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Extracellular nucleotides induce migration
of renal mesangial cells by upregulating
sphingosine kinase-1 expression and activity

S Klawitter1,2, LP Hofmann1, J Pfeilschifter1 and A Huwiler1,2

1Pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
and 2Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, Bern, Switzerland

Background and purpose: Extracellular nucleotides act as potent mitogens for renal mesangial cells (MC). In this study
we determined whether extracellular nucleotides trigger additional responses in MCs and the mechanisms involved.
Experimental approach: MC migration was measured after nucleotide stimulation in an adapted Boyden-chamber.
Sphingosine kinase-1 (SK-1) protein expression was detected by Western blot analysis and mRNA expression quantified by
real-time PCR. SK activity was measured by an in vitro kinase assay using sphingosine as substrate.
Key results: Nucleotide stimulation caused biphasic activation of SK-1, but not SK-2. The first peak occurred after minutes of
stimulation and was followed by a second delayed peak after 4–24 h of stimulation. The delayed activation of SK-1 is due to
increased SK-1 mRNA steady-state levels and de novo synthesis of SK-1 protein, and depends on PKC and the classical MAPK
cascade. To see whether nucleotide-stimulated cell responses require SK-1, we selectively depleted SK-1 from cells by using
small-interference RNA (siRNA). MC migration is highly stimulated by ATP and UTP; this is mimicked by exogenously added
S1P. Depletion of SK-1 by siRNA drastically reduced the effect of ATP and UTP on cell migration but not on cell proliferation.
Furthermore, MCs isolated from SK-1-deficient mice were completely devoid of nucleotide-induced migration.
Conclusions and implications: These data show that extracellular nucleotides besides being mitogenic also trigger MC
migration and this cell response critically requires SK-1 activity. Thus, pharmacological intervention of SK-1 may have impacts
on situations where MC migration is important such as during inflammatory kidney diseases.
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Introduction

Extracellular nucleotides exert important and diverse effects

on many biological processes including smooth muscle

contraction, platelet aggregation, neurotransmission, exo-

crine and endocrine secretion, immune responses, inflam-

mation and pain (for review, see Boarder and Hourani, 1998;

Ralevic and Burnstock, 1998; Abbracchio et al., 2006). They

mediate their effects by activation of distinct cell surface

receptors, the purinoceptors, which are divided into two

main classes, the P1 and the P2 receptors, of which the P1

receptors are selective adenosine receptors, whereas the P2

receptors bind various purines and pyrimidines and are

further subdivided into the ionotropic P2X receptors, and

the metabotropic G protein-coupled P2Y receptors. To date,

seven P2X receptors (P2X1–7) and eight P2Y receptors (P2Y1,

P2Y2, P2Y4, P2Y6 and P2Y11–14) have been identified (Ralevic

and Burnstock, 1998; Abbracchio et al., 2006).

In renal mesangial cells, extracellular nucleotides have

been shown to stimulate the hydrolysis of phosphatidylino-

sitol bisphosphate by a phospholipase C, leading to the

generation of 1,2-diacylglycerol and inositol 1,4,5-trisphos-

phate (Pfeilschifter, 1990a, b) with subsequent mobilization

of intracellular calcium (Pavenstädt et al., 1993). Further-

more, they activate protein kinase C (PKC) isoenzymes

(Pfeilschifter and Huwiler, 1996; Huwiler et al., 1997a),

the classical mitogen-activated protein kinases (MAPKs)

(Huwiler and Pfeilschifter, 1994), the stress-activated protein

kinase and c-Jun N-terminal protein kinase (Huwiler

et al., 1997b), the p38-MAPK (Huwiler et al., 2000a) and
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the protein kinase B/Akt (Huwiler et al., 2002). Functionally,

extracellular nucleotides lead to an increased formation of

prostaglandin E2 owing to cytosolic phospholipase A2

activation (Pfeilschifter, 1990a), to highly increased pro-

liferation of mesangial cells (Schulze-Lohoff et al., 1992;

Huwiler and Pfeilschifter, 1994), and to protection of

mesangial cells from stress-induced apoptosis (Huwiler

et al., 2002). Most of these nucleotide-triggered effects in

mesangial cells are mediated by the P2Y2 receptor, although

other purinoceptors such as the P2Y1, P2Y4, P2Y6, P2X2, P2X4

and P2X7 have also been identified in the kidney (Bailey

et al., 2000; Schwiebert and Kishore, 2001; Leipziger, 2003).

