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Protective role of PI3-kinase-Akt-eNOS signalling
pathway in intestinal injury associated with
splanchnic artery occlusion shock
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Background and purpose: Endothelial NO synthase (eNOS) is a dynamic enzyme tightly controlled by co- and post-
translational lipid modifications, phosphorylation and regulated by protein-protein interactions. Here we have
pharmacologically modulated the activation of eNOS, at different post-translational levels, to assess the role of eNOS-
derived NO and of these regulatory mechanisms in intestinal injury associated with splanchnic artery occlusion (SAO) shock.
Experimental approach: SAO shock was induced by clamping both the superior mesenteric artery and the celiac trunk for 45
min followed by 30 min of reperfusion. During ischemia, 15 min prior to reperfusion, mice were given geldanamycin, an
inhibitor of hsp90 recruitment to eNOS, or LY-294002 an inhibitor of phosphatidylinositol 3-kinase (PI3K), an enzyme that
initiates Akt–catalysed phosphorylation of eNOS on Ser1179. After 30 min of reperfusion, samples of ileum were taken for
histological examination or for biochemical studies.
Key results: Either LY-294002 or geldanamycin reversed the increased activation of eNOS and Akt observed following SAO
shock. These molecular effects were mirrored in vivo by an exacerbation of the intestinal damage. Histological damage also
correlated with neutrophil infiltration, assessed as myeloperoxidase activity, and with an increased expression of the adhesion
proteins: ICAM-I, VCAM, P-selectin and E-selectin.
Conclusions and implications: Overall these results suggest that activation of the Akt pathway in ischemic regions of
reperfused ileum is a protective event, triggered in order to protect the intestinal tissue from damage induced by ischaemia/
reperfusion through a fine tuning of the endothelial NO pathway.
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Introduction

Until recently, endothelial nitric oxide synthase (eNOS) had

been regarded as a static enzyme that produced a constant

low amount of NO both in physiological and pathological

conditions. Now, it is clear that eNOS is a dynamic enzyme

tightly controlled by co- and post-translational lipid mod-

ifications, phosphorylation and regulated by protein–protein

interactions (Sessa, 2004). Generally, in the basal state, eNOS

is localized in the caveolae, where it interacts with caveolin-1

(CAV-1), thus maintaining the enzyme in an inactive state.

Following endothelial cell activation by increased shear

stress or local autacoids, the increase in cytoplasmic calcium

levels activates calmodulin, which weakens the eNOS-CAV-1

interaction thereby promoting hsp90 recruitment to eNOS

and eNOS activation. Recently, many investigators have

shown that protein phosphorylation of eNOS by several

serine/threonine kinases is a critical control step for NO

production by endothelial cells (Fulton et al., 1999). In

particular, phosphorylation by Akt on Ser1179 of eNOS leads

to enhanced activity of the enzyme and, thus, augments

production of NO. Indeed mutation of Ser1179 to an alanine

residue prevents Akt-dependent phosphorylation and NO
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production, proving that this residue is indispensable for the

activation of the enzyme by this kinase (Dimmeler et al.,

1999; Fulton et al., 1999). The phosphatidylinositol 3-kinase

(PI3K)/Akt pathway is an important survival pathway

involved in protection against various stressors by modula-

tion of various downstream elements involved in apoptosis

(Scheid and Woodgett, 2001; Toth et al., 2003). Furthermore,

the activation of the PI3K-Akt-eNOS signalling pathway

seems to play a key role in the protection afforded by

preconditioning, decreasing organ damage. Recent findings

demonstrate that the acute activation of the serine-threo-

nine kinase Akt is cardioprotective and reduces dysfunction

following ischemia/reperfusion (I/R) injury (Ackah et al.,

2005; O’Neill and Abel, 2005). PI3K/Akt pathway activation

has similar protective effects on hepatic I/R injury (Izuishi

et al., 2006).

Here, we have used pharmacological modulation of eNOS

activation at post-translational level with LY-294002, an

inhibitor of PI3K, which thereby prevents activation of Akt

and consequently inhibits eNOS phosphorylation on Ser1179

(Fulton et al., 1999). We also sought to modify Akt-induced

phosphorylation of eNOS with geldanamycin, a compound

that binds specifically to the ATP pocket of hsp90 and

prevents it acting as an adaptor for Akt (Fontana et al., 2002).

