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ABSTRACT Systemic administration of kainic acid, a
cyclic analogue of glutamate, produces many of the clinical
features of human temporal lobe epilepsy and status epilep-
ticus in rats, including the induction of motor convulsions and
the degeneration of neurons in the hippocampus and piriform
cortex. Differential display PCR was used to identify mRNAs
that are differentially expressed between degenerating and
nondegenerating tissues in the brain after kainic acid-induced
seizure activity. A novel cDNA fragment expressed in the
degenerating hippocampus and piriform cortex, but not in the
nondegenerating parietal cortex, was identified, cloned, and
sequenced. This novel cDNA fragment identified a new mem-
ber of the synaptotagmin gene family that is rapidly and
transiently induced in response to seizure activity. Differential
expression of this synaptotagmin gene, syt X, was confirmed by
Northern blot analysis and in situ hybridization. This novel,
inducible synaptotagmin gene may provide a direct link
between seizure-induced neuronal gene expression and sub-
sequent modulation of synaptic structure and function.

Differential display PCR allows the identification of differen-
tially expressed genes by using PAGE to display PCR-
amplified cDNA fragments between two or more mRNA
populations (1, 2). Differential display PCR was used to
identify changes in gene expression that occur in degenerating
areas of the rat brain after kainic acid-induced status epilep-
ticus (3, 4). In this model, kainate-induced excitotoxicity leads
to delayed neuronal cell death in the hippocampus and piri-
form cortex but not in the parietal cortex (5). Seizure activity
is characterized by the rapid transcriptional activation of
immediate early genes whose gene products are believed to
control the expression of downstream genes associated with
delayed neuronal degeneration (6). We used a differential
display strategy that examined gene expression in three dif-
ferent brain tissues over a 12-h time period after kainic acid
administration. This differential display strategy allowed us to
compare gene expression in the hippocampus and piriform
cortex, two brain regions that undergo excitotoxicity-induced
neuronal degeneration, with gene expression in the parietal
cortex, a region that does not undergo neuronal degeneration
(7). Differential display patterns were examined 3, 6, and 12 h
after systemic kainic acid administration. These time points
were chosen to identify genes that are rapidly induced in
response to kainic acid-induced seizures (8) and potential
downstream target genes associated with excitotoxicity-
induced neuronal degeneration.
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MATERIALS AND METHODS

Animals. Adult male Sprague Dawley rats (250-275 g) were
injected i.p. with kainic acid (12 mg/kg; Sigma) or a similar
volume of vehicle (100 mM PBS). Animal behavior was then
monitored for 1-2 h for characteristic signs of status epilep-
ticus. Animals were Kkilled 3, 6, 12, and 24 h after kainic acid
administration. Animals that were injected with kainic acid but
did not show signs of status epilepticus were used as controls.

RNA Isolation. Tissues used for RNA isolation were rapidly
dissected, snap frozen, and stored in liquid nitrogen until used.
Total cellular RNA was isolated from frozen tissue using
TRIzol (GIBCO/BRL). Total RNA samples used in differ-
ential display experiments were treated with RQ1 RNase-free
DNase (Promega) to remove contaminating chromosomal
DNA. Poly(A)* RNA was isolated using the Mini RiboSep
mRNA Isolation Kit (Collaborative Research).

Differential Display Analysis. Reverse transcription of total
RNA and differential display analysis were as described (2)
and were analyzed on a 6% polyacrylamide DNA sequencing
gel. Recovery and reamplification of the syz X cDNA fragment
from the differential display gel was also as described (2).

Isolation of syt X cDNA Sequence. The syt X differential
display cDNA fragment was subcloned into the pCR II vector
(Invitrogen) and sequenced using the T7 Sequencing Kit
(Pharmacia). Primer sequences derived from the differential
display cDNA fragment were used to obtain additional cDNA
sequence information via 5'-rapid amplification of cDNA ends
using the Marathon cDNA Amplification Kit (CLONTECH).