Sphingosine 1-phosphate (S1P) has gained a lot of

attention in the last few years owing to its potential

involvement in cell growth and survival (Olivera and

Spiegel, 1993; for review, see Huwiler et al., 2000b; Spiegel

and Milstien, 2003a). It was shown that S1P binds to and

activates cell surface receptors, the S1P receptors (formerly

denoted as Edg receptors), which belong to the class of seven

transmembrane spanning G protein-coupled receptors (for

review, see Sanchez and Hla, 2004; Rosen and Goetzl, 2005)

and couple to various signalling cascades including the

classical MAPK/extracellular signal-regulated kinase (ERK)

and protein kinase B/Akt. Besides this extracellular way of

action, an intracellular effect of S1P has also been proposed

(for review, see Spiegel and Milstien, 2003b), although the

direct intracellular targets of S1P remain unknown.

S1P is generated by the action of sphingosine kinases (SKs)

of which two subtypes have been identified, SK-1 and

SK-2 (Kohama et al., 1998; Liu et al., 2000). Furthermore,

it was reported that SK-1 exists as at least eight alternative

transcripts, denoted as sphk1a to �1 h, that are time- and

tissue-specifically expressed. All eight transcripts can be

found in the kidney (Imamura et al., 2001, 2004).

SKs are activated by a variety of stimuli including growth

factors such as platelet-derived growth factor (Olivera and

Spiegel, 1993), epidermal growth factor (Meyer zu Hering-

dorf et al., 1999; Hait et al., 2005; Döll et al., 2005) and nerve

growth factor (Edsall et al., 1997), but also by differentiation

factors such as phorbol ester (Buehrer et al., 1996; Huwiler

et al., 2006) and vitamin D3 (Kleuser et al., 1998), or even

by the proinflammatory cytokine tumour necrosis factor a
(Xia et al., 1999; Osawa et al., 2001; Billich et al., 2005). It was

proposed that the rapid activation of SK-1 by these factors

requires direct phosphorylation by the classical MAPK; this

is followed by translocation of the enzyme to the membrane

(Pitson et al., 2003, 2005).

Interestingly, SK-1 has been mapped to chromosome

17q25, which contains loci related to diseases such as

sclerosis, psoriasis and epidermodysplasia (Tomfohrde et al.,

1994; Kuokkanen et al., 1997; Nair et al., 1997; Becker et al.,

1998; Ramoz et al., 1999). The rat sphk1 gene is localized at

a telomeric region of chromosome 10, which was identified

as a susceptible region related to inflammatory auto-

immune diseases and rheumatoid arthritis (Remmers et al.,

1996).Thus, it may be speculated that SK-1 plays a role in the

development of these diseases.

In the present study, we showed that in renal mesangial

cells extracellular nucleotides activate SK-1 in a biphasic

manner. The delayed second phase of activation occurring

after 4–24 h of stimulation correlated with a transcriptional

upregulation of SK-1 messenger RNA (mRNA) followed by

increased de novo synthesis of SK-1 protein. Furthermore, this

nucleotide-induced SK-1 activation is critically involved in

the process of nucleotide-stimulated cell migration, but not

in nucleotide-stimulated cell proliferation of mesangial cells.

Methods

Cell culturing

Rat renal mesangial cells were cultivated and characterized as

described previously (Pfeilschifter, 1990a). In a second step,

single cells were cloned by limited dilution on 96-microwell

plates. Clones with mesangial cell morphology were char-

acterized as described previously (Pfeilschifter, 1990a). For

the experiments in this study passages 7–25 were used.