These procedures were designed to assess the role of eNOS

activation via Akt in intestinal injury associated with

splanchnic artery occlusion (SAO) shock (Cuzzocrea et al.,

2002).

Materials and methods

Animals

The study was carried out in 6–8-weeks-old (20–25 g) male

mice CD1 (Harlan Nossan, Italy). The animals were housed

in a controlled environment and provided with standard

rodent chow and water. Animal care was in compliance with

Italian regulations on protection of animals used for

experimental and other scientific purposes (DM 116192) as

well as with the EEC regulations (OJ of ECL 358/1, 18

December 1986).

Surgical procedures

Mice were allowed access to food and water ad libitum. On

the day of the experiment the mice were anesthetized with

chloral hydrate (380 mg kg�1, intraperitoneal (i.p.)). After

midline laparotomy, the celiac and superior mesenteric

arteries were isolated near their aortic origins. During this

procedure, the intestinal tract was maintained at 371C by

placing it between gauze pads soaked with warmed 0.9%

NaCl solution. Mice (n¼10 for each group) were kept under

visual examination by the operator for 30 min before either

splanchnic ischemia or sham ischemia was performed. SAO

shock was induced by clamping both the superior mesenteric

artery and the celiac trunk, resulting in a total occlusion of

these arteries for 45 min. After this period of occlusion, the

clamps were removed. Mice were killed at different time

points and intestinal tissues utilized for histological exam-

ination and for biochemical studies, as described below. To

avoid the contribution of inducible nitric oxide synthase

(iNOS)-derived NO, we have used experimental conditions of

I/R in SAO shock, where iNOS is not induced, as described

previously (Cuzzocrea et al., 1998a, b, 2002).

Experimental groups

Mice were subjected to SAO shock and received, 15 min

before reperfusion, one of three treatments: (i) 0.2 ml of

saline solution; (ii) LY 294002 10, 30 or 100 mg kg�1 i.p.

bolus in a volume of 0.2 ml of saline solution; and (iii)

geldanamicyn (1 mg kg�1) bolus in a volume of 0.2 ml of

saline solution. As a sham control group, we used mice that

were subjected to identical surgical procedures as described

above except that the blood vessels were not occluded. The

mice were maintained under anesthesia for the same

duration of the experiment and were given vehicle, LY

294002 or geldanamycin.

Western blots

Mice were killed with CO2 following 15, 30, 60 and 120 min

of reperfusion and the ileum was homogenized in modified

RIPA buffer (Tris-HCl 50 mM, pH 7.4, Triton 1%, sodium

deoxycholate 0.25%, NaCl 150 mM, EDTA 1 mM, PMSF 1 mM,

aprotinin 10 mg ml�1, leupeptin 20 mM, NaF 50 mM) using a

Polytron homogenizer (two cycles of 10 s at maximum

speed). After centrifugation of homogenates at 3000 g for

10 min, equal amounts (30 mg) of the denatured proteins

were separated on 10% sodium dodecyl sulfate polyacryla-

mide gels and transferred to a nitrocellulose membrane.

Membranes were blocked by incubation in phosphate-

buffered saline (PBS) containing 0.1% (v/v) Tween 20 and

5% non-fat dry milk for 2 h, followed by a overnight

incubation at 41C with rabbit CAV-1 receptor polyclonal

antibody (1:1000), rabbit anti phospho-eNOS (p-eNOS) -

Ser1179 polyclonal antibody (1:1000), mouse eNOS mono-

clonal antibody (1:2000), rabbit Akt polyclonal antibody and

Akt phospho-specific (Ser473) mouse monoclonal antibody.

The filters were washed extensively in PBS containing 0.1%

(v/v) Tween 20, before incubation for 2 h with anti horse-

radish peroxidase-conjugate secondary antibody. Mem-

branes were then washed and developed using Enhanced

chemiluminescence Substrate (ECL, Amersham Pharmacia

Biotech, Piscataway, NY, USA).

