homozygous PTEN�/� mouse is not viable and the hetero-

zygous PTENþ /� develops numerous tumours, with the

females becoming infertile at a very young age (Ghebranious

and Donehower, 1998). However, the recently created organ

targeted PTEN deletion mouse, may offer a more promising

model (Sun et al., 2006) for further study. SiRNA (small-

interfering RNA) can also be a promising tool for investigat-

ing the role played by PTEN in cardiovascular development

and pathophysiology (Hamada et al., 2005).

Therefore, in spite of the increasing interest in PTEN

downregulation as a mean for improving myocardial survival

following an ischaemia/reperfusion episode (Oudit et al.,

2004), the progress in experimentation has been slow and, as

a consequence, the body of data reported has so far been

limited.

PTEN and ischaemia/reperfusion injury

Taking into account all the limitations discussed above, it

is not surprising that there is almost no data correlating

myocardial ischaemia/reperfusion injury with PTEN levels,

with one exception which will be discussed later (Cai and

Semenza, 2005). Whereas in the area of cancer research, for

Synthesis 
(PPARγ  agonists, p53, DMSO)

Phosphorylation
(CK2, LKB1)

PTEN

Vanadium
compounds

Proteasomal
degradation

(Zinc)

Oxidation 
(ROS produced by NADPH 
oxidase or mitochondria)

Figure 2 PTEN regulation. PTEN is a constitutively active phospha-
tase. In summary, its activity can be unregulated by increased
synthesis and downregulated by phosphorylation, oxidation and
proteasomal degradation. The mechanisms through which its
activity is regulated are complex and not yet elucidated completely.
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example, the interest has focused on restoring the PTEN

levels, in other areas, in which survival is the goal (such as in

the myocardium undergoing ischaemia/reperfusion where

Akt activation is beneficial) the interest has been directed

toward PTEN downregulation (preferable in a reversible

fashion). Some data have been obtained on the brain

ischaemia demonstrating that PTEN phosphorylation, and

therefore inactivation is induced by ischaemia (as an

intrinsic protective mechanism) (Omori et al., 2002; Choi

et al., 2005). Additionally, the pharmacological inhibition of

PTEN has been reported to be associated with reduced injury

(Lee et al., 2004; Wu et al., 2006). In cardiac tissues a reduced

PTEN level is associated with hypertrophy and remodeling

(Schwartzbauer and Robbins, 2001). PTEN has also been

shown to play a role in the regulation of the size and

contractile function in cardiomyocytes (Crackower et al.,

2002) as well as in the regulation of the L-type calcium

currents (Sun et al., 2006). Taking into consideration the

overwhelming importance of the upregulation of the PI3K/

Akt pathway in myocardial survival following ischaemia/

reperfusion, it is surprising how little is known about the role

of PTEN in this process.

Interestingly, in spite of the paucity of data regarding the

role played by PTEN in cardiovascular pathophysiology, a

recent review (Oudit et al., 2004) stressed the importance of

PI3K/PTEN signaling, based on data available from other cell

systems. The authors of this review stressed that therapeutic

manipulation of this interaction may be of interest in

myocardial survival. It has also been shown in other cell lines

that insulin and other growth factors (already demonstrated

to protect the ischaemic/reperfused myocardium by activating

PI3K/Akt (Yellon and Baxter, 1999; Jonassen et al., 2001) may

well increase survival not only by activating this signaling

pathway but also by inhibiting PTEN via local ROS production

(Kwon et al., 2004; Seo et al., 2005). All these data indicate that

these protective effects may relate to the inhibition of PTEN,

which could possibly be exploited in the acute setting of

ischaemia/reperfusion. However, it is important to note that a

reversible inhibition is preferred, bearing in mind that long-

term absence of this phosphatase from the myocardium is

associated with myocardial hypertrophy (Schwartzbauer and

Robbins, 2001; Crackower et al., 2002).

PTEN and ischaemic preconditioning

Ischaemic preconditioning, one of the most powerful

endogenous protective procedures against ischaemia/reper-

fusion injury, has already been demonstrated to be asso-

ciated with the activation of the PI3 kinase/Akt pathway

(Tong et al., 2000; Mocanu et al., 2002; Hausenloy et al.,

2005). Recently, interesting data linking the protection seen

using ischaemic preconditioning with a reduction in PTEN

activity has been published (Cai and Semenza, 2005). Using

an isolated perfused rat heart the authors showed that PTEN

is downregulated after 15 min ischaemia and 30 min reperfu-

sion in an isolated rat heart. Although these data are of

potential importance, it should be appreciated that the

protocol of ischaemic preconditioning used in this study

could be questioned (Hausenloy et al., 2006). It involved

using 15 min of myocardial ischaemia followed by reper-

fusion which has been regarded more as a model of mild,

reversible stunning than of ischaemic preconditioning

(Palmer et al., 2004). Moreover, in the study quoted above

(Cai and Semenza, 2005) the protocol used for precondition-

ing was not validated using infarct size as the end point of

injury. Therefore, without diminishing the importance of

their data in investigating PTEN in the setting of myocardial

ischaemia/reperfusion injury for the first time, it is worth

noting the similarity between their results with the data

obtained in the ischaemic brain (Choi et al., 2005). Choi

et al. showed an increased phosphorylation of PTEN and Akt

in the hippocampus after an ischaemic insult. These data

support the hypothesis that in the ischaemic/reperfused

tissues the PTEN downregulation is an endogenous protec-

tive mechanism, which may eventually be augmented for

the benefit of the injured tissue.