Mouse renal mesangial cells were isolated from either a SK-1

knockout mouse (generated by Genoway, Lyon, France)

or a SK-1 (þ /þ ) control littermate. In brief, the kidneys

were collected and, after removal of the capsule, pressed

through three subsequent filters of 108 mM, 180 mM and

53 mM. Glomeruli attached to the 53 mM filter were collected

and kept in culture. Outgrown mesangial cells were sub-

cultured and further used up to passage 8. Cells were

characterized by positive staining for a-smooth muscle actin

and negative staining for cytokeratin (to exclude epithelial

cell contamination).

Peptide synthesis and generation of antibodies

For rat SK-1 two synthetic peptides based on the sequences

(amino acids 6–19: CPRGLLPRPCRVLV and amino acids

174–188: VADVDLESEKYRSLG) were synthesized, coupled to

keyhole-limpet haemocyanin, and used to immunize rabbits.

Cell stimulation and Western blot analysis

Confluent mesangial cells in 60-mm-diameter dishes were

stimulated with the indicated substances in Dulbecco’s

modified Eagle medium (DMEM) containing 0.1 mg ml�1

of fatty acid-free bovine serum albumin (BSA). Following

stimulation the medium was withdrawn and the cells

were washed once with phosphate-buffered saline (PBS)

solution. Thereafter, cells were scraped into ice-cold

lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10%

glycerol, 1% Triton X-100, 2 mM ethylenediaminetetraacetic

acid (EDTA), 2 mM ethylene glycol-bis(b-aminoethyl ether)-

N,N,N’,N’,-tetraacetic acid, 40 mM b-glycerophosphate,

50 mM sodiumfluoride, 10 mg ml�1 leupeptin, 10 mg ml�1

pepstatin A, 1 mM phenylmethyl sulphonyl fluoride) and

homogenized by 10 passes through a 26G-needle fitted to a

1 ml syringe. The samples were then centrifuged for 10 min

at 13 000 g and the supernatant was taken for protein

determination and Western blot analysis. Cell lysates con-

taining equal amounts of protein (50–100 mg) were separated

on sodium dodecyl sulfate-polyacrylamide gel electrophor-

esis (SDS-PAGE) (10% acrylamide gel) and transferred to

a nitrocellulose membrane and subjected to Western blot

analysis as described previously (Huwiler et al., 1995).
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In vitro SK activity assay

The SK-1 activity assay was performed exactly as described

previously (Döll et al., 2005). In brief, 50 mg of total protein

were dissolved in buffer (containing 20 mM Tris-HCl, pH 7.4,

20% (v/v) glycerol, 1 mM b-mercaptoethanol, 1 mM EDTA,

1 mM sodium orthovanadate, 40 mM b-glycerophosphate,

15 mM NaF, 10 mg ml�1 leupeptin, 10 mg ml�1 aprotinin and

1 mM phenylmethyl sulphonyl fluoride). For SK-2 activity

assay, the same buffer including 1 M KCl was used (Shu et al.,

2002). Thereafter, 10 ml of 1 mM sphingosine (dissolved

in 4 mg ml�1 BSA in PBS), 10 ml MgCl2 (200 mM) and 10 mCi

20 mM
�1 g-[32P]ATP (adenosine triphosphate) were added.

The reaction was terminated after 15 min at 371C by addition

of 20 ml HCl (1N), 800 ml of CHCl3/MeOH/HCl (100:200:1,

v/v), 240ml CHCl3 and 240 ml KCl (2 M). After phase

separation, 50 ml of the lower organic phase were separated

by thin-layer chromatography with 1-butanol/EtOH/acetic

acid/water (80:20:10:20, v/v). Radioactive spots correspond-

ing to S1P were analysed by an Imaging system (Fujifilm

Europe GMBH, Düsseldorf, Germany).

Quantitative real-time PCR (TAQMAN)

Two micrograms of total RNA isolated with TRIZOL reagent

was used for reverse transcriptase-polymerase chain reaction

(RT-PCR) (First-strand synthesis kit, MBI) utilizing a

hexanucleotide primer for amplification. The real-time

PCR reactions were carried out in ABgene plates. Probes,

primers of rat SK-1 and 18sRNA, and the reporter dyes

6-fluorochrome 6-carboxyl-fluorescein and VIC were from

Applied Biosystems (Germany). The PCR buffer used in

the experiments was from ABgene. After complementary

DNA synthesis one microlitre of PCR product was used

for further analysis. The run was performed on the Applied

Biosystems 7700 HT sequence detection system. The

cycling conditions were as following: 951C for 15 min

(one cycle), 951C for 15 s and 601C for 1 min (40 cycles).