Histological assessment of damage after SAO shock

Ileum biopsies were taken at 30 min after reperfusion.

The biopsies were fixed in buffered formaldehyde solution

(10% in PBS) at room temperature, dehydrated by

graded ethanol and embedded in Paraplast (Sherwood

Medical, Mahwah, NJ, USA). Tissue sections (thickness

7 mm) were deparaffinized with xylene, stained with hema-

toxylin/eosin and studied using light microscopy (Dialux

22 Leitz). Cellular damage in the tissue sections was

quantified by a scoring system (Cuzzocrea et al., 2002). All

the histological studies were performed without knowledge

of the treatments.
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Myeloperoxidase activity

Assessment of neutrophil infiltration in the intestinal tissues

was performed, as described previously (Cuzzocrea et al.,

1998a, b), by measurement of the activity of myeloperox-

idase (MPO), an enzyme specific to granulocyte lysosomes

and, therefore, an indirect measurement of the presence of

neutrophils. MPO activity was defined as the quantity of

enzyme degrading 1mmol of peroxide min�1 at 371C and was

expressed in U/g of weight of wet tissue.

Immunohistochemical localization of E-selectin, P-selectin,

VCAM and ICAM-1

At 30min after reperfusion, the ileum was fixed in 10%

buffered formaldehyde and 8mm sections were prepared from

paraffin-embedded tissues. After deparaffinization, endogenous

peroxidase was quenched with 0.3% H2O2 in 60% methanol

for 30min. The sections were permeabilized with 0.1% Triton

X-100 in PBS for 20min. Non-specific adsorption was mini-

mized by incubating the section in 2% normal goat serum in

PBS for 20min. Endogenous biotin- or avidin-binding sites

were blocked by sequential incubation for 15min with avidin

and biotin. The sections were then incubated overnight with

primary anti-E-selectin antibody (1:1000), anti-P-selectin anti-

body (1:500), anti-VCAM-1 antibody (1:500), anti-ICAM-1

antibody (1:500) or with control solutions. Controls included

buffer alone or non-specific purified rabbit IgG. Immunocy-

tochemistry photographs (n¼5) were assessed by densitome-

try. The assay was carried out by using Optilab Graftek software

on a Macintosh personal computer (CPU G3-266). All the

immunocytochemistry analysis was carried out without knowl-

edge of the treatments.

Statistical analysis

All values in the figures and text are expressed as mean7
s.e.m. of n observations, where n represents the number of

animals studied. In the experiments involving histology or

immunohistochemistry, the figures shown are representative

of at least three experiments performed on different experi-

mental days. Data sets were examined by one- and two-way

analysis of variance. Post-test analysis was performed by using

Bonferroni’s test. Non-parametric data were analyzed with the

Fisher’s exact test. A P-value o0.05 was considered significant.

Reagents

Biotin blocking kit, biotin-conjugated goat anti-rabbit IgG

and avidin-biotin peroxidase complex were obtained from

Vector Laboratories (Burlingame, CA, USA). Primary mono-

clonal P-selectin (CD62P) or ICAM-1 (CD54) for immuno-

histochemistry were purchased from Pharmingen

(San Diego, CA, USA). Reagents and secondary and non-

specific IgG antibody for immunohistochemical analysis were

from Vector Laboratories inc. All antibodies utilized for Western

blots were obtained from Calbiochem (San Diego, CA, USA). All

other reagents and compounds used were obtained from Sigma

Chemical Company (Milano, Italy). Geldanamycin was a

generous gift from Professor Bill Sessa, Department of Pharma-

cology, Yale University School of Medicine.