Preparation of syz X Probes. The syt X cDNA probe used for
Northern blot analysis corresponding to nucleotides 810-1553
was agarose gel purified using the Qiaex purification resin (Qia-
gen) and 3%P-labeled using Ready-To-Go DNA Labeling Beads
(Pharmacia) (—dCTP). The oligonucleotide probe used for in situ
hybridization, 5'-TCAGCGTCTAGTCCAGTTCGACACA-
CACCT-3', corresponding to nucleotides 1524-1553 and was
chosen based on the low degree of nucleotide similarity to other
synaptotagmin genes. The oligonucleotide probe was 33P-labeled
using the 3’-End Labeling Kit (Amersham).

Northern Blot Analysis. Poly(A)* RNA was isolated using the
RiboSep mRNA Isolation Kit (Collaborative Research). Dena-
tured RNA samples (2 ug) were electrophoresed in 1.0% agar-
ose—formaldehyde gels, transferred to ZetaProbe GT membrane
(Bio-Rad), fixed by UV irradiation, and hybridized with a 3?P-
labeled cDNA probe prepared from a gel-purified insert. Hy-
bridization and washing conditions were as described (9). Filters
were exposed to film at —70°C with an intensifying screen.
Normalization for loading was done using the Bio-Rad Model
GS-690 Imaging Densitometer and MOLECULAR ANALYST soft-
ware.

In Situ Hybridization. In situ hybridization was as described
(7). The oligonucleotide probe used in this experiment, 5'-
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TCAGCGTCTAGTCCAGTTCGACACACACCT-3', was
chosen based on the low degree of nucleotide similarity to
other synaptotagmin genes.

Database Searches and Protein Alignment. Database searches
and sequence alignment were done using the FASTA and BLAST
search servers at the National Center for Biotechnology Infor-
mation (10). Protein alignments were assembled using the CLUST-
ALW program at the Baylor College of Medicine, Houston.

RESULTS AND DISCUSSION

Identification and Cloning of Synaptotagmin X. Differential
display analysis was used to identify tissue-specific changes in
gene expression in response to kainic acid-induced seizure
activity. We identified a 228-bp cDNA fragment that appeared
to be differentially expressed in the hippocampus and piriform
cortex of animals that displayed status epilepticus (Fig. 1). This
cDNA fragment was not detected in the parietal cortex or in
control animals that were injected with kainic acids but did not
exhibit seizure activity. Sequence analysis of the cDNA frag-
ment revealed a high degree of similarity to members of the
synaptotagmin gene family (10-12). Approximately 1 X 10°
plaques of a poly(A)*-primed AZAP II rat hippocampus
cDNA library (Stratagene) were screened using the differen-
tial display cDNA fragment. However, no positive clones were
isolated with this method, suggesting a low level of sy X gene
expression in the absence of seizure activity.

Additional cDNA sequences were obtained using rapid
amplification of cDNA ends (Fig. 2). The predicted amino acid
sequence and overall structure identify the protein as a novel
member of the synaptotagmin gene family, which we desig-
nated synaptotagmin X (11, 13-18). Synaptotagmin genes are
characterized by an amino acid sequence that contains five
distinct regions. These consist of an N-terminal, intravesicular
sequence of variable length, a transmembrane domain, a
cytoplasmic region of variable length, two highly conserved C2
domains, and a short C-terminal tail. Within the cytoplasmic
region located between the transmembrane domain and the
conserved C2 domains, the syt X gene contains additional
highly conserved amino acid sequences found in syt VI and
another synaptotagmin gene, p65C, isolated from the marine
ray (19) (Fig. 3). The high degree of amino acid sequence
conservation observed in this region suggests that these se-
quences are functionally important and may define a function-
ally distinct class of synaptotagmin proteins.

hippocampus piriform cortex parietal cortex
|CC3 3 61212IC C3 36 61212ICC3 36 61212|