SDS version 1.9.1 software was used to analyse real-time and

end point fluorescence.

siRNA transfections

Cells were plated in six-well-plates at a density of 1�105

cells per well and cultured overnight. The transfection

was carried out with Oligofectamine Reagent (Invitrogen,

Karlsruhe, Germany) following the manufacturer’s instruc-

tions. Small-interfering RNA (siRNA) of rat SK-1 (50-CAG

CUU CUU UGA ACU ACU ATT-30) was used at 100 nM

concentration. After transfection, medium was exchanged

for normal growth medium and cells were cultured for 8 h

before a starvation period of 12 h followed by stimulation in

serum-free DMEM as indicated in the figure legends.

Cell migration assay

The effect of extracellular nucleotides on mesangial cell

migration was measured as the ability of cells to migrate

through a Transwell filter (6.5 mm diameter, 8mM pore size).

After serum starvation for 24 h, cells were detached by

trypsinization and seeded into transwell filters at 1�105

cells in 100 ml starvation medium with or without the

indicated stimuli; 500 ml of starvation medium were

placed in the lower compartment, and the cells were left to

migrate for the indicated time periods. After treatment, the

medium was removed and the non-migrating cells were

removed from the filter by wiping the filter with a cotton

pad. The filters were washed twice with PBS, fixed in 4%

formaldehyde in PBS for 30 min at room temperature

and again washed in water and methanol. Thereafter,

the cells were stained with 40,6-diamidino-2-phenylindole

(DAPI) (1 mg ml�1) for 15 min at 371C, washed with

methanol and dried. Cells that had migrated into the pores

of the filters were counted using fluorescence microscopy.

Five random areas were examined per sample and the

experiments were repeated twice in triplicate. Data are

expressed as (%) of control migrated cells per standard

microscopic field.

[3H]Thymidine incorporation

Transfected cells in 24-well-plates were rendered serum free

for 1 day in DMEM including 0.1 mg ml�1 BSA before

stimulation with the indicated concentrations of ATP or

uridine triphosphate (UTP) in the presence of 1mCi ml�1 of

[3H]methyl-thymidine. After 24 h of stimulation, cells were

washed twice with PBS and incubated in 5% (w/v) trichloro-

acetic acid at 41C for 30 min, and the DNA was dissolved in

0.5 mol l�1 NaOH for 30 min at 371C. Finally, [3H]thymidine

incorporation was determined in a b-counter.

Statistical analysis

Statistical analysis was performed by one-way analysis of

variance. For multiple comparisons with the same control

group, the limit of significance was divided by the number of

comparisons according to Bonferroni.

Chemicals

All nucleotides and DAPI were obtained from Sigma Aldrich

Fine Chemicals, Deisenhofen, Germany or Fluka, Bucks,

Switzerland; g-[32P]ATP (specific activity: 45000 Ci mmol�1),

anti-rabbit horseradish peroxidase-coupled IgG and Hyper-

film were purchased from GE Health Care Systems, Freiburg,

Germany; 12-O-tetradecanoylphorbol 13-acetate (TPA),

1,4-diamino-2,3-dicyano-1,4[2-aminophenylthio]butadiene

(U0126), bisindolylmaleimide IX (Ro 31-8220) and SB203580

(4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)

1H-imidazole) were obtained from Merck Biosciences,

Schwalbach, Germany; all cell culture nutrients were from

Life Technologies, Karlsruhe, Germany.

Results

Extracellular nucleotides induce a biphasic activation of SK-1,

but not of SK-2

As extracellular nucleotides like ATP and UTP have turned out

to be potent mitogens for mesangial cells (Schulze-Lohoff

et al., 1992; Huwiler and Pfeilschifter, 1994), we investigated
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here whether these nucleotides induce additional mitogenic

factors that could act synergistically to increase mesangial

cell proliferation.