Results

Effect of ischemia and reperfusion of the splanchnic organs on

eNOS activation

Mice were subjected to 45 min of occlusion followed by

reperfusion of the superior mesenteric artery and celiac

trunk. Reperfusion was interrupted at selected time points

and the ileum taken for analysis by Western blotting. After

the first 15 min of reperfusion, eNOS expression increased

reaching almost a plateau at 30 min and returning to basal

levels within 2 h of reperfusion (Figure 1a). To assess if the

increased expression was coupled to an increased activation

of eNOS, we evaluated the expression of CAV-1 and the

relative level of p-eNOS. During ischemia, eNOS expression

was unaltered but its activation was increased as demon-

strated by a decreased expression of CAV-1 coupled to an

increased phosphorylation at Ser1179 (Figure 1b). Conversely,

during reperfusion, eNOS expression was increased, along

with a further increase of its phosphorylation at Ser1179. The

eNOS phosphorylation was maximal following 30 min of

reperfusion (Supplementary Figure 1). The increased levels of

phosphorylated eNOS following 30 min of reperfusion was

coupled to a decrease in CAV-1 expression (Figure 1b).

Endothelial NOS activation following I/R is dependent upon

triggering of PI3K/Akt pathway

To understand if eNOS activation following I/R was depen-

dent upon PI3K/Akt activation, we evaluated Akt expression

and the relative level of phospho-AkT. As observed for eNOS,

there was also an increase in Akt expression after 30 min
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Figure 1 (a) eNOS expression was increased during reperfusion
returning to basal levels within 120 min. (b) During ischemia, eNOS
expression was unaltered but its activation was increased as assessed
by the decreased expression of CAV-1 and the increased phosphor-
ylation on eNOS Ser1179. Following reperfusion, eNOS was also
significantly phosphorylated on Ser1179. The increased activation of
eNOS was also confirmed by a decrease in CAV-1 expression during
reperfusion. ***Po0.001 vs sham (S). The blot shown is representa-
tive of three different experiments.
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reperfusion (data not shown). Western blots showed a

significant amount of the phosphorylated form of Akt

following I/R (Figure 2a). Ischemia did not affect Akt

expression and activity (Figure 2a). When mice subjected

to I/R were pretreated with LY-294002 (30 mg kg�1), a specific

inhibitor of PI3K or with geldanamycin (1 mg kg�1), Western

blots showed a reversal of the increased expression of both

eNOS and Akt (Figure 2b and a), coupled with an increased

CAV-1 expression (Figure 2b).

Effect of eNOS modulation at post-translational levels on

intestinal injury associated with SAO shock

In vehicle-treated mice, SAO shock resulted in tissue injury

mainly localized to the small intestine (Figure 3b) compared

to sham-treated mice (Figure 3a). Further histological

examination of the tissue demonstrated damage localized

to the villi and associated with infiltration of inflammatory

cells in the mucosa as well as tissue hemorrhage (Figure 3b).

Treatment with LY 294002 (30–100 mg kg�1) given i.p.

15 min before reperfusion, significantly increased the extent

and severity of the histological signs of ileum (Figure 3c)

with a significant higher damage score. No significant

difference was found between the effects of the lowest dose

of LY 294002 (10 mg kg�1) and the effects of vehicle

(Figure 3b). Similarly, the administration of geldanamycin

(1 mg kg�1) 15 min before reperfusion was associated with a

significant increase of tissue injury associated with ischemia

and reperfusion (Figure 3d). Quantification of the histologi-

cal damage (Cuzzocrea et al., 2002) showed that the damage

scores induced by I/R and vehicle treatment were signifi-

cantly increased by geldanamycin (1 mg kg�1) and LY-294002

(30–100 mg kg�1) (Figure 3e).

Effect of eNOS modulation at post-translational levels on the

expression of adhesion molecules and neutrophil infiltration

MPO activity in homogenates of ileum was significantly

elevated after SAO shock in vehicle-treated mice (Figure 4).

A further marked increase of MPO activity was observed

in ileum of mice treated with LY 294002 (30–100 mg kg�1)

after 30 min of reperfusion, whereas the dose of 10 mg kg�1

was ineffective (Figure 4). Similarly, the administration of

geldanamycin (1 mg kg�1) before reperfusion caused a sig-

nificant increase in MPO activity (Figure 4).