Fic. 1. Differential display of mRNA comparing gene expression
among hippocampus, piriform cortex, and parietal cortex after kainic
acid administration. Only a portion of the autoradiogram is shown. C,
3, 6, and 12 denote control, 3 h, 6 h, and 12 h, respectively. Differential
display reactions were performed in duplicate using 5'-
TTTTTTTTTTTCG-3' as an anchored primer and 5'-TACAAC-
GAGG-3' as a random arbitrary primer. The arrow indicates a
reproducible PCR-amplified cDNA fragment that appears to be
induced only in degenerating tissues (hippocampus and piriform
cortex) at 6 and 12 h after kainic acid injection. In the hippocampus
and piriform cortices, baseline levels of expression are seen in control
animals and at the 3-h time point. By comparison, only baseline levels
of expression are observed in the parietal cortex, a tissue in which
seizure-induced neuronal degeneration is not observed.
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CGCAGACTGGCAGCAGCGTCCGTCGGCGCGCGCCACCCTCCTGCGCCCTTGCCAACCATG 60
GGGCCAACTCGCAACTCTTAAGGCTCAGCCTCGGGCCAAGGGAAATCAGAGAAGCTGCGA 120

GCAGAAGCCAAGATGAGTTTCCGCAAGGAGGACGGGGTGAGCAGCCTGTGCCAGAAGGCG 180
M § FRKEUDGV S S L CQK A 16

CTGCACATCATCACCGAGCTGTGCTTCGCGGGCCAGGTGGAGTGGGACAAGTGTTCGGGC 240
L HI I TELTCTFAG QV EWDIKTCS G 36

ATCTTTCCAGCCGATAGGAGCGECCAGGGCGGAGETGECACAGACATTICAGTCAGCCTG 300
1 FPADRSGE® QGGG GGTTDTI[S VY L 56

TTCGTCTTC 360
L AV V VS F C G L AL L V V S LIFV F 76

TGGAAGTTGTGCTGGCCCTGCTGGAAGAGCAAGCTCGTGGCCCCCAATGTCAGTACCCTT 420
W K LCW®PCWIKSKTLV APNVSTL 9%

CCGCAGAGCATCTCAAGTGCTCCAACTGAGGTTTTTGAGACCGAAGAGAAAAAAGAAGTC 480
P QSIS SAPTEVFETTETEKKEV 116

GAAGAAAATGAAAAGCCAGCACCAAAAGCTATTGAGCCTGCAATAAAAATCAGCCACACA 540
EENEIKPAPKATILIETPATIIKTISHT 136

TCCCCCGACATCCCAGCAGAAGTGCAAACTGCTTTAAAGGAGCATTTAATTAAACATGCC 600
S PDIPAEV QTALIKTEHTLTIKH A 15

CGTGTGCAGAGGCAAACGACCGATCCTACATCTTCATCCCGCCACAATTCCTTCAGGAGG 660
RV QRQTTDU®PTSS S RUHNSFRR 176

CACCTACCAAGGCAAATGAACGTCTCCAGTGTTGACTTTAGCATGGGCACGGAACCTGTC 720
H L PRQMNV S SV DFSMGETEPV 19

TTACAAAGAGGAGAAACCAGAACCAGCATCGGGAGGATAAAACCGGAACTCTATAAGCAG 780
L @ RGETRTSTIGRTIIKTPETLY K QQ 216

AAATCAGTTGACTCCGAGGGCAACAGAAAAGACGACGTCAAAACCTGTGGGAAACTTAAC 840
K SV DS EGNRK

TTTGCGCTCCAGTACGAT AATGAACTCCTAGTTGTT

TTTGAAGTCTCTGATCTCTCCAGGGAAGCCACAGTATGGAAAGATATCCACTGT 1200
F EV SDULSREA ATV W KDTIHC 35

GGAAGAGACCATTGGAATGAAATGCTGGCCTATCACCGAAAGCCAATCACACACTGGCAC 1620
G R DHWNEMTLAYHRIKTPTITH W H 49

CCCTTG 1626
P L 498

F1G. 2. Nucleotide and predicted amino acid sequence of synapto-
tagmin X. Single letter amino acid codes are used, numbering from the
first in-phase ATG codon. The putative transmembrane domain is boxed,
and the two C2 domains are indicated by shading. Sequence information
from a small portion of the C-terminal tail of syr X is incomplete.