Stimulation of rat renal mesangial cells with an extra-

cellular nucleotide such as UTP induced a rapid increase of

SK-1 activity, as measured in an in vitro kinase assay using

sphingosine as a substrate. A maximal peak of SK-1 activity

occurred after 5–7 min of stimulation with UTP (Figure 1a).

Interestingly, exposure of cells to extracellular nucleotides

for longer time periods resulted in a second more delayed

and sustained peak of SK-1 activation with maximal values at

6–24 h for ATP and UTP (Figure 1b). This delayed activation

of SK-1 was concentration-dependent (Figure 2). After 24 h of

stimulation with UTP significantly enhanced SK-1 activity

was seen at 3mM and a maximal effect at 300 mM, whereas ATP

was less potent and 100 mM of ATP was needed to see any

significant effects (Figure 2). To see whether SK-2 activity is

also increase after nucleotide stimulation, the same samples

were subjected to an in vitro kinase assay in the presence of

1 M KCl, which inhibits SK-1 but does not affect SK-2 activity

(Shu et al., 2002). However, under these conditions no

increased SK-2 activity was detected after either ATP or UTP

(Figure 2).

In a next step, Western blot analyses were performed to see

whether SK-1 protein expression is altered by stimulation

with nucleotides. For this a specific anti-rat SK-1 antibody

was generated and characterized. As seen in Figure 3, upper

panel, lysates of nucleotide-stimulated mesangial cells show

a time-dependent increase of the p49 SK-1 protein expres-

sion, which is most prominent after 6 h of ATP stimulation

and thereafter slightly declines. Interestingly, not only the

49 kDa enzyme is enhanced but also the 67 kDa band which

may represent a modified form of SK-1. So far, no splice

variants have been reported for the rat SK-1, thus the identity

of the 67 kDa band remains unknown. During this long-term

stimulation regimen the expression of the housekeeping
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Figure 1 Effect of extracellular nucleotides on short-term (a) and
long-term (b) activation of SK-1 in renal mesangial cells. (a)
Quiescent mesangial cells were stimulated with either vehicle
(2 min) or UTP (300mM) for the indicated time periods (in minutes).
(b) Cells were stimulated for the indicated time periods (in h) with
either vehicle (24 h), ATP (100mM) or UTP (100mM). Thereafter, cell
lysates containing 50mg of protein were taken for an in vitro SK-1
activity assay as described in the Methods. Data are expressed as %
of control values and are means with vertical lines showing s.d.
(n¼6) *Po0.05, **Po0.01, ***Po0.001 considered statistically
significant when compared to the unstimulated control value.
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Figure 3 Effect of ATP and UTP on SK-1 protein expression in renal
mesangial cells. Quiescent mesangial cells were stimulated for 20 h
with either vehicle (Co) or with 100mM of either ATP for the
indicated time periods (in h). Thereafter, cell lysates containing
100mg of protein were separated on SDS-PAGE, transferred to
nitrocellulose and subjected to a Western blot analysis using
antibodies against either SK-1 (upper panel) or b-actin (lower panel)
at dilutions of 1:1500 and 1:10 000, respectively. Bands were
visualized by the enhanced chemiluminescences method according
to the manufacturer’s instructions. Data are representative of six
independent experiments giving similar results.
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enzyme b-actin was not altered (Figure 3, lower panel). The

increased protein expression of SK-1 upon nucleotide

stimulation is due to increased protein synthesis, as

cycloheximide (CHX), which is an inhibitor of the transla-

tion machinery of the cell, is able to abolish the delayed ATP-

and TPA-induced SK-1 activity (Figure 4). In parallel,

nucleotide-upregulated protein expression of SK-1 was also

blocked by CHX (Figure 4 inset).

Furthermore, the upregulation of SK-1 expression also

involves activation of PKC and the classical MAPK/ERK

cascade, as the PKC inhibitor Ro 31-8220 and the MAPK/ERK

kinase (MEK) inhibitor U0126 are able to reduce ATP- and

UTP-induced SK-1 protein expression (data not shown) and,

in parallel, inhibit ATP- and UTP-stimulated delayed SK-1

activity (Figure 5). In contrast, the p38-MAPK inhibitor

SB203580 was not able to block SK-1 activity (Figure 5).