Neutrophil infiltration in the intestine after SAO shock

was also associated with expression of adhesion molecules

(Figure 5). Following 30 min reperfusion, a positive immu-

nohistochemical staining for ICAM-1 (Figure 5; panel 1a), for

VCAM-1 (Figure 5; panel 2a), for P-selectin (Figure 5; panel
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Figure 2 (a) Akt expression was increased during reperfusion (30 min) and its phosphorylation significantly enhanced. When mice were
pretreated with LY-294002 (30 mg kg�1) or geldanamycin (GA; 1 mg kg�1), Akt upregulation was reversed; S, sham; IR, ischemia-reperfusion;
**Po0.01 vs vehicle (V). (b) Similarly, administration of LY-294002 (30 mg kg�1) or GA (1 mg kg�1) restored CAV-1 expression, but prevented
the increase in eNOS expression and phosphorylation **Po0.01 vs sham (S). The blots are representative of three different experiments.
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3a) and for E-selectin (Figure 5; panel 4a) was found in

sections of ileum from SAO-shocked mice. The positive

immunostaining for ICAM-1 (panels 1c and d), for VCAM-1

(panels 2c and d), for P-selectin (panels 3c and d) and for E-

selectin (panels 4c and d) was further significantly increased

in sections from mice treated with LY 294002 (100 mg kg�1)

or geldanamycin (1 mg kg�1).

Discussion

SAO shock is a severe form of circulatory shock produced by

ischemia and reperfusion of the splanchnic organs. This type

of shock is characterized by a decrease in systemic blood

pressure upon release of the splanchnic arteries, which leads

to a fatal outcome (Altura et al., 1985; Carey et al., 1992;

Zingarelli et al., 1992; Lefer and Lefer, 1993). SAO shock is

induced in mice by clamping both the superior mesenteric

artery and the celiac trunk, followed by release of clamps

that can be performed at different time points. Ischemia

progressively damages the cell structures and, following the

restoration of blood flow (I/R), lesions produced are further

exacerbated (McCord, 1985; Parks and Granger, 1986). Thus,

SAO promotes complex interactions between endothelium

and different cell types, leading to microvascular injury,

cellular necrosis and/or apoptosis (Massberg and Messmer,

1998).

Here by using drugs that modulate, at different post-

translational levels, the activation of eNOS, we have

monitored in depth the role of eNOS in intestinal injury

associated with splanchnic I/R. To avoid the possible

contribution of NO derived from iNOS, we used I/R

conditions in SAO, where iNOS is not yet induced (Cuzzo-

crea et al., 2002). When ischemia was induced by occlusion

of the splanchnic artery, an increase in eNOS expression was

already evident after the first 15 min of reperfusion reaching

a plateau at 30 min returning to basal levels within 2 h of

reperfusion. eNOS is located in different subcellular com-

partments; in particular eNOS is found primarily in the

perinuclear region of cells and in discrete regions of the

plasma membrane, suggesting a trafficking, in response to

cell stimulation, of the protein from the Golgi to specialized

plasma membrane structures, where it is bound to CAV-1

(Feron et al., 1998). It is now appreciated that the

consequences of enzyme activation can be determined, to a

large extent, by the intracellular localization of the signalling

complex. The fact that we detected an increased level of

eNOS by Western blot could be ascribed to an increased

cytosolic form of eNOS. Interestingly, during reperfusion

eNOS was also increasingly activated as demonstrated by a

significant phosphorylation on Ser1179. The upregulation of

eNOS activity was also confirmed by a decrease in the

expression of the inhibitory protein CAV-1 during reperfu-

sion. Thus, during I/R, eNOS was actively transformed in its

active phosphorylated form, at the same time as the

endogenous inhibitor binding protein, CAV-1, was reduced.

Figure 3 Histological evaluation of damage to mouse ileum after reperfusion and SAO. Hematoxylin/eosin staining of sections of ileum from
sham-treated mice (a). In (b–d), sections are from mice subjected to SAO shock, pretreated with (b), vehicle; (c) LY-294002 (30 mg kg�1); (d)
geldanamycin (GA; 1 mg kg�1). (e) Histological damage score following treatment with vehicle (V), LY-294002 (10–100 mg kg�1) or GA
(1 mg kg�1) 15 min before reperfusion *Po0.05; **Po0.01 vs vehicle.
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A key role in eNOS phosphorylation is played by the PI3K/