PTEN as a downregulator of the cardio protection
induced by pharmacological agents known to
protect via PI3K/Akt activation

Recently, we reported the relevance of PTEN in a model of

chronic versus acute treatment with an agent that induces

protection against myocardial infarction via PI3K/Akt activa-

tion. In this respect we were unable to demonstrate

protection if the agent, namely atorvastatin, was given

chronically to rats for a 2-week period, this lack of protection

being associated with an increase in PTEN levels. However,

protection was observed with atorvastatin when given

acutely (1–3 days) with no change in PTEN levels (Mensah

et al., 2005). Recent studies have also confirmed the loss of

protection following a chronic administration of another

statin, lovastatin (Teresi et al., 2006) in a cell-based model.

Therefore, it seems imperative to investigate further, in a

chronic model, the relationship between PTEN and other

pharmacological agents capable of activating the PI3K/Akt

pathway and protecting against myocardial ischaemia/

reperfusion injury in an acute setting. It would be interesting

to examine whether such agents are able to sustain

protection after chronic treatment, or whether, by upregu-

lating PTEN, their effect will be abolished.

PTEN in the diabetic heart

PI3k/Akt signaling pathway can be impaired in some

pathological conditions such as diabetes (Kondo and Kahn,

2004; Schinner et al., 2005; Zdychova and Komers, 2005) and

interestingly, this state can be improved by downregulating

PTEN (Jiang and Zhang, 2002; Wijesekara et al., 2005). The

malfunction of PI3K/Akt pathway can affect not only insulin

sensitivity but also any potential protection induced by PI3k/

Akt activation against myocardial ischaemia/reperfusion

injury. For instance, we have shown that, unlike its

normoglycaemic Wistar parent strain, the diabetic Goto

Kakizaki rat heart could not be preconditioned using a single

cycle of sublethal ischaemia/reperfusion. To achieve protec-

tion, three cycles of preconditioning ischaemia/reperfusion
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were required (Tsang et al., 2005). Importantly, although the

level of total Akt in the diabetic rat heart was not different

from that in the normoglycaemic rat heart, the susceptibility

of this enzyme to phosphorylation, hence activation, by

protective mechanisms (in this case preconditioning) was

reduced (Tsang et al., 2005). We have further shown that this

decrease in the level of Akt phosphorylation is associated

with an increased level of PTEN present in myocardial tissue

(Mocanu et al., 2006). As a negative regulator of the insulin

signaling pathway, PTEN is seen as a possible target for

improving insulin sensitivity in type II diabetes (Butler et al.,

2002; Jiang and Zhang, 2002). In this regard, it has already

been demonstrated that the inhibition of PTEN expression in

diabetic mice is associated with a reduction in blood glucose

(Butler et al., 2002) and that PTEN can also affect the

pancreatic islet development (Kushner et al., 2005). These

data suggest that diabetes treatment may benefit from PTEN

inhibition with subsequent PI3K/Akt upregulation. In addi-

tion, the balance between PTEN and prosurvival kinases may

further protect the diabetic myocardium, which is known to

be more susceptible to ischaemic heart disease.

Conclusions and perspectives

In summary, PTEN plays a significant role in regulating the

balance between survival and death in many cell types,

including cardiomyocytes. The activity of PTEN can be

decreased either by affecting the balance between its

synthesis and its degradation or by enzymatic inactivation

via phosphorylation or oxidation. However, at present, the

feasibility of modulating PTEN activity is impaired due to a

lack of sufficient understanding about how it is regulated, in

addition to the unavailability of appropriate pharmacologi-

cal agents to target these processes. Although PTEN down-

regulation may seem potentially harmful because it could

promote unwanted growth and malignancies, acute PTEN

inhibition could ultimately prove to be significant in

improving myocardial survival following ischaemia/reperfu-

sion injury. A reversible inhibition of PTEN may be enough

to upregulate the prosurvival PI3K/Akt pathway to reduce

the cell death associated with such injury, without the

negative hypertrophic consequences. Interestingly, this in-

hibition could also bring additional benefits in diabetes by

augmenting the insulin sensitivity (Wijesekara et al., 2005).

Finally, it may be crucial that all the drugs proven to protect

against myocardial ischaemia/reperfusion by activating

PI3K/Akt when given acutely, to be tested in chronic

settings, in order to establish if any protective effect has

not been lost due to PTEN upregulation.
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