Inhibition of MEK by U0126 also blocked the rapid

nucleotide-induced SK-1 activity (data not shown), thus,

confirming the critical involvement of the classical MEK/ERK

cascade in the acute SK-1 activation observed previously by

others (Pitson et al., 2003, 2005).

The increased protein synthesis of SK-1 upon nucleotide

stimulation is preceded by increased expression of SK-1

mRNA. To this end, we performed quantitative real-time PCR

experiments. UTP time-dependently upregulated SK-1 mRNA

levels with maximal values at 2–4 h of stimulation which

thereafter constantly declined over the next 20 h (Figure 6a).

The upregulation of SK-1 mRNA expression also occurred

in a concentration-dependent manner, as seen after 6 h of

stimulation with ATP and UTP (Figure 6b).

Extracellular nucleotides stimulate migration of mesangial cells

in a SK-1-dependent manner

As S1P has been shown to affect the migration of a variety of

cell types, we investigated whether mesangial cell migration

is modulated by S1P. Stimulation of cells with exogenous S1P

leads to an enhancement of mesangial cell migration as

measured in a modified Boyden chamber. A significant effect

is seen as early as 4 h after S1P stimulation and shows a

maximal migratory effect after 8 h of stimulation (Figure 7a).

A similar time-dependent (Figure 7b) and dose-dependent

(Figure 7c) increase of mesangial cell migration was also seen

with ATP and UTP.

Interestingly, depletion of SK-1 from mesangial cells by

siRNA transfection (Döll et al., 2005; Huwiler et al., 2006),

completely abolished ATP-, UTP- and also S1P-triggered cell

migration (Figure 8a). In an additional approach, mesangial

cells were isolated from either a SK-1 (�/�) mouse or a SK-1

(þ /þ ) control littermate. The lack of SK-1 in these mice was

verified by Western blot analysis of kidney protein extracts

(Figure 8b, left panel) and by RT-PCR of kidney RNA extracts

(Figure 8b, right panel). Whereas SK-1 (þ /þ ) control cells

respond well to ATP and UTP by increased migration

(Figure 8c), SK-1 (�/�) cells were completely devoid of

nucleotide-induced cell migration (Figure 8c), although

the basal migration rates of wild-type and knockout cells

were not significantly different. Furthermore, in the

presence of either the MEK inhibitor U0126 or the PKC

inhibitor Ro 318220, ATP- and UTP-induced rat mesangial

cell migration was attenuated (Figure 9a). In the presence

of CHX nucleotide-induced migration was blocked by

approximately 50% (Figure 9b). All these data suggest that

SK-1 is a critical mediator of extracellular nucleotide-

mediated mesangial cell migration and that SK-1 activation

is especially involved in the delayed phase of the migratory

mechanism.
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Finally, as extracellular nucleotides are also well known to

induce proliferation of mesangial cells (Schulze-Lohoff et al.,

1992; Huwiler and Pfeilschifter, 1994), we also investigated

whether SK-1 is involved in this cell response. However, as

seen in Figure 10, depletion of SK-1 had no significant effect

on either ATP- or UTP-triggered [3H]thymidine incorpora-

tion, suggesting that this nucleotide-mediated response is

not dependent on SK-1 and S1P production.

Discussion

In the last few years it has become more and more apparent

that ATP not only functions as an intracellular energy source,

but may also acts as a signalling molecule with the ability to

bind to and activate cell surface receptors, the P2 purino-

ceptors and thereby start signal transduction finally leading

to various cell responses including cell growth (Schulze-

Lohoff et al., 1992; Huwiler and Pfeilschifter, 1994;

Ralevic and Burnstock, 1998) and cell survival (Huwiler

et al., 2002; Ahmad et al., 2005). In addition, ATP also plays

a role in chemotaxis and cell migration. Thus, immune cells
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including microglias (Honda et al., 2001), oligodendrocytes

(Agresti et al., 2005) and immature dendritic cells (Idzko

et al., 2002), display an increased migratory response upon

ATP exposure. Furthermore, endothelial cells and epithelial

cells stimulated by ATP also show enhanced migration,

which is considered an important event in wound repair and

tissue remodelling (Ehring et al., 2000; Honda et al., 2001;

Klepeis et al., 2004).