Akt pathway. Activation of PI3K leads to phosphorylation of

membrane phosphatidylinositol 3,4 biphosphate, which

recruits Akt to the cell membrane leading to phosphoryla-

tion and activation of Akt. Activated Akt in turn promotes

eNOS phosphorylation at Ser1179. We showed that, in our

experimental setting, eNOS activation in reperfused intest-

inal tissue, was coupled to Akt activation. Next to assess the

extent to which eNOS activation was dependent upon the

PI3K/Akt pathway, we treated mice, in vivo, with LY-294002,

a specific inhibitor of PI3K, before reperfusion. In another set

of experiments, we used geldanamycin to interfere with

eNOS activation. This compound binds to the ATP pocket of

hsp90 and inhibits its calcium-dependent recruitment to

eNOS (Garcia-Cardena et al., 1998). Geldanamycin also

prevents hsp90 acting as an adaptor for Akt thereby

preventing eNOS phosphorylation at Ser1179 (Brouet et al.,

2001; Fontana et al., 2002). Western blots of intestinal tissue

obtained from mice subjected to SAO following treatment

with either LY-294002 or geldanamycin showed, as expected,

a reversal of Akt and eNOS upregulation. Thus, the modula-

tion of PI3K/Akt pathway by LY-294002 or geldanamycin

implied that eNOS activation was dependent upon triggering

of the Akt pathway following I/R injury. These molecular

effects were mirrored in vivo by an exacerbation of the SAO-

induced damage to the intestine following treatment with

LY-249002 or geldanamycin. This macroscopic damage

correlated with an increased neutrophil infiltration, as

assessed by measuring MPO activity. From these data it is

feasible to suggest that the role of eNOS during reperfusion is

to act as an early protective trigger.

It is most likely this ‘protective’ action involves modula-

tion of the adhesive proteins expressed at the interface

between the endothelium and neutrophils, such as ICAM-1,

VCAM-1, P-selectin and E-selectin (Shreeniwas et al., 1992;

Clark et al., 1995; Farhood et al., 1995). Indeed, our

immunohistochemistry study clearly demonstrated that

upon treatment in vivo with LY-294002 or geldanamycin

before SAO shock, the expression of ICAM-I, VCAM, P- and

E-selectin expression was increased. The mechanism under-

Figure 5 (A) Expression of E-selectin, P-selectin, VCAM and ICAM-1 in ileum obtained by sham mice or subjected to SAO following treatment
with vehicle, LY-294002 (30 mg kg�1) or geldanamycin (GA) (1 mg kg�1). All values are expressed as mean7s.e.m. *Po0.001 vs sham
#Po0.001 vs I/R vehicle. (B) Immunohistochemical localization of ICAM (panel 1), VCAM (panel 2), P-selectin (panel 3) and E-selectin (panel 4)
following treatment with: (a) vehicle, (b) sham, (c) LY-294002 30 mg kg�1 and (d) GA (1 mg kg�1).
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lying this effect could be linked to the activation of the PI3K/

AKT pathway. Recently, evidence has accumulated indicat-

ing the PI3K/AKT pathway plays an important role in the

modulation of the immune response. In this context,

inhibition of PI3K activity increases plasma cytokine levels

(e.g., TNFa, IL-6 and MCP-1) in endotoxemic mice, enhan-

cing the recruitment of inflammatory cells into the liver and

kidney and suggesting an indirect pro-inflammatory effect

(Guha and Mackman, 2002; Schabbauer et al., 2004;

Williams et al., 2004).

In conclusion, we have shown that pharmacological

modulation of the PI3K/Akt/eNOS pathway caused an

enhanced tissue injury. These data stress the concept that

eNOS is involved at the early stages of I/R and plays a critical

protective role in response to injury in intestinal inflamma-

tion. The most novel interesting observation of the present

study was that the activation of the PI3K/Akt pathway in our

experimental conditions accounted for many of the effects

observed. These data suggest that the activation of the Akt

pathway in ischemic regions of reperfused ileum is a

protective event that is triggered to preserve the intestinal

tissue from the I/R damage, through a fine tuning of the

endothelial NO pathway.
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