Expression of syt X mRNA in Rat Brain Tissue. The expression
of syt X mRNA was examined in the hippocampus, piriform
cortex, and parietal cortex by Northern blot analysis (Fig. 44).
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Syt VI MSGVWGAGGPRCQAALAVLASLCRARPPPLGLDVETCQSFELQPPEQSPSAADS 54
Syt X MSFRKEDGVSSLCQKALHIITELCFAGQVEWDKCSGIFPADRSGQGGGGT 50
p65C MSGDGEDELCRNALALVNELCFSVRGNHNNEKCIEFSYLLRDRDRTRHIET 51

Syt VI GTRYRYREERIVIII Vigely AJRV ANF Flal FIEQEEUMPIIRNINEASS - - -PSSAN[RASEL 105
Syt X DINEIEEANVIES FeL AL VTS LIV FEISRBNP CRIK SIJL VAP - - -NVSTLEQSIS 101
p65C  DISYESYMESEIYT el VIRLGIYS Ligv SEIAREE I PIRD[IGLNPQRRDSQHHGHQHL 105
Syt VI LQSPSSRGNMADKLKDPS---------- ALGFLIBAAVISH AEVQMSV 149
Syt X SAPTEVFETEEKKEVEENEKP------- APKAIEPAIISINH EVQTAL 148
p65C  HHHHSHFTDLTVERVDCGPEMPERSYLDLESYPESGI[SLEQ VDTSSGS 159
Syt VI [QAHIMRHTKLERETTERASSTIRHTHFKIXH MHVSSVDYGNELPPAA--AlEQ 201
Syt X [QSHLIKHARVEIREITTDITSS S[NHNMF RIXH MNVSSVDFSMGTEPVLQRGHT 202
p65C  [QANNIPNAHS{QEVSAEPPAT[RFNSLPPI{ZQLSSP--EFGTQADEKV---[8Q 208
Syt VI P VIJGDEAKSEAAKS[MEK TRISSINRMDME SATHINRITLIQAF 255
Syt X VIBISEGNRKDDVKTHEKL] ENELIBVIKIIGL 256
p65C V QM ARASHRN T - EAKKHQKVN[gER T TTEHCEVUKMLIGL 261
S2A'BE0 L PAKDIIEGNSDPYVKIY LLPDRK®KIBQTIRVHRKT LNPRHIFE R F IRV EaH| Sl
Syt X [EFSQEST| [FOTIRVHRKTLNP) LIFQFPYVYDOES 310
[ I3 Yo D | P AKDEWIGIESDPYVKIYLLPDRKKIFQTI®VHRKT LN PR FIIEIF ARV (]2 | KRS
Syt VI L FORE [3V)§LDN L LMRETSI YERISEASVE 363
Syt X N IFSIRIDFD [2VI{L DN LIFENS DS INFNRY WD 1 I6A THIES 364
p65C N 81 GV DN LINELZS DIZSIZERBY[ED [[MEA THIELS 369
2R RMGE TN FSLCYLPTAGR] | | KRN L KAMD, SV

Syt X [aiME e MU LIV HISC RETR@NY T PYVKYY
[T ION G E [(FSLCYLPTAGR{NTINTHL KENINL KAMDRT GIISOPY VK I
Syt VI BIKKNTLNPVYNEAIREFDTPIZE NGOV EE TN IRYGHNE
Syt X RIKKNTLNPVYNEAISLFD I PIZE NN RE WYGHNE
p65C NEIKKNTLNPVYNEA[RYF DT PRIE NbaylVINBET T (BEGHNEN
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418
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Syt VI AEEUSNDGIIHAVINSY PAGEIA HALICIBAEVKKSFKEGTPRL-------------- 511
Syt X AEQUARDGIIIA®Y HINGR TP - - - - - - - - - - - - - - - oo 498
p65C  TDEPEINELIIAMIWIN PRGN E Ol EEKVMNSYMTKSFAAGTGATKPVTIVY 531
T D
Syt X m--mmmmmmommmmmmm oo
P65C  ESPHSV=-----ommmmmm e m e e 537

FiG. 3. Alignment of rat and marine ray predicted synaptotagmin
amino acid sequences. The amino acid sequences of syt VI and syt X
from rat and p65C from marine ray are aligned. Identical amino acid
residues for all three genes are highlighted in black. The predicted syt
X protein is most similar to syt VI and p65C, with overall identities of
62% and 52%, respectively. These three synaptotagmin genes share an
additional region of amino acid homology that is not found in other
synaptotagmin family members. This region is located between the
transmembrane domain and the two C2 domains.