In this study we show for the first time that renal

mesangial cells also respond to ATP and UTP with increased

cell migration. Migration of mesangial cells may be an

important event in the repair mechanism during inflamma-

tory kidney diseases. Often, these diseases are characterized

by an initial acute phase of mesangial cell apoptosis

which needs to be compensated for by increased migration

of mesangial cells into the intercapillary tuft, and is
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subsequently followed by increased proliferation of the cells.

ATP may be released into the extracellular space during

the first phase of mesangial cell apoptosis and may then

act in an autocrine manner to activate purinoceptors and

trigger mesangial cell migration and proliferation and

thereby may contribute to the repair processes of such

kidney diseases. The involvement and importance of P2Y

receptors in inflammatory diseases was also reported by

Rost et al. (2002); they demonstrated that the P2Y receptor

antagonist pyridoxalphosphate-6-azophenyl-20,40-disulpho-

nic acid (PPADS) is able to attenuate anti-Thy1-induced

glomerulonephritis in rats.

Our data further reveal that SK-1 activation is an

important event in extracellular nucleotide-induced signal

transduction. The activation of SK-1 by nucleotides occurs in

a biphasic manner. An initial rapid activation takes place

after minutes of stimulation and involves post-translational

mechanisms such as phosphorylation reactions. In this

context, it has been shown that human SK-1 is directly

phosphorylated by the classical MAPK/ERK on Ser225, which

leads to a translocation of the enzyme to the plasma

membrane and increased activity (Pitson et al., 2003,

2005). The second peak of SK-1 activation by ATP and UTP

is delayed and involves enhanced SK-1 mRNA expression

followed by increased de novo synthesis of SK-1 protein.

Based on a recent publication (Nakade et al., 2003) it is

tempting to speculate that the increased mRNA expression

derives from a transcriptional activation of the SK-1 gene

owing to stimulated promoter activity. The promoter of SK-1

has recently been cloned from human leukaemia cells MEG

(Nakade et al., 2003) and shows a multitude of putative

transcription factor binding sites that could be stimulated by

growth factors. In fact, the direct PKC activator phorbol ester

(Nakade et al., 2003; Huwiler et al., 2006) and the patho-

physiologically important PKC activator histamine (Huwiler

et al., 2006) have been shown to be potent inducers of SK-1

promoter activity. Within the promoter, several potential

binding sites for Sp1, activator protein (AP)-1, AP-2, AP-4,

signal transducers and activators of transcription and nuclear

factor kappa B were identified. Clearly, more detailed studies,

including deletion and point mutation promoter studies, will

be needed to identify the transcription factors involved in the

nucleotide-induced upregulation of SK-1 mRNA expression.

A biphasic regulation of SK-1 by nucleotides, as described

here, may guarantee a rapid adaptation by ‘fine-tuning’ of

SK-1 activity through phosphorylation steps. Also it would

allow a long-term adaptation to environmental changes by

altered gene transcription of SK-1 that may be necessary for

tissue repair and remodelling after injury. Interestingly, SK-1

seems to be a critical mediator and also a switch point in the

cellular responses triggered by extracellular nucleotides.

Thus, when SK-1 is depleted either by siRNA transfection

or by using mouse mesangial cells isolated from SK-1

knockout mice, the nucleotides are no longer able to induce

cell migration (Figure 8a and c). Furthermore, as the protein

synthesis inhibitor CHX is able to block the delayed phase of

SK-1 activation (Figure 4) without affecting the acute SK-1

activation, and additionally also inhibits, at least partially,

the nucleotide-induced migration (Figure 9b), it is tempting

to speculate that the delayed activation of SK-1 is involved in

the migratory mechanism. However, as it is not, at present,

possible to deplete the first acute phase of SK-1 activation

without altering the second delayed phase of SK-1 activation,

we cannot exclude the possibility that the acute activation is

necessary for the chronic activation phase. Thus, inhibition

of PKC and MEK not only blocked the acute activation of

SK-1 (data not shown; and Pitson et al., 2003) but also the

delayed SK-1 activation.

Interestingly, another prominent cell response triggered by

nucleotides, that is, proliferation, seems not to involve SK-1,

as depletion of SK-1 had no effect on nucleotide-triggered

cell proliferation (Figure 10). This differs from other cell

types where SK-1 has been shown to be involved in both cell

responses, migration and proliferation. In the human

breast cancer cell line MCF7, depletion of SK-1 abolishes

both migration and proliferation of tumour cells (Döll

et al., 2005). Furthermore, it has recently been shown that

chemotherapeutic agents like doxorubicin and etoposide

downregulate the expression of SK-1 protein in tumour cells

(Taha et al., 2004). These authors suggested a correlation

between the loss of SK-1 expression and increased apoptosis

of tumour cells by chemotherapy. In addition, various solid

tumour tissues show an increased mRNA expression of SK-1

(French et al., 2003; Kawamori et al., 2006).

All these data support the hypothesis that SK-1 is

positively involved in tumour growth and hence, the

downregulation of SK-1 may have favourable effects in

tumour therapy. On the other hand, cell proliferation and

angiogenesis are also important processes in tissue repair.

Hence, reduced expression of SK-1 may correlate with an

adverse effect on wound healing.

The involvement of S1P in cell migration is well estab-

lished. Depending on the cell type S1P can either stimulate

or inhibit cell migration. This seemingly paradox behaviour

is explained by the presence of different S1P receptor

subtypes which initiate opposing signalling pathways. In

smooth muscle cells, which prominently express the S1P2
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receptor, migration is inhibited by S1P (Ryu et al., 2002).

Furthermore, when using a S1P2 receptor antagonist, JTE-

013, the inhibitory effect of S1P on smooth muscle cell

migration could be reversed (Osada et al., 2002). In contrast,

S1P stimulates migration of endothelial cells through

activation of either S1P1 or S1P3 receptors, both predomi-

nant subtypes in these cells. Mesangial cells have been

shown to express several S1P receptor subtypes, including

S1P1, S1P2, S1P3, S1P4 and S1P5 (formerly known as Edg-1, -5,

-3, -6 and -8 receptors) (Gennero et al., 2002; Katsuma et al.,

2002), of which S1P2 and S1P3 have been particularly

proposed to be involved in the mitogenic function of S1P

(Katsuma et al., 2002). Whether a particular S1P receptor,

or all of them, is involved in the ATP-induced migration

of mesangial cells is still not known, as not all of the S1P-

triggered cell responses necessarily involve S1P receptors.

Previously, it has been suggested that intracellularly gener-

ated S1P may also act as a second messenger activating

intracellular targets. However, these targets have not been

molecularly defined. In mesangial cells, S1P is mainly

generated inside the cell as SK-1 is not significantly secreted

(data not shown). This contrasts with the situation described

for endothelial cells where SK-1 was found to be constitu-

tively secreted (Ancellin et al., 2002) and consequently may

generate S1P extracellularly.

Clearly, our experiments show that the SK-1 is involved

in the mechanism of nucleotide and also exogenous S1P-

induced migration of mesangial cells. However, we were not

able to detect increases in cellular S1P levels upon nucleotide

stimulation. This may be due to a very rapid conversion of

S1P into other sphingolipid species or degradation products.

Moreover, the issue of whether cell surface S1P receptors are

involved in the ATP-triggered cell migration or whether an

intracellular mechanism is involved still needs to be

elucidated. Nevertheless, our data reveal that one of the

S1P receptors does contribute to cell migration when

extracellular S1P is present. Clearly, further experiments are

required to address this issue in more detail.

In summary, our data show that extracellular nucleotides

not only trigger cell proliferation but also stimulate mesan-

gial cell migration. This latter cellular response critically

involves the activation of SK-1. Thus, SK-1 may represent a

promising target for inhibiting cell movement in inflamma-

tory kidney diseases.
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