This experiment revealed that the syt X gene was rapidly and
transiently induced in specific brain regions in response to kainic
acid-induced status epilepticus. A single 8.0-kb transcript was
induced in the hippocampus and piriform cortex but not in the
parietal cortex. In the hippocampus, the syt X message was
elevated at 3 h, strongly induced at 6 h, and returned to basal
levels by 12 h after kainic acid administration. In the piriform
cortex, a smaller level of syt X message induction was observed at
3 and 6 h after kainic acid administration. The piriform cortex
also appeared to have a higher level of constitutive syt X expres-
sion in comparison to the hippocampus and parietal cortex. Ir situ
hybridization experiments were performed to verify the tissue-
specific pattern of syr X gene expression. These experiments
confirmed that the syt X gene was induced in specific brain regions
in response to kainic acid-induced status epilepticus. The syt X
gene showed tissue-specific expression in layer II of the piriform
cortex and the dentate granule cells of the hippocampus (Fig. 4B).
Most other brain regions showed very low basal level syt X gene
expression.

The pattern of gene expression observed in both differential
display and Northern blot analyses demonstrated an increase
in syt X gene expression in response to seizure activity.
However, the time course of syt X gene expression was not
completely consistent between these experiments. The differ-
ence in these results may be explained by the variability in
seizure activity between animals used in differential display
and those used in Northern blot analyses (7). In situ hybrid-
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FiG. 4. (A) Northern blot analysis of syt X expression. Poly(A)*
RNA from parietal cortex, hippocampus, and piriform cortex at 0, 3,
6, 12, and 24 h after kainic acid-induced seizures was probed with syt
X. The probe identifies a single message that is 8.0 kb in length. The
blot was also probed with a B-actin oligonucleotide for the purpose of
quantitation. (B) In situ hybridization of rat brain sections using an
oligonucleotide probe specific for the syt X gene. Coronal section
control and 6-h kainic acid-treated rat brain. Examination of control
and kainic acid-treated animals revealed that syt X is expressed in the
dentate granule cells of the hippocampus and layer II of the piriform
cortex.

ization results also showed some variability in the time course
of syt X gene expression in response to seizure activity (data not
shown). It also should be noted that differential display was
primarily useful as a screening tool for the identification of
differentially expressed genes and not as a quantitative mea-
sure of gene expression.

The Ca?*-dependent release of neurotransmitters and neu-
ropeptides from presynaptic nerve terminals is the central
event in synaptic neurotransmission (12). Recent genetic and
electrophysiological evidence suggests that synaptotagmin I
plays an integral role in synaptic vesicle fusion and neuro-
transmitter release (20-24). However, at least nine other
members of the synaptotagmin gene family have been identi-
fied, and the role of these genes in synaptic vesicle function is
not well understood. The syt X gene is unique in that it is
structurally distinct from most other synaptotagmins and it
demonstrates tissue-specific induction in response to seizure
activity. It is particularly interesting that the syt X gene is
induced in cells that project to neurons that undergo delayed
cell death in response to excitotoxic injury (5, 7). The syt X gene
is induced in the dentate granule cells, a region of the
hippocampus that undergoes little or no seizure-induced cell
death, so it is unlikely that this gene plays a direct role in the
cell death process. However, syt X gene expression may play a
role in modulating neurotransmitter release in response to
excitotoxic neuronal activation. The expression of one other
synaptotagmin gene, syt IV, has also been reported to be
increased after kainic acid-induced seizures (25). It is possible
that coordinate expression of specific synaptotagmin genes
leads to changes in synaptic structure and function that un-
derlie long term neuronal plasticity.
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